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Different types of fireworks are analyzed using the laser-induced breakdown spectroscopy (LIBS) tech-

nique. The system employed for spectral acquisition consists of a Nd:YAG laser (532 nm, FWHM = 4 ns) 
and an Andor Mechelle ME 5000 echelle spectrometer. The presence of Ba, Ca, Mg, Fe, Na, Sr, Si, and Al is 
identified in the LIBS spectra of different fireworks. These elements can mix easily into the surroundings and 
thus pollute the environment. In combination with LIBS, multivariate statistical methods, such as principal 
component analysis and partial least square discriminant analysis, are employed for qualitative classifica-
tion, regression, and prediction purposes. These methods show good applicability for the classification and 
prediction of a large data set. 
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C помощью методов лазерно-индуцированной спектроскопии (ЛИС) анализируются различные 
типы доступных в продаже фейерверков. Для спектральных измерений использована система, вклю-
чающая в себя импульсный Nd:YAG-лазер ( = 532 нм, длительность импульса 4 нс), а также спек-
трометр AndorMechelle ME 5000 Echelle. В спектрах различных фейерверков обнаружены Ba, Ca, 
Mg, Fe, Na, Sr, Si и Al. Эти элементы легко смешиваются и могут загрязнять окружающую среду.  
Для количественной оценки и выявления регрессии в сочетании с ЛИС использованы многовариант-
ные статистические методы, такие как частичный квадратичный дискриминантный анализ, ко-
торый перспективен для анализа большого количества данных. 

Ключевые слова: лазерно-индуцированная спектроскопия, фейерверк, элементный анализ, мно-
говариантный анализ, экологические риски. 

 
Introduction. The use of fireworks has become these days an inseparable part of festivities. However, 

the toxic substances present in them release toxic gases, thus polluting the environment and posing a poten-
tial threat to human health [1–3]. The materials used for manufacturing fireworks contain different elements, 
such as Ba, Na, Sr, Al, Ca, and Li, to impart various colors. For example, green is due to the presence of Ba; 
red is due to Sr, Ca, and Li; yellow is due to Na and Li; silver is due to Ca, Al, Mg, etc. Fireworks produce 
sparks because of the presence of elements like Al, P, Fe, and Mg, which cause air and water contamination 
after burning [4, 5]. Hazardous waste can be harmful immediately or after reacting with other materials in 
the environment. Therefore, rapid and sensitive elemental analysis of fireworks is paramount. 

For identification/quantification of elements, conventional methods such as inductively coupled plasma 
mass spectrometry (ICP-MS), electron dispersion X-ray florescence (EDXRF), atomic absorption spectros-
copy (AAS), instrumental neutron activation analysis (INAA), and particle-induced X-ray emission (PIXE) 
are used [6–9]. These techniques are time-consuming, costly, and require a complicated sample pretreatment 
procedure prior to the analysis. In order to overcome the drawbacks of these methods, there is a need to de-
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velop reliable analytical methods able to provide quality information on elemental compositions in real time. 
LIBS is a quick, eco-friendly, efficient, and useful analytical tool for the detection of trace elements in any 
environment [10, 11]. It is known as an atomic emission spectroscopy (AES) technique, based on the analy-
sis of the subsequent dissociation and ionization of small amounts of material, which leads to the generation 
of a continuum and atomic/ionic emission in the plasma obtained by focusing a pulsed laser beam onto a 
sample [12, 13]. The main objective of the present study is to evaluate the feasibility of LIBS for rapid 
analysis of fireworks. 

In the field of chemometrics, many multivariate tools are available for data description, classification, 
regression, and prediction. Chemometric methods are known to significantly improve the analytical per-
formances of spectroscopic techniques and have been used for several years along with LIBS for quantitative 
and qualitative analyses [14, 15]. LIBS spectra usually contain a number of variables (in terms of wave-
lengths), so multivariate analysis (MVA) is clearly a promising method to resolve these challenges. The pur-
pose of using MVA is to reduce the dimensions of the spectral data into fewer factors describing the data. In 
such a case, chemometric techniques are usually applied along with LIBS to improve the capability of dis-
crimination, regression, and prediction. In the present report, common chemometric techniques such as PCA 
and PLSR are applied to the LIBS spectral data of fireworks to identify the distinguishing characteristics of 
the samples and to build models that describe the relationship between the known and unknown samples 
[16–18]. 

Experimental. LIBS Setup. The experimental setup to record the LIBS spectra of the samples is the 
same as used in references [12, 13]. A Q-switched, pulsed Nd:YAG laser (continuum surelite III-10, pulse 
width FWHM = 5 ns at 1064 nm, maximum deliverable laser energy 950 mJ per pulse, variable repetition 
rate 1–10 Hz) is used as an excitation source. For the experiment, we use a second harmonic 532 nm 
Nd:YAG laser (FWHM = 4 ns at 532 nm, maximum deliverable laser energy 425 mJ per pulse). To create 
the plasma on the surface of the samples, the laser beam is focused using a planoconvex (f = 15 cm) lens. 
The maximum signal intensity and signal-to-background ratio are observed at a laser energy of 60 mJ, meas-
ured with an energy meter (model UP19K-30H-VM-DO), at a repetition rate of 2 Hz. At the focal point, the 
laser irradiance is 6.3104 J/cm2 and the fluence is 1.61013 W/cm2. Collection optics (CC 52, Andor) is so 
arranged that the maximum emission from the plasma plume is collected. The collected emission is guided 
through a UV-VIS optical fiber, dispersed by a Echelle spectrometer (Mechelle ME 5000, Andor), and re-
corded with an ICCD (iStar DH334T, Andor). Before the collection of spectral data, the wavelength calibra-
tion of the ICCD is carried out with an Hg-Ar lamp (Ocean Optics), and after that the intensity calibration is 
performed with a D-W-H (Ocean Optics CAL-500). The spectral resolution (/ of the spectrograph is 
6000. The experimental set-up is optimized for maximum signal-to-noise LIBS spectra, and these experi-
mental parameters are maintained during the whole experiment. The gate delay and gate width are also op-
timized and the values are 1 and 5 µs. A single recorded LIBS spectrum represents the average from 50 con-
secutive laser-induced plasma events, and as such ten spectra of each sample are recorded. 

Statistical treatment. Herein, two chemometric methods are employed for statistical comparison. LIBS 
spectra obtained from different fireworks are used as input data, organized as a matrix (2325456) contain-
ing variables which represent spectral emission lines corresponding to various wavelengths (in columns) and 
spectral responses (in rows). Before processing, the variables are mean centered using a common pretreat-
ment with Unscrambler-X software (CAMO software India Pvt. Ltd.). PCA intends to identify the clustering 
of the samples in different groups, and the variables are responsible for those differences on the basis of their 
compositional similarities and differences. For classification in PCA, principal components (PCs) are com-
puted and weighted linear combinations of the variables describing major trends in the data are found.  

PLSR extracts information about specific sample matrixes to establish a robust calibration model.  
In this study, we develop a model that describes a statistical correlation between the intensities of the spec-
tral lines corresponding to different wavelengths in the LIBS spectra and the variations in the elemental 
compositions. It includes the noise reduction and variable selection advantages of partial least squares (PLS). 
PLS maximizes the covariance between latent variables so that the relationship of the predicted and certified 
values can be found out.  

We predict unknown samples based on the PLSR calibration model of fireworks, and the performance 
of the PLSR model is validated using a set of test samples. Validation test sets are used to compare the effec-
tiveness of the prediction model. In this technique, the class of the calibration set is known. It determines the 
optimal variance between each class. The calibration set is used to calculate the model, which tries to fit the 
relationship between the spectra and their corresponding classes.  
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Results and discussion. The description of the samples is given in Table 1. These samples are collected 
from the local market in Allahabad, India. Five types of fireworks are taken for the analysis, among which 
the first three (S1, S2, S3) produce different colors despite looking similar. The fourth (S4) is another type of 
firework, generally called Mehtab in the local language. The last one (S5) is a firecracker. The sparklers are 
used for the experiment in their original form, while for samples S4 and S5 the constituent material is taken 
out and pellets are made with the help of a hydraulic pressure machine (H-Br Press MODEL M-15). We 
have performed the experiment and recorded the LIBS spectra of all the samples. The spectral signatures of 
Sr, Ca, Al, Fe, Ba, Na, Mg, and Si are found in the LIBS spectra of different samples. The wavelengths of 
different spectral lines have been identified using [19, 20]. 
 

TABLE 1. Description of Different Firework Samples Used for the LIBS Analysis 
 

Sample  Sample Name Color while burning 
S1 Sparkler 1 Yellowish 
S2 Sparkler 2 Reddish 
S3 Sparkler 3 Greenish 
S4 Firework (Mehtab) Yellowish 
S5 Cracker Yellowish 

 
The elements present in the firework samples might be hazardous in their original form or in the form of 

some compounds [21–24]. 
We have analyzed the all LIBS spectral data of the fireworks using PCA. Figure 1 shows the three-

dimensional score plot of PCA. PC1, PC2, and PC3 explain 87 %, 9%, and 3% of the variance in the data 
matrix, respectively. Higher order PCs do not give any other relevant information or evidence about cluster-
ing. A set of 23 LIBS spectra of five different fireworks is classified in five distinct groups, which indicates 
the dissimilar composition of the fireworks. It is observed that samples S1, S4, and S5 are close to each 
other, which indicates that the elemental composition of these samples is similar. This also verifies the fact 
that they produce the same color (yellowish) while burning. This work also demonstrates how PCA can be 
used to identify spectral differences between similar sample types based on minor impurities. The multivari-
ate data analysis tools used to analyze the LIBS data appear to compensate for some of the chemical matrix 
effects and differentiate between various sample types, as shown in Fig. 1. The chosen samples make good 
training samples to include in further MVA models. The model classification results for each sample are pre-
sented, and the influence of the variables on these results is discussed.  
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Fig. 1. Three dimensional score plot of five different fireworks. 
 

PLSR is a multivariate projection method for modeling the relationship between dependent variables 
and independent variables. The predicted vs. reference plot of the PLSR model can be seen in Fig. 2a. The 
same samples are used to construct the PLSR calibration models for making predictions. The calibration 
(blue) and prediction (red) performance of the model is assessed by the determination coefficient (R2), and 
the root mean square error (RMSE), as for an ideal model, R2 should be close to 1, and RMSE to 0. The PLS 
model is cross-validated by the leave-one-out cross-validation strategy. Twenty-three spectra of the known 
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samples are chosen as a training set to build the calibration model, and 10 spectra are selected as a test set for 
the model prediction. The response variables or predicted values are set as 1 referring to S1; similarly, 2, 3, 
4, and 5 refer to S2, S3, S4, and S5, respectively. The correlation between the predicted value and the refer-
ence value of these samples is shown in Fig. 2a. The determination coefficient R2 using the PLSR model is 
0.95 for calibration and 0.93 for prediction. The root-mean square error of calibration and prediction 
(RMSEC&P) for the model is 0.29 and 0.39, respectively. The results show that the PLSR models are more 
accurate and reliable than traditional calibration curve methods. Based on the dominant factor across a broad 
range of sample matrices, the prediction range is chosen purposely to test the robustness of the PLSR model. 
The results show that for the proposed PLSR model, the RMSE is low while R2 remains high, showing the 
overall robustness of the proposed model. This method can compensate for the influence of matrix effects 
over the conventional internal standard calibration.  

 

 
Predicted Y(C1, Factor-4)                                  a 

Predicted Y                                                    b 

          1              2               3              4              5  Reference Y(C1, Factor-4) 

    unknown1   unknown2      unknown3    unknown4     unknown5            Sample 
             unknown1      unknown2     unknown3     unknown4    unknown5 

Slope                Offset                                                                                     RMSE              R-Square 
0.9587191    0.1274324                                                                               0.2929856         0.9587185 
0.9049472    0.2527622                                                                               0.3958139         0.9361298 

 
 

Fig. 2. Predicted vs. reference plot for S1, S2, S3, S4, and S5 of PLSR model (a)  
and PLSDA model for unknown samples (b). 

 
TABLE 2. Predicted and Deviated Values of Unknown Samples Calculated by PLSDA Model * 

 

Samples Predicted Values Deviated Values 
1.1893 0.2474 1 
0.8983 0.2276 
1.6838 0.2771 2 
2.4979 0.2475 
3.4453 0.3808 3 
3.0567 0.4878 
4.0843 0.2146 4 
4.0486 0.2283 
4.8861 0.2082 5 
4.9237 0.2110 

      * One unknown sample predicted twice. 
 

The established PLSR model using the training data set is then applied to predict the classes of test 
samples, as shown in Fig. 2b. In order to evaluate the performance of the calibration model, ten samples of 
unknown composition are predicted. This plot shows the predicted values for all unknown samples, and the 
boxes around the predicted value indicate the deviation. If there is large deviation in boxes, it indicates that 
the samples used for prediction are not similar to the samples used to make the calibration set. In Fig. 2b, it 
is shown that unknown samples 1 contain the predicted value 1 with small deviations corresponding to the 
class of S1. Similarly, unknown samples 2, 3, 4, and 5 with small deviations belong to the classes of S2, S3, 
S4, and S5, respectively. It is also observed that unknown samples 3 show large deviation compared to other 
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unknown samples, indicating that samples 3 are not very much similar to reference samples S3. Table 2 
shows the predicted and deviated values of the unknown samples, corresponding to each class of known 
samples. The results show that the spectroscopic analysis of plasma emission can be a promising technique 
for unknown samples using the PLS method.  

Conclusion. The ability of LIBS as a rapid technique for the analysis of fireworks is addressed and the 
impact of these elements on the environment and human health is also discussed. The chemometrics tech-
niques considered here are used as an effective and reliable tool for multiple components in complex matri-
ces. Reasonable discrimination and prediction have been achieved with all sample types using PCA and 
PLSR. It can be concluded that without knowing concentration or any other information about the samples, 
only on the basis of random classes we can develop a model for any unknown samples. The results show 
good performances on classification, regression, and prediction and provide promising principles for the 
elaboration of methods, which could be used to discriminate fireworks in various groups and predict quality 
parameters based on appropriate algorithms for the data. In conclusion, the results presented in this paper 
demonstrate the applicability of the LIBS technique coupled with multivariate analysis for the analysis of 
firework samples. 
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