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The aim of this paper is the application of terahertz (THz) spectroscopy combined with chemometrics 
techniques to distinguish poisonous and non-poisonous herbs which both have a similar appearance. Spec-
tra of one poisonous and two non-poisonous herbs (Gelsemium elegans, Lonicera japonica Thunb and Ficus 
Hirta Vahl) were obtained in the range 0.2–1.4 THz by using a THz time-domain spectroscopy system. Prin-
cipal component analysis (PCA) was used for feature extraction. The prediction accuracy of classification is 
between 97.78 to 100%. The results demonstrate an efficient and applicative method to distinguish poison-
ous herbs, and it may be implemented by using THz spectroscopy combined with chemometric algorithms. 
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Обоснована возможность совместного применения терагерцовой спектроскопии с временным 
разрешением (THz-TDS) с хемометрическими методами для идентификации ядовитых и неядовитых 
растений. Спектры ядовитого (гельземия) и двух неядовитых растений (японской айвы и фикуса 
Хирта) получены в диапазоне 0.2–1.4 ТГц с помощью THz-TDS-системы. Для выделения признаков 
использован метод главных компонент (PCA). Точность прогноза классификации предложенным 
методом 97.78–100%.  

Ключевые слова: терагерцовая спектроскопия, ядовитые растения. 
 
Introduction. THz radiation refers to electromagnetic waves ranging from 0.1 to 10 THZ, with the 

wavelength range between 3 mm and 30 μm. This frequency band is located between microwave and infra-
red. The research shows that the fingerprint features of biomolecules are concentrated in this band [1, 2]. 
Because of this feature, it is possible to facilitate the detection of herbs by THz time-domain spectroscopy 
(THz-TDS). 

Many herbs might be identified and used incorrectly because of their similar appearances. This is dan-
gerous and harmful for human health [3–5]. Owing to this, some people even lose their lives [6–8]. In order 
to protect human health, it is necessary to identify poisonous herbs. The most of common method is based on 
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the investigation of the herbs directly. However, it is too subjective and depends on observers’ rich experi-
ence. Although chemical analysis is objective, accurate and reliable, it is a complex operation and takes more 
time. In addition, chemical analysis is expensive and can produce pollution. The THz spectroscopy technique 
can avoid the disadvantages of the appearance observation and the chemical analysis, and brings an effec-
tive, convenient, low-cost, and environmentally friendly method for distinguishing poisonous herbs. It 
should be noted that THz detection technology is widely and successfully used for other purposes, for exam-
ple, for the detection of genetically modified organisms [9–11]. In addition, Massaouti et al. used THz-TDS 
for the detection of harmful residues in honey [12]. Li et al. researched the THZ-TDS and quantitative analy-
sis of metal gluconates [13]. Gen et al. proposed an attenuated total reflection method to extract the THz 
spectrum information of drugs [14]. Tetsuya et al. predicted the density and moisture content of wood by 
THz-TDS [15]. Qin et al. researched the detection of antibiotic residues in food with THz spectroscopy using 
the PLSR model [16]. 

In this article, a method combining THz-TDS with chemometrics methods is used to distinguish a poi-
sonous herb from unclassified herbs. We built a kernel-based extreme learning machine (KELM) model to 
classify the samples of different herbs, and used the Cuckoo-Search (CS) algorithm to optimize the parame-
ters of the KELM model to obtain a better analysis result. 

Experimental samples and apparatus. We obtained three kinds of herbs (Gelsemium elegans, Lo-
nicera japonica Thunb, and Ficus Hirta Vahl) from the Guilin Herb Market, Guangxi Province, China. Gel-
semium elegans is poisonous and is easily mistaken for Lonicera japonica Thunb and Ficus Hirta Vahl. The 
herbs were dried, powdered, and filtered through a 100-mesh sieve. Then the powder was pressed to circular 
tablets. Table 1 shows the details of the samples. The samples were divided into two sets: a train set and a 
test set. We picked 90 samples from each herb randomly and put them into the train set, and put the rest of 
the samples into the test set. 

The time-resolved spectroscopy detection system consisted of the Z-3 THz time-domain spectrometer 
(Zomega Terahertz Corp., USA), and the femtosecond laser (FemtoFiber pro NIR, TOPTICA Photonics Inc., 
Germany) with a 780 nm central wavelength, a 100 fs pulse width, a 80 MHz repetition rate, and a 140 mW 
average power. It is depicted in Fig. 1, and the working principle is described in [17]. In order to avoid the 
interference of water from the air, the apparatus was placed in an airtight box. Dry air was injected continu-
ously into the box to ensure the internal relative humidity (RH) is less than 3%. 

 
TABLE 1. Details of the Samples 

 
Herbs Form Thickness, mm Diameter, mm Number of samples 

Gelsemium elegans Tablet 1.2 12 120 
Lonicera japonica Thunb Tablet 1.2 12 120 
FicushirtaVahl Tablet 1.2 12 120 
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Fig. 1. Schematic diagram of THz-TDS. 
 
Calculation. THz absorbance spectra of the samples. The THz time-domain spectra of the samples 

were obtained between 0.2 and 1.4 THz. Under the same conditions, the time-domain reference was obtained 
from the light path without the sample. We converted the time-domain spectra to the corresponding fre-

176-2



ABSTRACTS ENGLISH-LANGUAGE ARTICLES 
 

178

quency-domain spectra applying the fast Fourier transformation. The THz absorbance spectra of the samples 
can be calculated by the following formula: 

A() = lg|Er()/Es()|2.         (1) 

Here Er() and Es() are the frequency-domain THz spectra of reference and the sample, respectively. 
The absorption spectra of each herb are shown in Fig. 2. There are no obvious differences, and the herbs 

cannot be recognized by the absorption spectra directly. Additional computational analysis is necessary. 
Therefore, 270 labeled samples were selected to build a classification model, which is applied to the test 
rests.  
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Fig. 2. THz absorbance spectra of the herbs. 

 
Feature extraction. In our paper, each absorption curve contains 171 data points. Not all the data points 

are necessary for the analysis because a correlation between the points exists. So, the feature extraction is 
required. In order to reduce the dimensionality and summarize the features, principal component analysis 
(PCA) was performed. The top 10 principal components are shown in Table 2. Meanwhile, the top 3 compo-
nents explain more than 91.91% of the total contribution. The three-dimensional scores of the top 3 are 
shown in Fig. 3; the data points of different herbs are distributed separately in the three-dimensional area. 
Thus, dimensionality is reduced from 171 to 3. 

 
TABLE 2. The Contribution of Top 10 Principal Components 

 

Principal components PC1 PC2 PC3 PC4 PC5 
Contribution, % 72.5296 12.3449 7.0387 2.1820 1.6891 
Principal components PC6 PC7 PC8 PC9 PC10 
Contribution, % 0.8750 0.5917 0.5151 0.3921 0.2543 
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Fig. 3. Scores scatter plot of top 3 principal components. 
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Classification model based on CS-KELM. Extreme learning machine (ELM) is a learning algorithm 
proposed by Dr. Guang-Bin Huang in 2004 for single-hidden layer feed forward neural networks (SLFNs). 
Without using conventional optimization algorithms, ELM assigned the input weights and hidden layer bi-
ases of SLFNs randomly. Thus, SLFNs can be simply considered as a linear system and the output weights 
of SLFNs can be analytically determined through a simple generalized inverse operation of the hidden layer 
output matrices [18, 19]. ELM has proved to have good generalization performance, and the learning speed 
is extremely fast [20]. Assuming SLFNs has L hidden nodes and input N train samples, the output can be 
expressed by the following formula: 

( ) ( )
L

L j j i j i
i

f x g x b    ,    j = 1, …, N.              (2) 

Here i, bi, and i are input weights, hidden layer biases, and output weights, respectively, and g(...) is the 
activation function of the hidden nodes. The matrix form is 

H = T,                (3) 

1 1 1 1

1 1

( ) ... ( )

,

( ) ... ( )

L L

N L N L

g x b g x b

g x b g x b

    
   
     

H     

where T is the training data target matrix. The hidden layer output matrix H can be obtained based on I and 
bi, which are assigned randomly. Then, the output weight vector  can be obtained as: 

 = H†T,           (4) 

where H† is the Moore–Penrose generalized inverse of matrix H. The output function of ELM is obtained as: 

f(x) = h(x) = h(x)H†T.           (5) 

KELM is improved from ELM by Guang-Bin Huang [19, 21]. Kernel functions are used to improve the con-
vergence speed and generalization performance of ELM. The corresponding function of the original ELM is 
expressed as follows: 

f(x) = h(x) = h(x)H(I/C + HH)–1T.          (6) 

The commonly used radial bias function (RBF) was used in our KELM model. It is expressed by the 
following formula: 

(xi, yj) = exp(–||xi – yj||
2/2).           (7) 

The regularization coefficient C and the kernel parameter γ are the parameters of KELM. We used cuckoo 
search (CS) to search C and γ in this paper. 

CS was developed by Xin-She Yang and Suash Deb in 2009. It has been found to be very efficient in 
solving global optimization problems. This algorithm is inspired by the obligate brood parasitism cuckoo. 
Three idealized rules describe the standard Cuckoo search [22]: each cuckoo dumps one egg in a randomly 
chosen nest at a time; if a nest has a high-quality egg that represents a candidate solution, it will be carried 
over to the next generations; the number of available host nests is fixed, and the parasitic egg might be dis-
covered by the host bird with a probability (between 0 and 1). If this happens, the host bird would either 
abandon the egg or leave the nest to build a new one.  

Based on this idea, the basic steps of the CS algorithm can be summarized as: 
1) Initialize a population of n host nests (xi, i= 1, 2, … , n) randomly. 
2) Evaluate the objective values to get the current best solution. 
3) Set a termination condition (such as a fitness value, or cycle times). 
4) Generate new nests by the Lévy flight [23] 

xi
( + 1) = xi

 + Levy().         (8) 

First, we input the data of the train set after the feature extraction to build the classification model. Sec-
ond, we set the regularization coefficient C and the kernel parameter γ of KELM for optimal classifications. 
Third, we used CS to search C and γ. The process is shown in Fig. 4. It can be represented by the following 
optimization problem: 

max accuracy(C, )         (9) 
s.t. C  (0, A],   (0, B] , 
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where A and B are constants, which are set to 100 in the paper. We used 5-fold cross validation to divide the 
train set into five equal parts. Each part is selected once for prediction, and the remaining four parts are used 
for the train. Then the average accuracy of the five predictions is calculated and used as the valuation criteria 
of the optimization process. Before the termination condition, the cyclic process of searching C and γ is con-
tinued to obtain the optimal results. 
 

    Initial (regularization coefficient) 
       and Y (Kernel parameter) 
 
       Train                              KELM                         Update value 
          set                               classifier                        of C and Y 
 
                                          5-fold Cross 
                                           Validation 
 
 
 
  Model 1               Model 2                       Model 5 
 
 
     Valida-              Valida-                          Valida- 
      tion 1                 tion 2                             tion 5 
 
  

                                                Fitness 
                                             calculation 

 
                                           Termination         No          Cuckoo 
                                               condition                         search 
 

                                                              YES 
         Test                          Optical KELM               Classification 
          set                                classifier                         test set  

 

Fig. 4. Flowchart of the procedure. 
 

Results and discussion. The optimization of regularization coefficient C and the kernel parameter γ 
play an important role in the classification. In order to verify the performance of CS-KELM, we compared 
its fitness curve with genetic algorithms (GA). According to the parameters given in Table 3, the fitness 
curves of the two different algorithms are obtained. As shown in Fig. 5, both methods reached the optimal 
solutions. However, the average fitness of CS (>99.5%) is better than GA (<98.9%). Thus, CS is applicable 
in our optimization process. 
 

TABLE 3. Parameters of CS and GA 
 

Algorithm Cross-validation Nests (CS) or Population (GA) Iteration 
CS 5-fold 20 50 
GA 5-fold 20 50 
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Fig. 5. Fitness curves of CS (a) and GA (b). 
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We used C, γ, and the train set to build the KELM classification model. Then, we input the test set and 
predict. The 99.89% accuracy was reached through the CS algorithm, and the 96.67% accuracy was reached 
for the GA algorithm. As shown in Fig. 6a, for CS-KELM all samples of Gelsemium elegans were classified 
correctly; only one sample of Ficus Hirta Vahl was classified incorrectly, and Lonicera japonica Thunb was 
recognized. Figure 6b shows the classification of GA-KELM. One sample of Ficus hirta Vahl and two sam-
ples of Lonicera japonica Thunb were classified incorrectly.  
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Fig. 6. Classification  results  of CS-KELM, accuracy 98.8889% (a) 

and GA-KELM, accuracy 96.6667% (b); Label 1 – Ficus hirta Vahl,  
Label 2 – Lonicera japonica Thunb, Label 3 – Gelsemium elegans 

 
Furthermore, we repeated this experiment 100 times and compared the results. As shown in Table 4, the 

maximum accuracy for the two methods was reached at 100%. But the average misjudgment probability for 
GA-KELM is greater than for CS-KELM, especially for the poisonous herb Gelsemium elegans. Therefore, 
CS-KELM is better than GA-KELM for herb classification, and the poisonous herb can be distinguished 
exactly. 

 
TABLE 4. The Average Result of 100 Experiments 

 
Average number of mistake classification Type 

Ficus hirta 
Vahl 

Lonicera japonica
Thunb 

Gelsemium 
elegans 

Minimum 
accuracy, % 

Maximum 
accuracy, % 

Average 
accuracy, %

GA-KELM 0.28 0 0.09 95.56 100 98.77 
CK-KELM 0.19 0.01 0 97.78 100 99.33 

 
Conclusion. The feasibility and applicability of THz spectroscopy combined with chemometric meth-

ods for the identification of poisonous herbs are studied. Three kinds of herbs were testified, and CS-KELM 
was used to build the classification model. A classification with an average accuracy of up to 99.33% in 100 
measurements was obtained, and 100% of the poisonous herb Gelsemium elegans was found correctly. Our 
work provides a method that is fast, convenient, and effective to distinguish poisonous herbs. However, this 
is a preliminary study, and more poisonous herbs need to be collected and modeled.  
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