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 Spectroscopy has been applied in monitoring soil nutrient concentrations. Two types of soil samples, 
sandy loam and silty loam, were selected as the research objects. The UV-visible-near infrared reflectance 
spectroscopy data and total carbon (TC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), 
available nitrogen (AN), available phosphorus (AP), available potassium (FK), and slowly available potas-
sium (SK) concentrations were measured. We compared the prediction results within and between two dif-
ferent types of soil with regard to the soil nutrient concentrations using four modelling methods, which were 
principal component regression (PCR), partial least squares regression (PLSR), least squares support vec-
tor machine (LS-SVM), and back propagation neural network (BPNN) models. In the prediction results with-
in a given type of soil, LS-SVM and PLSR had better stability. In the prediction results of different types of 
soil, BPNN and LS-SVM had a high accuracy in most soil nutrient concentrations. By comparing different 
modelling methods, this study provides a basis for the subsequent selection of suitable models based on 
spectral technology to establish various soil nutrient models. 
 Keywords: UV-visible-near infrared reflectance spectroscopy, soil nutrient, least squares support vec-
tor machines, back propagation neural network, modelling methods.  
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Спектроскопия применена для мониторинга концентрации питательных веществ в почве. В ка-
честве объектов исследования выбраны два типа образцов почвы: супеси и илистый суглинок. Дан-
ные спектроскопии отражения в УФ-видимой и ближней ИК областях сопоставлены с результа-
тами измерений концентраций общего углерода, общего азота, общего фосфора, общего калия, до-
ступного азота, доступного фосфора, доступного калия и медленно доступного калия. Проведено 
сравнение результатов прогнозирования концентраций питательных веществ в почве внутри и 
между двумя типами почвы с использованием четырех методов моделирования: регрессии основного 

                                                 
**Full text is published in JAS V. 86, No. 4 (http://springer.com/10812) and in electronic version of ZhPS V. 86, 
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компонента (PCR), регрессии частичных наименьших квадратов (PLSR), метод опорных векторов с 
использованием наименьших квадратов (LS-SVM), а также модели нейронной сети обратного рас-
пространения (BPNN). Методы LS-SVM и PLSR имели лучшую стабильность результатов прогнози-
рования для данных типов почвы, методы BPNN и LS-SVM — высокую точность определения кон-
центраций большинства питательных веществ в почве. Cравнение методов моделирования обеспе-
чивает основу для последующего выбора подходящих методов моделирования на основе спектраль-
ной технологии и создания различных моделей оценки питательных веществ в почве.   

Ключевые слова: УФ-видимая и ближняя инфракрасная отражательная спектроскопия, пита-
тельные вещества почвы, метод опорных векторов с использованием наименьших квадратов, 
нейронная сеть обратного распространения, методы моделирования.  
 
 Introduction. Soil is one of the important components in the Earth's natural environment, and it is the 
basis of human existence [1]. Carbon, nitrogen, phosphorus, potassium and other nutrients in soil are im-
portant factors that affect plant growth [2]. It is of great significance to obtain the soil nutrient concentra-
tions, such as carbon, nitrogen, phosphorus, and potassium, in order to master the information and spatial 
distribution of nutrients [3]. Further, it is beneficial to the ecological construction of the region. Therefore, it 
is helpful to improve crop yield, ensure food safety, and avoid environmental pollution by obtaining, in real-
time, the dynamic change of soil nutrient concentrations [4]. 

Measuring soil carbon, nitrogen, phosphorus, potassium, and other nutrients by traditional chemical 
analysis methods is time consuming, has a high cost, and requires professional analysis and testing. This 
method is only suitable for laboratory small-scale measurements and cannot truly achieve large-scale, rapid, 
real-time measurement of soil nutrients. Spectral technology is a rapid, real-time, non-destructive analysis 
method, widely used to analyze soil, food, tobacco, petroleum, and other substances in other fields [5–9]. 
Based on the advantages of spectral technology, researchers have carried studies on the rapid measurement 
of soil nutrient concentrations and have demonstrated positive results [10–12]. 

Using spectral technology to obtain soil nutrient concentrations, we build a model of the spectra and 
concentration values of known soil nutrients, mainly through chemometrics. Common modelling methods 
are principal component regression (PCR), partial least squares regression (PLSR), least squares support 
vector machine (LS-SVM), back propagation neural network (BPNN), etc. [13–16]. Through various model-
ling algorithms, useful information is extracted from the spectrum in order to predict the nutrient concentra-
tions of unknown soil. 

Based on current spectral techniques, partial least squares regression is often used to model and predict 
the concentrations of a soil nutrient within a given soil type [17, 18], but it was not clear how the modelling 
method affected the prediction results. The modelling prediction analyses of different types of soil nutrient 
concentrations through different modelling method were rarely reported. In this paper, we adopt four model-
ling methods (PCR, PLSR, LS-SVM, BPNN), which are popular at present, to model and predict the nutrient 
concentrations within and between two different types of soil and small modelling of soil samples. The nu-
trient concentrations included the total nitrogen (TC), total phosphorus (TP), total potassium (TK), available 
nitrogen (AN), available phosphorus (AP), available potassium (FK), and slowly available potassium (SK). 
Then the prediction results of different modelling methods on soil nutrient concentrations were compared. 

Materials and methods. Soil from the Qingdao Fushan Mountain foothills, Qingdao Zaoshan Moun-
tain farmland, and Qingdao Licun River were collected, and each sample plot had 60 soil samples. The soil 
of Qingdao Fushan Mountain foothills and Qingdao Zaoshan Mountain farmland were sandy loam, and the 
soil of Qingdao Licun River were silty loam. The soil samples were dried and sifted (0.45 mm), and two soil 
samples were removed because of man-made anomalies. In total, there were 60 soil samples from the Qing-
dao Fushan Mountain foothills and 58 soil samples from the Qingdao Zaoshan Mountain farmland, resulting 
in 118 sandy loam soil samples. The final number of Qingdao Licun River soil samples, which were also the 
silt loam soil samples, was 60, bringing the total number of different soil samples to 178. 

Visible near-infrared spectroscopy acquisition. An Ocean Optical QE65000 spectrometer was used to 
acquire spectral data, the spectral sampling interval was 1 nm, the integration time was 600 ms, and the spec-
tral region ranged from 200–1100 nm, which was used in UV-visible-near infrared spectroscopy. To elimi-
nate the influence of noise, the reflectance spectra of the anterior and posterior segments of the soil samples 
were removed, and their 226–975 nm reflectance spectra data were preserved. 

Nutrient concentration acquisition. Five to ten grams of soil was taken from the soil samples, and the 
soil nutrient concentrations were determined by chemical analysis. The TC of the soil was determined by the 
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carbon-nitrogen analyzer; TN of the soil was determined by the elemental analyzer; AN of the soil was de-
termined by the sodium hydroxide indirect diffusion method; TP of the soil was determined by alkali dis-
solving-molybdenum antimony resistance spectrophotometry; AP of the soil was measured by the sodium 
carbonate leaching-molybdenum antimony resistance colorimetric method; TK of the soil was determined by 
atomic absorption spectrophotometry; FK of the soil was determined by neutral ammonium acetate-atomic 
absorption spectrophotometry; and SK of the soil was determined by atomic absorption spectrophotometry. 
The soil nutrient concentrations in the three regions are shown in Fig. 1. 

Fig. 1. Soil nutrient concentrations in three regions. 
 

Modelling method. Principal component regression (PCR) is based on the orthogonal relations of prin-
cipal components, and the regression model is established using the principal component to create a predic-
tion for unknown samples [15, 19]. The modelling method can preserve the useful information in the spec-
trum and avoid the fitting phenomenon. 

Partial least square regression. When using multiple independent variables for regression modelling, 
the partial least-squares regression (PLSR) method recombines information in an independent variable sys-
tem. PLSR can effectively extract the comprehensive variables, which are the strongest explanatory varia-
bles for the system’s dependent variable and have the greatest generalization of the information in the inde-
pendent variable system. PLSR is able to determine the latent variables by a dimension reduction operation 
and can achieve the purpose of eliminating useless information. Based on the known spectral data and the 
chemical value data, the correlation model is established by partial least squares regression to achieve the 
prediction of unknown samples [14, 20]. This method is one of the most commonly used chemometrics 
modelling methods at present. 

PCR and PLSR both first extract the components from the set of independent variables and then conduct 
multiple regressions on the extracted components. However, there are essential differences between the idea 
and method of extracting the components. The idea behind PCR extraction is that a few principal compo-
nents are derived from the independent variables so that they retain the original variable information as com-
pletely as possible and are not related to each other. In the whole process of extracting the components, there 
is no connection with the dependent variables, which are completely independent of the dependent variables, 
and the process of extracting the components is relatively simple. The idea behind PLSR is that it finds a low-
dimensional space of so-called latent variables, which are projections of independent and dependent variables 
into matrices that have maximum covariance. The process is much more complicated than PCR. 
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Least squares support vector machines. Differing from the principal component regression and partial 
least squares regression methods, the least squares support vector machine (LS-SVM) is a nonlinear model-
ling method. The training process for least squares support vector machines is to follow the principle of 
structural risk minimization, set the optimal combination of the parameters 2 and , train known spectral 
data and chemical values, and establish the relevant models [13, 21]. Here 2 and  are the penalty parameter 
and kernel function parameter, respectively, of the support vector machine. This modelling method is more 
suitable for small sample learning. In this paper, 2 = 0.01 and  = 100. 

Back propagation neural network (BPNN) is also one of the nonlinear modelling methods, which is a 
multilayer feed forward neural network based on the error back propagation algorithm. The operation pro-
cess for a back propagation neural network is mainly divided into two parts: the first is the forward calcula-
tion process, where the information is selected from the samples, and the information is taken from the input 
layer through the hidden layer to calculate the output value of each unit; the second is the error reversal pro-
cess, in which the error is calculated from the output layer, and the error of each element of the hidden layer 
is calculated layer by layer and used to modify the previous layer’s weight value [16, 22]. In this paper, the 
number of iterations is 100. 

According to the Kennard–Stone algorithm, the calibration set and the test set for soil samples within 
and between two different types of soil were divided into proportions of 2:1, respectively. The soil nutrient 
concentrations models of TC, TN, AN, TP, AP, TK, FK, and SK are established by the PLS, PCR, LS-SVM, 
and BPNN modelling methods, and the results of the soil nutrient concentration tests are predicted. 

Evaluation standard. In this paper, the model evaluation standards were the determination coefficient of 
calibration set (Rc

2), the determination coefficient of test set (Rp
2), the predicted root mean square error 

(RMSEP), and the residual predictive deviation (RPD) [23, 24]. RPD is defined as the standard deviation of 
the observed values divided by the RMSEP. The RDP takes both the prediction error and the variation of the 
observed values into account, providing a metric of model validity that is more objective than the RMSEP 
and more easily comparable across model validation studies. The closer the determination coefficient was to 
1, the better the prediction ability of the model was. The smaller the predicted root mean square error was, 
the more stable the model was, and the better the predicted effects were. The greater the RPD, the better the 
model's predictive capacity was. When the residual predictive deviation is greater than 2, the model can be 
regarded as a good model and can be used for quantitative prediction. 

Results and discussion. To ensure the consistency of the prediction in soil nutrient concentrations of 
the four modelling methods for both within and between two different types of soil, the original spectra 
without pre-treatment were used to predict each soil’s nutrient concentration. 

Comparison of four modelling methods for predicting the nutrients concentrations within a soil type. 
Prediction results of nutrients concentrations in sandy loam. In the PCR and PLSR modelling methods, the 
number of main components for PCR and the number of latent structures for PLSR were the same, and were 
6, 6, 5, 2, 3, 4, 6, and 6 for TC, TP, TK, AN, AP, FK, and SK, respectively. The prediction results of the four 
modelling methods for the nutrient concentration of sandy loam were estimated by Rc

2, Rp
2, RMSEP, and RPD.  

The general prediction for the concentration of nutrients in sandy loam was consistent in all four model-
ling methods. The model for the FK concentrations gave a better result, as Rc

2 and Rp
2 were both above 0.7 

and 0.8 respectively, and the RPD values were above 2. The prediction results for the TC and TN concentra-
tions were general, the RPD values were between 1.5 and 2, and the prediction presented the possibility of 
quantitative analysis. The prediction results for the AN, AP, and SK concentrations were poor, as the RPD 
values were below 1.5. The prediction results for the TP and TK concentrations were very poor, and the 
RPD values were below 1.  

In the prediction results for the FK concentrations, Rc
2 and Rp

2 of the two nonlinear modelling methods, 
LS-SVM and BPNN, were both higher than 0.9. The prediction results of the nonlinear modelling methods 
were higher than those of the linear modelling methods, PLSR and PCR, and the prediction results of PCR 
were the worst. In the prediction results for the SK concentrations, the results were similar to those for FK, 
and the prediction results of the PLSR, LS-SVM and BPNN models were obviously better than PCR. In the 
prediction results for TC, AN, AP, and TK, BPNN had the worst prediction results. Compared with other 
two modelling algorithms, the prediction results of LS-SVM and PLSR were better, and the PCR predictive 
effects were the second best. In the prediction results for the TN and TP concentrations, the results of the 
four modelling methods were basically consistent. 

Prediction results of nutrients concentrations in silty loam. In the PCR and PLSR modelling methods, 
the number of main components for PCR and the number of latent structures for PLSR are the same; they are 
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5, 6, 2, 6, 6, 4, 2, and 5 for TC, TP, TK, AN, AP, FK, and SK, respectively. The prediction results of PCR, 
PLSR and LS-SVM for the nutrient concentrations of sandy loam were basically consistent. TN and TC gave 
better prediction results, and the RPD values were 2; Rc

2 and Rp
2 were above 0.8; TP, AP, TK, FK, and SK 

gave poor predictive effects, and these models could not be used for quantitative analysis. The prediction 
results of LS-SVM were obviously superior to the other three modelling methods for the AN concentrations, 
with Rc

2 and Rp
2 values that were both higher than 0.85, and an RPD value that was nearly 1.9. The predic-

tion results of BPNN for each nutrient concentration were sometimes superior to the other three modelling 
algorithms and sometimes the worst. The PLSR and LS-SVM modelling methods were more stable, and the 
prediction results were better than PCR. 

Comparison of four modelling methods for predicting the nutrients concentrations of different types of 
soil. The sandy loam and silty loam samples were analyzed together, that is, as different types of soil sam-
ples. The predictive results of the four modelling methods for the nutrient concentrations of different soil 
types are shown in the Table 1. In the PCR and PLSR modelling methods, the number of main components 
for PCR and the number of latent structures for PLSR are the same, and they are 9, 9, 8, 6, 14, 5, 7, and 1 for 
TC, TP, TK, AN, AP, FK, and SK, respectively.  

Table 1 shows that the modelling results for different modelling methods were some what different be-
tween the two different types of soil. Similar to the results when analyzing within a given type of soil, the 
overall trend of the nutrient concentrations was basically consistent. In the prediction results for the TN and 
TC concentrations, other than the PCR algorithm, all algorithms could be used as an effective model to pre-
dict unknown soil samples, and the prediction results of the two non-linear modelling methods, BPNN and 
LS-SVM, were better than the two linear modelling methods, PCR and PLSR. In the prediction results for 
the AN, TP, FK and SK concentrations, the nonlinear modelling methods, BPNN and LS-SVM, had higher 
accuracy than the linear modelling methods, PCR and PLSR. The BPNN and LS-SVM models could be re-
garded as good quantitative models. The models of the SK concentrations based on the PCR and PLSR algo-
rithm could not be used for quantitative analysis, and the prediction results were improved by the BPNN and 
LS-SVM algorithms. In the prediction results for the AP and TK concentrations, the four modelling methods 
had the same effects on different types of soil.  

From Table 1, when calibrated by the LS-SVM method for all indicators, the correlation coefficient in 
the calibration set was equal to 1, and in the test samples for TK and SK had values of 0.22 and 0.52, respec-
tively. This ratio showed that, most likely, the constructed models were very refined. The test samples could 
not be predicted by this model. 
 

TABLE 1. Four Modelling Methods for the Prediction Results of Nutrient Concentrations  
in Different Types of Soil 

 
Evaluation 
standard 

Modeling 
methods 

TC TN AN TP AP TK FK SK 

Rc
2 PCR 0.78 0.80 0.72 0.79 0.79 0.26 0.67 0.01

PLSR 0.95 0.96 0.89 0.89 0.99 0.33 0.82 0.01
LS-SVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BPNN 0.98 0.98 0.96 0.90 0.71 0.84 0.88 0.80

Rp
2 PCR 0.86 0.87 0.75 0.63 0.83 0.29 0.68 0.02 

PLSR 0.92 0.94 0.81 0.70 0.77 0.34 0.76 0.01
LS-SVM 0.96 0.97 0.86 0.72 0.84 0.22 0.82 0.52 
BPNN 0.96 0.97 0.85 0.77 0.77 0.45 0.78 0.41

RMSEP PCR 1.48 0.20 17.29 0.26 6.00 0.41 17.80 139.98
PLSR 1.02 0.13 14.76 0.23 7.52 0.39 15.42 139.89
LS-SVM 0.73 0.09 12.42 0.22 6.07 0.43 13.20 96.21
BPNN 0.72 0.08 14.02 0.19 7.30 0.36 14.75 106.56

RPD PCR 2.47 2.52 1.94 1.64 2.47 1.19 1.77 0.99
PLSR 3.58 3.93 2.27 1.82 1.97 1.23 2.04 0.99 
LS-SVM 5.04 5.59 2.70 1.92 2.44 1.14 2.38 1.44
BPNN 5.06 5.97 2.39 2.07 2.03 1.34 2.13 1.30
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The prediction results of the PCR algorithm were the lowest in the soil nutrient concentrations models. 
One of the reasons might be that when useless information was eliminated, some useful information was 
eliminated at the same time. The other reason is that PCR algorithm does not have any connection with the 
nutrient concentration values during the modelling process and cannot have the same ability to explain the 
nutrient concentrations value as the PLSR model. Because of this, the modelling information was incomplete 
and the prediction results were not good. The PLSR algorithm was the most common modelling method 
used [25]. It was a simple linear algorithm, which had advantages in the case of large differences in sample 
concentrations values. However, in the actual measurement modelling, not all models conformed to the line-
ar condition, and we could not build a good model using the PLSR algorithm. Compared with the other three 
algorithms, the LS-SVM algorithm gave better predictive results and had some advantages in small sample 
modelling [26]. Modelling by a nonlinear method could maximize the outline of the trend of the modelling 
samples. Due to the randomness of the BPNN algorithm, including the selection of the number of hidden 
network nodes, the network parameters, and so on [27], the same spectrum and the same soil nutrient con-
centrations values using the BPNN algorithm would produce different prediction results. The BPNN algo-
rithm some excellent models within and between two different types of soil, but there were some models 
using the BPNN algorithm with very bad prediction results. To minimize the randomness, we needed to 
build several models more frequently and measure the average value. However, it would increase the model-
ling time and affect the running speed. In this paper, averaging of the results of multiple BPNN models was 
not used, which is probably the reason why the method sometimes produced good prediction results and 
sometimes bad results. How to decrease the modelling time as much as possible while ensuring the stability 
of the BPNN algorithm was a problem that needed to be solved. 

When using multiple samples of different soil types, the prediction results were better, and the overall 
trend showed that the four modelling methods were consistent. This is because the values for the different 
types of soil nutrient concentrations varied widely. In the prediction results for small modelling samples 
[28], most of them still conform to the rule, and the higher the number of modelling samples, the better the 
prediction results. The higher the number of modelling samples that could accurately describe the model for 
the soil nutrient concentrations, the better the prediction results for unknown samples. Further, the nonlinear 
modelling methods had some advantages in the prediction of sets with small modelling samples. 

Conclusion. Two different types of soil samples, sandy loam and silty loam, were selected as research 
objects. We determined the visible near-infrared reflectance spectra of soil and total nitrogen, total phospho-
rus, total potassium, available nitrogen, available phosphorus, available potassium, and slowly available po-
tassium concentrations of soil. Principal component regression, partial least squares regression, least squares 
support vector machine, and back propagation neural network were four modelling methods that were com-
pared to predict the soil nutrient concentrations both within and between two different types of soil. In the 
prediction results for nutrient concentrations within a given type of soil, the four modelling methods showed 
a general trend in their results for both sandy loam and silty loam. The LS-SVM and PLSR algorithms had 
better stability when predicting the results. In the prediction results of nutrient concentrations in the different 
types of soil, the results from different modelling methods varied. The nonlinear modelling methods, the 
BPNN and LS-SVM algorithms, had high accuracy for most soil nutrient concentrations. The prediction re-
sults of the four modelling methods became more accurate with higher numbers of modelling samples. By 
comparing different modelling methods, this study provides a basis for the subsequent selection of suitable 
models based on spectral technology to establish various soil nutrient models. 
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