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In space target recognition using spectral analysis technology, there is the problem that the composi-
tion or chemical properties of surface materials of the space target are similar. This problem leads to the
high similarity of spectral curves and low accuracy of space target recognition. Similar object recognition is
important in the study of actual space target observation. In this paper, an entropy weight fuzzy-rough near-
est neighbor (EFRNN) algorithm is proposed to enhance the recognition accuracy of similar space targets,
which is an improvement of the fuzzy-rough nearest neighbor algorithm. By introducing the feature weight
determined using information entropy, the features of all the training samples are considered and quantified.
Moreover, the proposed algorithm combined with fuzzy-rough set theory can overcome the fuzzy uncertainty
caused by overlapping classes and the rough uncertainty caused by insufficient features, to a certain extent.
The simulation results show that the proposed algorithm achieves very promising performance compared
with existing algorithms. The EFRNN classifier yields an overall classification accuracy of 95.83%. The
proposed algorithm is simple and efficient for similar space target recognition. Furthermore, the EFRNN
algorithm does not require preset parameters and complex preprocessing.
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Ilpeonazaemcs neuemkoO-nPUOAUIUMENbHBLU ANCOPUMM OIUICALIUIE20 COCe0d RO UHPOPMAYUOHHOU IH-
mponuu (EFRNN) 015 nosviuienus mouHoCmu pacno3HA8aHUsl NOXOHCUX KOCMULECKUX yeell, KOMOopblll a6-
JISIeMCsL YIyHuleHueM aneopumma Hewemroeo onudicatiuieco coceda. Ilymem esedenus geca npusHaxa, onpe-
0eNeHH020 C UCNONb308AHUEM UHPOPMAYUOHHOU IHMPONUU, PACCMAMPUBATOMCS U KOAUHECHBEHHO OYeHU-
8aIOMCA XAPAKMEPUCMUKYU 8CeX 0byUaiouux ebloopok. 1Ipednodicennulii aneopumm 6 covemanuu ¢ meopueti
HeuemKux MHOICECM8 MOdicenm 6 onpeoeeHHOl cmeneHy npeoooemb HeYemKylo HeonpedeieHHOCMb, 6bl-
38AHHYIO NEPEKPLIMUEM KAACCO8, U epYOYI0 HeonpedeneHHOCHb, 8bI36AHHYI0 He0OCMAMOYHLIMU QYHKYUAMU.
Peszyromamur modenuposanus noxasvigarom, umo xiaccuguxkamop EFRNN oaem 0bwyto mounocms Kiac-
cugpuxayuu 95.83%. Ilpeonazaemviil ancopumm npocm u 3Qpgexmusen 0as pacno3HABAHUSL NOXOAICUX KOC-
MUHecKux yenetl, He mpebyem npedycmano8IeHHbIX NAPAMEMPO8 U CLONCHOU NPedsapumebHol 0opabomxu.

Knrwoueswvle cnoea: mounoe pacnosuasanue oopasos, dHMPONULIHbIIL 8ecC, Heuemkoe MHONCECMB0, KOC-
MuvecKue yenu.
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Introduction. With an increasing number of spacecraft being sent into space, the recognition of space
targets has become a topic of great interest in space research [1-6]. In the aerospace field, the term “space
target” typically refers to various man-made aircraft and space debris that orbit the earth beyond the atmos-
phere [2]. At present, optical observation is mainly used to extract the characteristics of the target, including
the size, shape, attitude, and orbit, through optical imaging technology and time sequential photometry for
space object recognition [7]. Spectral characteristics are an important optical feature of space targets [8].
Space target recognition using spectral features can identify space targets without other characteristic infor-
mation of space objects, such as geometry and orbit information. When the space target is far away from the
observation device, the observed space target occupies very few image pixels, and even becomes a point
target that lacks shape and size information [3]. In this case, recognition technology using spectral infor-
mation has obvious advantages. Additionally, the spectral recognition method belongs to the area of single-
frame detection, which does not require the multi-frame information of time sequences. Thus, it is robust to
the speed of space target movement, and the amount of computation is relatively reduced, which can im-
prove the recognition speed.

The basis of space target discrimination with spectral analysis technology is that different space object
surface materials have different spectral curve features. Recently, some machine learning and deep learning
methods have been used for space target recognition using spectral analysis methods. Cauquy et al. [4] used
the artificial neural network method to process the central moments of space target spectra, and then the
space target was identified according to the Spica database, which was provided by the Maui Surveillance
Site in Hawaii, USA. Plemmons et al. [5] developed a nonnegative matrix factorization algorithm with novel
smoothness constraints for unmixing reflectance spectra to identify space targets. Deng et al. [3] proposed a
multi-scale convolutional neural network for feature learning and classification, which was used for space
infrared point object discrimination. However, these methods aim at the recognition of general space targets,
not similar space targets.

The reflectance spectra of space objects are highly similar in practical applications because of the simi-
lar composition and chemical properties of the surface materials of space objects [6]. Hence, the probability
distribution of a certain class of space objects is difficult to determine, and it varies in multiple directions of
feature space. In this case, it is difficult to discriminate space objects with high accuracy using traditional
pattern recognition methods, such as the K-nearest neighbor (KNN) [9] algorithm and support vector ma-
chines [10]. The fuzzy-rough nearest neighbor (FRNN) algorithm is a generalization of the conventional
KNN algorithm, and the classification efficiency is enhanced by exploiting fuzzy-rough uncertainty [11, 12].
However, the performance of the FRNN algorithm is unsatisfactory for similar space object discrimination.
In this paper, an entropy weight FRNN (EFRNN) algorithm is proposed to discriminate space objects for
which the reflectance spectra are highly similar using current observation devices. The proposed algorithm is
a fine space object identification method, which has the advantages of simple operation, fast processing, and
high accuracy.

Calculation. Materials. Four cuboid samples representing space objects were prepared in the simulation
experiment. The six surfaces of each cuboid sample were composed of three materials in different propor-
tions. Additionally, only one of the composition materials was different in any two samples among the four
samples, which implies that the four cuboid samples were similar objects. The original spectra were obtained
by the Headwall Photonics Hyperspec VNIR-N series spectrometer. Moreover, the spectra of each surface of
the cuboid samples were collected in turn. Additionally, the distances between the spectrometer and the sam-
ples remained fixed. The spectral region of the spectrometer was between 400 and 1000 nm, and the spectral
resolution was 2—3 nm. Hence, there was a total of 24 spectra with four classes assigned to the training set.

EFRNN method. The EFRNN algorithm is an improvement of the FRNN algorithm, and it introduces
the concepts of information entropy weight and fuzzy-rough sets. Instead of k& nearest neighbors, feature
weights are determined based on the information entropy of all the training samples. Moreover, the fuzzy-
rough sets can help to solve the fuzzy uncertainty caused by overlapping classes and the rough uncertainty
caused by insufficient features, to some extent. Therefore, the classification accuracy for similar objects can
be improved.

Suppose that the training set X = (X1, X2, ..., X») consists of m training samples with L classes. Each
sample contains n features, that is, the ith sample can be represented as x; = (x;1, Xi2, ..., Xin), i = 1, ..., m.
Additionally, the class label of sample x; is y; = ¢, ¢ = 1, ..., L. The EFRNN algorithm processes the test
sample q = (g1, ..., ¢») using the following steps:
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Step 1. The feature weight of training set w is determined using information entropy, and is defined ac-
cording the following formula:

m
Z; =X in/-, B=1/Inm,
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where z;; is the normalized data, 3 is an adjustment parameter, /; is the total information entropy of the jth
feature of the sample, and wj is the information entropy weight of the jth feature of the sample.
Step 2. The information entropy weighted Euclidean distance d between training sample x; and test
sample q is calculated by the following formula:

d(x,,q) = zl w06 —4,)° @)

(1)

where g; is the jth feature of test sample q.
Step 3. Considering all training samples, the class confidence value o(c) with which test sample q can
be classified to class ¢ is determined by the following formula:

1/(p-1
o(c) = Z B (x,) exp(=d""™") , (3)
x;eN |N|
where p.(x;) denotes the fuzzy membership of the ith sample in class ¢, p is a parameter that controls the
overall weighting of the similarity, &V is the training set, and || is the cardinality of set N.
Step 4. After all the training samples have been considered, the class label of test sample ¢ is deter-
mined as the class with maximum o(c):

label(q):argmflxo(c)- “4)

It should be noted that the conventional KNN algorithm assigns equal weight to the k nearest neighbors,
and then the class label of the test sample is predicted based on only these k£ nearest neighbors. However, the
EFRNN algorithm assigns weight based on the contribution of all training samples in the classification, and
the contribution is measured using information entropy. Information entropy can objectively evaluate the
importance of each feature and quantify it. Additionally, the EFRNN algorithm predicts the class label of the
test sample with the class confidence value. In some papers [11-13], the class confidence value is also called
the fuzzy-rough ownership function, which can quantify both fuzzy uncertainty and rough uncertainty.
Therefore, the EFRNN algorithm overcomes the shortcomings of the conventional KNN algorithm, which
are that the classification accuracy is affected by the value of k£ and the classification ability of overlapping
classes is insufficient.

Results and discussion. In this study, a simulation was conducted to demonstrate the effectiveness of
the EFRNN algorithm. The experimental process is described as follows.

Data preprocessing. The spectra of the four samples are shown in Fig. 1. Wavelet denoising was used to
improve the signal-to-noise ratio of the spectra. The basic wavelet was the sym5 wavelet and the number of
decomposition layers was 7. The spectral curves before and after wavelet denoising are shown in Fig. 2. Ad-
ditionally, isometric feature mapping (ISOMAP) [14] was used to perform feature extraction and dimension
reduction to increase the identification accuracy and computation speed.

Statistical analysis. As shown in Fig. 1, in the 400—800 nm region, the spectra of four samples are simi-
lar because they have similar spectral shapes and spectral intensities, which indicates that these four prepared
cuboid samples can simulate space objects with similar reflectance spectra. A comparison of the classifica-
tion accuracy of the EFRNN algorithm with that of the KNN and FRNN algorithms demonstrates the effect
of the EFRNN algorithm.

After data preprocessing, all 24 spectra were used to verify the classification efficiency of the above al-
gorithms. In the experiment, the control parameter for the EFRNN algorithm was assumed to be p = 3, and
the fuzzy membership of the ith training sample in class ¢ was assumed to be p.(x;) = 1. Additionally, the
parameter p and p.(x;) for the FRNN algorithm were assigned to the same values as those in the EFRNN
algorithm. Because of the limited number of samples, the full cross-validation method was used. Table 1
shows the classification results for the KNN, FRNN, and EFRNN algorithms.
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Fig. 1. Spectra of four class samples (Facel-Face6 represent the spectra
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Fig. 2. Spectral curves before (a) and after wavelet (b) denoising.
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TABLE 1. Comparison of the Classification Results for the KNN, FRNN, and EFRNN Algorithms

Class KNN, % FRNN, % EFRNN, %
A 83.33 100 100
B 83.33 100 100
C 83.33 83.33 83.33
D 83.33 83.33 100
Overall 83.33 91.67 95.83




890 LI QING-BO et al.

In Table 1, the classification accuracy of the EFRNN algorithm for classes A, B, and D reached 100%,
and the overall classification accuracy for all samples reached 95.83%. Compared with 83.33% overall clas-
sification accuracy of the KNN algorithm, the EFRNN algorithm was clearly more capable in terms of simi-
lar object discrimination. Furthermore, the classification accuracy of the EFRNN algorithm was better, to a
certain extent, than the 91.67% accuracy of the FRNN algorithm.

The EFRNN algorithm had the highest overall classification accuracy, followed by the FRNN and KNN
algorithms. The accuracy of the KNN algorithm greatly depended on the choice of the optimal value of £,
and the accuracy was high when the & value was appropriate, which was difficult to achieve. Furthermore,
the EFRNN algorithm enhanced the overall classification accuracy of similar samples significantly. The fea-
ture weight measured using information entropy objectively evaluated the importance of every feature of
spectral data while predicting the class of the test sample. Hence, instead of the weight distance calculated in
the FRNN algorithm [11], the confidence value o(c) was obtained by substituting the information entropy
weighted Euclidean distance d into Eq. (3). The experimental results also confirmed that the proposed
EFRNN algorithm can be used to recognize similar space targets.

Conclusions. Space targets occupy few pixels when the distance between them and observation devices
is large. The advantage of spectral analysis technology is that it can discriminate space targets based on the
reflectance spectral curves of their surface materials without information about their shape and size. To
overcome the problem of the low classification accuracy of space targets with similar reflectance spectral
curves in actual observation, an improved FRNN algorithm, that is, EFRNN, was proposed to enhance the
accuracy and realize the fine pattern recognition of space targets.

The experimental results show that the proposed algorithm is simple and effective. The EFRNN algo-
rithm does not require complicated preprocessing. Moreover, the spectral data collected by the spectrometer
only requires wavelet denoising and feature extraction using ISOMAP. Then, these spectral data can consti-
tute the training set for the classifier. Additionally, by exploiting fuzzy-rough set theory, the confidence val-
ue is used as the basis for evaluating the class of the test sample. It alleviates the fuzzy uncertainty caused by
overlapping classes and the rough uncertainty caused by insufficient features, to a certain extent. Instead of
determining k& nearest neighbors like the KNN algorithm, the EFRNN algorithm introduces the feature
weight measured using information entropy to quantify and synthesize all the spectral features of training
samples. Hence, the information entropy weight reflects the contribution of all training sample information
to classification. Combining fuzzy-rough set theory and the information entropy weight, the pattern recogni-
tion accuracy of the EFRNN algorithm for similar objects was better than those of the KNN and FRNN algo-
rithms. Thus, the EFRNN algorithm is suitable for the practical application of space target fine pattern
recognition.
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