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The proximate analysis of coal, which aims to estimate the moisture, volatile matter, and caloric value, 
is of great importance for coal processing and evaluation. However, traditional methods for proximate anal-
ysis in the laboratory are not only time-consuming and labor-intensive but also expensive. The near-infrared 
spectroscopy (NIRS) technique provides a rapid and nondestructive method for coal proximate analysis.  
We exploit two regression methods, random forest (RF) and extreme learning machine (ELM), to model the 
relationships among spectral data and proximate analysis parameters. In addition, given the poor stability 
and robustness caused by the random selection of parameters in ELM, we employ the particle swarm optimi-
zation algorithm (PSO) to optimize the structure of ELM (PSO-ELM). A total of 384 coal samples from Inner 
Mongolia are collected for model training and validation. The experimental results show that the proposed  
PSO-ELM algorithm achieves the best performance in terms of accuracy and efficiency, which indicates that 
NIRS combined with PSO-ELM has significant potential for accurate and rapid proximate analysis. 
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Метод ближней инфракрасной спектроскопии (NIRS) обеспечивает быстрый и неразрушающий 
экспресс-анализ угля. Для моделирования взаимосвязей между спектральными данными и парамет-
рами приближенного анализа применяют два метода регрессии – случайного леса (RF) и экстремаль-
ного обучения (ELM). С учетом низкой стабильности и надежности, обусловленной случайным выбо-
ром параметров в ELM, использован алгоритм оптимизации роя частиц (PSO) для оптимизации 
структуры ELM (PSO-ELM). В общей сложности 384 пробы угля из Внутренней Монголии собраны 
для обучения и проверки модели. Результаты показывают, что алгоритм PSO-ELM обеспечивает 
наилучшую производительность с точки зрения точности и эффективности. Данные свидетель-
ствуют о том, что NIRS в сочетании с PSO-ELM имеет значительный потенциал для точного и 
быстрого приближенного анализа.  

Ключевые слова: уголь, приближенный анализ, метод случайного леса, метод экстремального 
обучения, оптимизация роя частиц. 
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Introduction. The world has witnessed rapid growth in coal and coke consumption, especially after the 
beginning of industrialization [1]. Coal provides affordable and reliable electricity to millions of people in 
developing and emerging economies. With the explosive development in industrial fields such as cement mak-
ing and electricity generation [2], the traditional utilization of fossil fuels is unsatisfactory not only for its low-
grade energy utilization but also for increasing pollution [3, 4]. 

To utilize coal more wisely and efficiently, accurate estimation of coal parameters in the proximate anal-
ysis is essential, which is always the first stage of coal assessment. The main parameters of proximate analysis 
include the moisture, volatile matter, and caloric value. Moisture content is the water that exists in the coal. 
Moisture absorbs heat, and therefore, the high moisture content in coal decreases the relative efficiency of 
combustion. In addition, the weight added by moisture is an unfavorable factor in coal transportation. Water 
in coal also affects its sorption of gas, including methane [5] and carbon dioxide [6]. Volatile matter (VM), by 
definition, is the measure of nonwater gases formed from a coal sample when heated to 950°C in an oxygen-
free environment. VM is the product of coal thermal decomposition and mainly consists of hydrogen, methane, 
carbon monoxide, carbon dioxide, and other complex organic compounds. This product is a key safety concern 
since coals with high VM have an increased risk of spontaneous combustion. Calorific value is a dominant 
factor in coal pricing [7] since approximately half of the coal is used by power plants. This parameter is deter-
mined by measuring the heat produced by the complete combustion of coal in oxygen. 

Determining moisture, volatile matter, and calorific value in the laboratory with traditional testing meth-
ods ought to be performed under rigidly controlled conditions. In the sample preparation process, all samples 
need to be pulverized to 250 μm. In addition, the measurement of coal parameters involves many instruments, 
such as drying ovens, capsules, balance, electric furnaces, and platinum crucibles. Each step in the experi-
mental procedure may result in remarkable accumulative errors. 

Near-infrared (NIR) spectroscopy, a fast and nondestructive analytical method that uses near-infrared 
spectroscopy with an electromagnetic spectrum from approximately 780 to 2526 nm, has been deployed for 
chemical investigation. These existing studies reveal its advantages in component detection over traditional 
elemental analytical methods [8, 9]. To determine the coal parameters in proximate analysis effectively and 
efficiently, much attention has been given to constructing a high-quality model. For instance, Jonathan P. 
Mathews reviewed the correlations of coal properties with elemental composition [10], and several models 
were established to study the coal characteristics based on the NIR technique. Combined with partial least 
square regression (PLS), the predictive ability of the supportive vector machine (SVM) is improved [11]. 
Although previous works have achieved good research results in prediction accuracy, the efficiency of these 
studies, which is also important in the practice and application of portable NIR scanners, is unsatisfactory. In 
addition, previous studies were conducted on relatively small datasets, and inhomogeneity may exist, which 
may lead to overfitting and low generalization ability of the established models. The random forest (RF) algo-
rithm is a statistical model that can be regarded as an ensemble of various decision trees [12–14]. It provides 
nonlinear statistical approximation to handle high-dimensional data instead of transforming the data with ker-
nel functions. Even when trained with limited samples, this algorithm can achieve high prediction accuracy. 
The extreme learning machine (ELM), another feed-forward neural network, has come into practice since 
2015. Unlike other network-based algorithms, the weight of hidden nodes in ELM can be randomly assigned 
and never changed [15, 16]. Apart from the good prediction accuracy, the most attractive highlight of ELM is 
that it outperforms popular machine learning algorithms in training and fitting time on many publicly available 
benchmark datasets [17–20]. However, since the input weight and offset parameters of ELM are randomly set, 
ELM also has the disadvantages of low robustness and stability. 

Considering the abovementioned issues, we expanded the data volume of samples, totaling 384 samples.  
To optimize the structure of the ELM, we employed particle swarm optimization algorithm to obtain the opti-
mized parameter set, including input weights and bias. The experimental results show that PSO-ELM yields 
the best prediction performance in terms of accuracy and time. 

Materials and methods. A reliable dataset is essential for modeling to obtain the desired performance. 
A total of 384 coal samples from Inner Mongolia was collected and prepared according to the ’Method for 
Preparation of Coal Sample’ (GB474-2008) [21] in the National Laboratory of the Import and Export Quaran-
tine Inspection Bureau. All coal samples were scanned by an Antaris II Fourier transform near-infrared spec-
trometer (Fig. 1), and 1609 wavelength points were obtained for the spectrum of each sample. The Michelson 
interferometer is mainly composed of a fixed mirror, moving mirror, light source, beam splitter, sample stage, 
and detector. Light from the source is split into two parts by a beam splitter, resulting in a difference in the 
length of the optical path. After interference, the light is transformed into an electrical signal when it reaches 
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the detector. Fourier transform is performed by the amplifier and A/D converter when the interferogram is 
generated, amplified, and converted to digital. The spectrum of the sample is plotted with the x-axis of wave-
length and y-axis of absorption. 

 

 

Fig. 1. Layout of the NIR system.  
 

Figure 2a shows all spectra of 384 coal samples (each color represents one sample) with wavelengths 
ranging from 3799.0793 to 10001.0283 cm–1. The sampling and proximate analysis process strictly follows 
the guidelines for the standard testing method for moisture, volatile matter, and calorific value. Four-fifths of 
the samples in the dataset was randomly used for training, and one-fifth was used for testing in 5-fold cross-
validation. The training and testing sets remain exactly the same for all models. Real values of moisture, vol-
atile matter, and calorific value are plotted in Fig. 2b. The color map is used here for demonstration, and each 
sample is represented with one unique color. 
 

  

Fig. 2. Dataset perspective: a) spectrum of coal samples (features); b) ranking parameters (labels). 
 

Developed from decision trees, the RF model is an ensemble algorithm of multiple decision tree regres-
sors and achieves good performance in classification and regression tasks (Fig. 3). In regression tasks, the 
original dataset is broken down into smaller and smaller subsets. 
 

 

Fig. 3. Demonstration of a decision tree and random forest structure. 

Fixed Mirror 

Moving Mirror

Light Source 

Beam Splitter 

Sample Stage 

Detector 
A 

Interferogram

A/D

Processing

D/A

Absorption 
Spectrum 

Absorbance 

10000                  7000                   4000 
Wavelength point 

1.3 
 
 

 
1.0 

 
 

 
0.7 

0.26

0.42 
0.00 

0.14 

4000 

7000

Volatile matter 

Moisture 

Calorific 
value 

x1 

x2                                  x3 

x4                x5                    x6           x7 

x8                                      x9 

x1Treshold                          x1Treshold x1Treshold               x1Treshold x1 

x2                         x3 

x4             x5              x6        x7 

x8                  x9 

 Decision tree                                                    Random forest 

a b 

502-3 



ABSTRACTS ENGLISH-LANGUAGE ARTICLES 
 

 

505

Given a dataset D = {(x1, y1), …, (xi, yi), …, (xn, yn)}, where xi and yi denote the input and output values, 
respectively, and x1, x2,…, xk are the features in xi, it is partitioned into M regions R1, R2, …, Rm. These regions 
Rm are defined by a series of binary splits. In the fitting process, the aim is to minimize the squared error as 
follows: 
 2( ( ) )

i m

i i
x R

f x y


 , (1)

where f(xi) is the predicted value and f(xi) is the average of y: 
 ( ) ave( )i m i i mf x c y x R   . (2)

The decision tree model automatically decides the splitting variables and split points. We define a pair of 
half-planes  
    1 2( , ) : , ( , ) :j jR j s x x s R j s x x s    . (3)

Denote a splitting variable as j and split point as s; the objective function for searching the optimal j and 
s can be written as 
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    , (4)

where с1 = ave(yi|xiR1(j,s)) and с2 = ave(yi|xiR2(j,s)). 
There are a finite number of dimensions in xi, and thus, we can search over all of them. Given a fixed 

splitting variable j, the best splitting point can be determined in a short time. Checking all the input variables 
makes the pair (j, s) feasible for seeking splitting variables and split points. The process of seeking is repeated 
on all resulting subsets. The model based on the decision tree algorithm is easy to interpret. However, decision 
tree regressors are limited by low generalization capability. Overfitting trees are created when the minimum 
number of samples required at a leaf node or the maximum depth of the tree are not set appropriately. What 
makes the RF model different from the traditional decision tree is that the original decision tree algorithm 
divides the input data based on all feature parameters, whereas the RF model splits on the subset of randomly 
picked features, also known as bootstrapping. The process of bootstrapping can avoid overfitting effectively, 
thus improving the performance of random forest. The general idea of bagging can be described as: 

Step 1. Create multiple subdatasets drawn with replacement from the training set; 
Step 2. Build multiple decision tree regressors on each bootstrap sample; 
Step 3. Combine decision trees. 
Based on the bagging method, each tree in the random forest model is grown with a bootstrap set from 

the training set. Another source of randomness comes from the random input vectors: the best split point is 
found over a random sample of features to minimize the residual sum of squares (RSS) 
 2

,
1

RSS ( )
n

i i t
i

y y


  , (5)

where yi is the true value and yi,t is the predicted value of yi. 
As an ensemble model, the random forest model fits the input data in a shorter time due to the independ-

ence of each decision tree, making parallel computing and modeling possible. One trick employed in RF is the 
setting of the maximum number of potential predictors. Thus, the situation of a strong predictor being a root 
node repeatedly is avoided. The RF model provides unbiased estimation with generalization. In addition, RF 
can rank the importance of all features in the regression task. The extreme learning machine is a fast machine 
learning method composed of feedforward neural networks. It is proposed to speed up the training and fitting 
process of machine learning. Another advantage of the ELM model is that it can provide a universal approxi-
mation, implying that it can tackle most regression tasks with desired prediction accuracy. 

In the ELM model, there is only one nonlinear neural layer, and all variables are taken by the input layer 
without any additional computation. Here W, the weight of the input layer, and b, the value of bias, are fixed 
in the training progress as they are set out of random beforehand; f represents nonlinear functions that operate 
transformations on input data. As the only nonlinear layer of the entire model, the nonlinear function improves 
the prediction performance of ELM (transformation function can be linear or nonlinear). Here H, the hidden 
layer, can be constrained to multiple nonlinear functions to calculate the weight of the output layer (as shown 
in Fig. 4). The standard single-layer feedforward network can be described as 
 H = Y, (6)
where H = f(WX + b) and  is the output weight. 
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Fig. 4. Demonstration of ELM structure.
 
The target is to minimize H–Y to achieve the smallest training error [22]. This equation has strictly 

proven that i) a model with randomly selected input weight W and hidden layer bias b can learn with the 
desired small error [23, 24] and ii) the minimum norm solution of min||H – Y|| is an inverse of H [25]. Thus, 
the remaining work aims to find specific  by least squares fit as β̂ = H –1Y. As stated, in most cases, we have 

n k  ( n is the number of hidden neurons); therefore, H is a non-square matrix. Therefore, the smallest norm 
least-squares solution can be found when H–1 is replaced by H+, the Moore-Penrose generalized inverse of H. 
Finally, the extreme learning machine method can be summarized as follows: 

Step 1. Select input weight W and hidden layer bias b out of random; 
Step 2. Calculate hidden layer output matrix H; 
Step 3. Calculate output weight . 
In most cases, the ELM algorithm can produce a good effect, but as a result of the threshold and weights 

being randomly selected, it inevitably leads to modeling the redundancy of hidden layer neurons to issue such 
differences in unknown input parameter identification ability, thus reducing the stability and accuracy of the 
model. Thus, the extreme learning machine was optimized by using the PSO algorithm in the threshold and 
the weights to further enhance the stability and accuracy of the model. PSO is a global optimization strategy 
based on the social behavior of animal species. During the optimization process, we initialize q particles in the 
group s = (s1, s2, …, sq), and each particle represents a potential solution of the ELM model. In this study, the 
dimension of the search space is set as D. The ith particle is assigned a random position represented as  
si = (si1, si2, …, siD)T and a random velocity represented as vi = (vi1, vi2, …, viD)T. Similarly, to the objective 
function, the fitness function of the optimization process is defined as follows. 

When particle i searches the solution space, the optimal parameter Pi = (pi1, pi2, …, piD)T and the optimal 
parameter Pg = (pg1, pg2, …, pgD)T of the population are saved. The particle speed and particle position are 
adjusted once per iteration and updated according to the following formula:  
 1

1 1 2 2

1 1

( ) ( ),
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t t t t t t
id id id id gd gd

t t t
id id id

v wv c r p x c r p x

s s v
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where w is the initial weight, and t is the current round; c1 and c2 are positive acceleration constants,  
and r1 and r2 are uniformly distributed random numbers, ranging from 0 to 1. 

The details of the improved ELM model are as follows: 
Step 1. Initialize the initial population; 
Step 2. Set the mean square error of the network as the fitness function; 
Step 3. Calculate the fitness value of each particle and save the current global best solution; 
Step 4. Update the velocity and position of each particle and update the personal best solution; 
Step 5. Determine whether it has obtained the maximum number of iterations or the required error. If it 

has, then end, otherwise return to Step 3. 
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Results and discussion. Spectral data are used as input features, and proximate analysis parameters 
(moisture, volatile matter, and calorific value) are employed as regression targets. In this experiment, 5-fold 
cross-validation is employed, where 4 folds are used to fit the model, and the remaining fold is used to test the 
model. This process is repeated until every fold serves as the test set.  

The normalized root mean, square error (NRMSE), fitting time, and prediction time are used to evaluate 
the performance. The NRMSE is defined as follow: 
 ˆ

2

max min

1
ˆ( )

NRMSE

n

i i
i

y y
n

y y







, 

(8)

where ŷi is the predicted value, yi is the ground truth, and n̂  is the total number of test samples; ymax and ymin 
are the maximum and minimum values of the testing set, respectively. 

RF modeling. Based on bootstrap aggregation, the random forest is an estimator that fits each tree to 
various subsamples of the dataset. Figure 5a shows a comparison between the predicted value of the RF model 
and the true property value. The performance of the RF model is generally unsatisfactory, and samples with 
either small or large reference values are not predicted well in the RF model. We suspect that one potential 
reason is the ineffective estimation of variable importance. Variable importance in the RF model is computed 
by permuting features of the current variable and averaging the out-of-bag error, and therefore, it is sensitive 
to noise. In addition, the features of each sample spectrum are interrelated since, in the area of coal chemistry, 
the range of chemical elements (carbon, nitrogen, sulfur, and hydrogen) is not discontinuous for overlapping 
transition energy absorption. Therefore, when a corelated variable is chosen as an indicator, the importance of 
other variables decreases to different degrees, so it is misleading to improperly evaluating predictors even if 
they have very similar responses. The measurements of execution time and the prediction error of the RF 
model are summarized in Table 1. The NRMSEs of predicting moisture, volatile matter, and calorific value 
are 0.12394, 0.13083, and 0.13123, respectively, which indicates that there is much room for improvement to 
achieve a more accurate proximate analysis of coal. 

 
TABLE 1. Performance Comparison of Different Models 

 

Property Model Fitting time, s Prediction time, s NRMSE 

Moisture 
RF 0.893 0.105 0.12394 

ELM 0.188 0.012 0.05605 
PSO-ELM 0.049 0.007 0.01297 

Volatile matter 
RF 0.921 0.105 0.13083 

ELM 0.233 0.009 0.11248 
PSO-ELM 0.121 0.005 0.04261 

Calorific value 
RF 0.982 0.104 0.13123 

ELM 0.205 0.009 0.06880 
PSO-ELM 0.089 0.002 0.02579 

 
ELM and PSO-ELM modeling. To make better predictions, ELM is introduced in this paper due to its 

effectiveness and efficiency. Note that the data splitting criteria used in this section are the same as those in the 
RF model. Figure 5b plots the straightforward comparison of the reference value and the predicted value. It 
shows that the overall performance has improved significantly. The statistics of the ELM model are listed in 
Table 1. Taking moisture as an example, the NRMSE yielded by the ELM model is 0.05605, compared with 
0.12394 for the RF model. In addition, the fitting time and prediction time are approximately 1/5 and 1/9, re-
spectively, of the RF model. There is a similar case in terms of volatile matter and calorific value. Experimental 
results show that the ELM model performs better than the RF model in predicting the three properties of coal. 

Considering that the input weights and hidden biases are generated randomly, the ELM model suffers 
from low robustness and generalization. To optimize the structure of the ELM, PSO is introduced in this paper 
to obtain the optimized parameter set, including input weights and biases. Figure 5c shows the prediction 
performance of the proposed PSO-ELM model. Compared with ELM, PSO-ELM performs significantly better 
in predicting all properties except volatile matter. For an overall insight, a comparison of performance param-
eters from those discussed models is shown in Table 1. It shows that the PSO-ELM model is superior to the 
other two models, RF and ELM. For simplicity, taking the calorific value as an example, the PSO-ELM model 
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yields outstanding performance with an NRMSE of 0.02579 and prediction time of 0.002 during the testing 
phase, which is nearly 1/3 and 1/4 of the ELM model. In addition, the proposed model is effective for predict-
ing moisture and volatile matter. These results indicate that the developed PSO-ELM algorithm has good gen-
eralization capability for proximate analysis of coal. 

a 

 

 
b 

 

 
c 

 

Fig. 5. Performance of (a) RF, (b) ELM, and (c) PSO-ELM modeling. 
 

Conclusions. Three machine learning models, RF, ELM, and PSO-ELM, are established to predict mois-
ture content, volatile matter, and calorific value based on NIRS. The extreme learning model optimized by the 
particle swarm optimization algorithm is expected to be of practical use on portable near-infrared examiners 
for coal trading and quality inspection. We evaluate the performance of the proposed models on 386 coal 
samples originating from Inner Mongolia. The fitting time, prediction time, and NRMSE are used to evaluate 
the regression models. Experimental results demonstrate that the PSO-ELM model can be considered a reliable 
tool in intelligent proximate analysis. 

 

     True M                                          True VM                                   True CV 

0.15 
 
 

 
 
 

 
0 

0.40 
 
 

 
 
 
 

0.25 

 
6500 

 

 

 
5000 

 
 
 

3500 
   0                             0.15               0.25                        0.40               3500                                7500
           Predicted M                                Predicted VM                                Predicted CV 

     True M                                        True VM                                      True CV 

0.15 
 
 

 
 
 
 

0 

0.40 
 
 

 
 
 
 

0.25 

 
7000 

 
 

 
 

 
 

4000 

0                             0.15               0.25                              0.45          4000                    7000 
           Predicted M                                Predicted VM                                Predicted CV 

     True M                                         True VM                                      True CV 

0.15 
 
 

 
 
 
 
 

0 

0.45 
 
 

 
 
 
 
 
 
 

0.25 

 
7000 

 
 
 
 

 
 
 
 

3500 
0                            0.15                 0.25                            0.45             4000                      7000 
           Predicted M                                Predicted VM                                Predicted CV 

502-7 



ABSTRACTS ENGLISH-LANGUAGE ARTICLES 
 

 

509

REFERENCES 
 
1. Y. Wolde-Rufael, Appl. Energ., 87, 160–167 (2010). 
2. L. Pérez-Lombard, J. Ortiz, C. Pout, Energ. Buildings, 40, 394–398 (2008). 
3. M. M. Alam, M. W. Murad, A. H. M. Noman, I. Ozturk, Ecol. Indic., 70, 466–479 (2016). 
4. Y. Jafari, J. Othman, A. H. S. M. Nor, J. Policy Model., 34, 879–889 (2012). 
5. J. I. Joubert, C. T. Grein, D. Bienstock, Fuel, 52, 181–185 (1973). 
6. M. Švábová, Z. Weishauptová, O. Přibyl, Fuel, 92, 187–196 (2012). 
7. U. Lorenz, Z. Grudziński, Appl. Energ., 74, 271–279 (2003). 
8. Y. Hu, L. Zou, X. Huang, X. Lu, Sci. Rep. Uk, 7 (2017). 
9. Y. Hongfu, C. Xiaoli, L. Haoran, X. Yupeng, Fuel, 85, 1720–1728 (2006). 
10. J. P. Mathews, V. Krishnamoorthy, E. Louw, A. H. N. Tchapda, F. Castro-Marcano, V. Karri, D. A. Alexis, 
G. D. Mitchell, Fuel Process. Technol., 121, 104–113 (2014). 
11. Y. Wang, M. Yang, G. Wei, R. Hu, Z. Luo, G. Li, Sens. Actuat. B: Chem., 193, 723–729 (2014). 
12. L. Breiman, Mach. Learn., 45, 5–32 (2001). 
13. P. Probst, A. Boulesteix, B. Bischl, J. Mach. Learn. Res., 20 (2019).  
14. L. Zou, Q. Huang, A. Li, M. Wang, China Life Sci., 55, 618–625 (2012). 
15. S. Tamura, M. Tateishi, IEEE Trans. Neural Net., 8, 251–255 (1997). 
16. G. B. Huang, IEEE Trans. Neural Net., 14, 274–281 (2003). 
17. A. Akusok, K. Bjork, Y. Miche, A. Lendasse, IEEE Access, 3, 1011–1025 (2015). 
18. G. Huang, H. Zhou, X. Ding, R. Zhang, IEEE Trans. Syst. Man Cybern. B: Cybern., 42, 513–529 (2012). 
19. J. Tang, C. Deng, G. Huang, IEEE T. Neur. Net. Learn., 27, 809–821 (2016). 
20. G. Huang, Q. Zhu, C. Siew, Neurocomputing, 70, 489–501 (2006). 
21. Lei M, Rao Z, Li M, Yu X, Zou L, Appl. Sci., 9, 1111 (2019). 
22. P. L. Bartlett, IEEE T. Inform. Theory, 44, 525–536 (1998). 
23. G. Huang, Q. Zhu, C. Siew, Neurocomputing, 70, 489–501 (2006). 
24. G. B. Huang, Q. Y. Zhu, C. K. Siew, Neural Networks, 2, 985–990(2004). 
25. P. Lancaster, M. Tismenetsky, The Theory of Matrices with Application, Elsevier (1985). 

502-8


