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A total of 130 topsoil samples collected from Guoyang County, Anhui Province, China, were used to es-
tablish a Vis-NIR model for the prediction of organic matter content (OMC) in lime concretion black soils. 
Different spectral pretreatments were applied for minimizing the irrelevant and useless information of the 
spectra and increasing the spectra correlation with the measured values. Subsequently, the Kennard–Stone 
(KS) method and sample set partitioning based on joint x-y distances (SPXY) were used to select the training 
set. Successive projection algorithm (SPA) and genetic algorithm (GA) were then applied for wavelength 
optimization. Finally, the principal component regression (PCR) model was constructed, in which the opti-
mal number of principal components was determined using the leave-one-out cross validation technique. 
The results show that the combination of the Savitzky–Golay (SG) filter for smoothing and multiplicative 
scatter correction (MSC) can eliminate the effect of noise and baseline drift; the SPXY method is preferable 
to KS in the sample selection; both the SPA and the GA can significantly reduce the number of wavelength 
variables and favorably increase the accuracy, especially GA, which greatly improved the prediction accu-
racy of soil OMC with Rcc, RMSEP, and RPD up to 0.9316, 0.2142, and 2.3195, respectively. 

Keywords: Vis-NIR spectroscopy, organic matter content, spectral pretreatment, sample selection, 
wavelength optimization. 
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При создании модели для анализа методом спектрометрии в видимом и ближнем ИК диапазо-
нах содержания органических веществ (OMC) в черноземе с известковыми включениями использова-
ны 130 образцов поверхностного слоя почвы, взятых в графстве Гуоян провинции Аньхой, Китай. 
Для минимизации несоответствующей и бесполезной информации в полученных из спектров данных 
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и повышения степени их корреляции с измеряемыми величинами проведена предварительная обра-
ботка спектров. Для выбора обучающего набора использованы метод Кеннарда–Стоуна (KS) и раз-
биение набора образцов с совместным учетом расстояний по x-y (SPXY). C помощью алгоритма по-
следовательных проекций (SPA) и генетического алгоритма (GA) осуществлена оптимизация длин 
волн. В итоге построена модель регрессии на главные компоненты (PCR), в которой оптимальное 
число главных компонент определено с помощью методики перекрестной проверки с исключением по 
одному. Показано, что комбинация фильтра Савицкого–Голея (SG) для сглаживания и мультипли-
кативной поправки на рассеяние (MSC) может исключить влияние шума и дрейфа базовой линии; 
метод SPXY имеет преимущество перед KS при выборе образцов; SPA и GA могут значительно 
уменьшить число переменных по длинам волн и эффективно повысить точность GA и анализа OMC 
в почве до коэффициентов корреляции (Rcc), среднеквадратичной ошибки предсказания (RMSEP) и ос-
таточной погрешности прогноза (RPD) 0.9316, 0.2142 и 2.3195 соответственно. 

Ключевые слова: спектроскопия видимого и ближнего ИК диапазонов, содержание органиче-
ских веществ, предварительная обработка спектра, выбор образца, оптимизация длины волны. 

 
Introduction. The application of precision agriculture needs vast amounts of accurate, real-time and 

low-cost soil data over a large area. It sets high requirements for soil data collection. An ideal measurement 
method should be more efficient in both detection time and cost. Visible and near infrared reflectance spec-
troscopy (Vis-NIRS) is a non-destructive, rapid, and repeatable method that can provide inexpensive and 
real-time prediction of soil physical, chemical, and biological properties [1–6]. The NIR band ranges from 
700 to 2500 nm, and the spectra in this range are mainly composed of the absorption peaks corresponding to 
the overtones and combinations of the fundamental vibrations due to the stretching and bending of N–H,  
O–H, and C–H groups [7]. Owing to the significant development in chemometrics, NIRS now is widely ap-
plied in many fields for qualitative and quantitative analyses. 

Soil organic matter content (OMC) plays a major role in many chemical and physical properties of soil 
and significantly affects its reflectance spectra. As to the prediction of OMC using the VIS-NIRS technique, 
many researchers have conducted a great number of studies and achieved many favorable results. Based on 
the collected VIS-NIR data, the international scholars used different multivariate regression methods and 
systematically compared their capabilities in OMC prediction [8–12]. Principal component regression (PCR) 
is a well-accepted method in constructing a soil prediction model. Chang et al. [13] evaluated the ability of 
near infrared spectroscopy to predict soil OMC with PCR, with a determination coefficient up to 0.87 and a 
residual prediction deviation (RPD) of 2.79. Vasques et al. [8] identified the best combination to predict soil 
OMC with five multivariate techniques including PCR. Wang et al. [14] analyzed the potential of VIS-NIRS 
to predict soil OMC using two spectrometers, and the results showed that both spectrometers could achieve 
favorable results. All of those proved the feasibility of the PCR-based NIRS model in the prediction of soil 
OMC. However, the noise and some irrelevant or collinear information included in VIS-NIRS can affect the 
accuracy of the PCR-based method, and the influence should be eliminated with some measures before using 
the model. 

In this paper, PCR was used to relate the VIS/NIR spectra with soil OMC, while spectral pretreatments, 
sample selection, and wavelength optimization were conducted for improving the prediction accuracy of the 
constructed model. By comparing the prediction results obtained with different methods, the role of spectral 
pretreatment, sample selection and wavelength optimization in the improvement of the soil OMC prediction 
capacities was evaluated.  

Materials and methods. An experimental field in Tongfeng Seed Industry located in Guoyang County, 
Bozhou City, Anhui Province, China (33°27′~33°47′N; 115°53′~116°33′E) was selected in the present study. 
Mean annual temperature is about 14.6°C, and mean annual precipitation is about 830 mm. The overall flat 
fields in Guoyang County can be classified as lime concretion black soil. As one type of ancient cultivated 
soils, lime concretion black soil presents a highly localized distribution in Huaibei Plain, China. According 
to the China Soil Scientific Database (http://www.soil.csdb.cn/), it is composed of two layers from top to bot-
tom, namely, a black-soil layer and a lime-concretion layer. The black-soil layer exhibits neutral or weakly 
alkaline properties with the measured pH value ranging from 6.0 to 8.6. It should be noted that OM, N, and P 
contents of the lime concretion black soil are not very high while K content is relatively high [15, 16]. 

A total of 130 topsoil samples was collected using an S-shaped sampling scheme (i.e., the sampling 
points were arranged in an S-shaped pattern). As specified in the Technical Specification of Balanced Fer-
tilization by Soil Testing (NY/T 1118-2006) and Soil Testing-Part 1: Soil Sampling, Processing and Reposi-
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tion (NY/T1121.1-2006) released by the Ministry of Agriculture of the People’s Republic of China, the  
S-shaped soil sampling method was generally adopted for soil testing in rectangle fields, which could over-
come errors caused by tillage and fertilization. The soil samples were collected from the surface layer at the 
bottom of a 20 cm deep trench using a special soil sampler. Each sample was about 2000 g and was placed 
into a tightly sealed plastic bag to avoid external contamination. After the rejection of weeds and small 
pieces of rocks, the soils were then naturally air-dried and sieved to less than 2 mm [17]. The soil samples 
after preprocessing were divided by a four-way division method into two portions A and B. The samples in 
Group A were placed in properly closed bags and taken to a chemical laboratory for the analysis of OMC. 
The soil OMC was determined by the potassium dichromate volumetric method coupled with a watering 
heating technique [18]. Statistical data of the measurement results are [OMC]min = 1.29%, [OMC]max = 
= 3.85%, mean value 2.34%, and standard deviation value 0.525%. The samples in group B were subjected 
to spectral measurements, which are described in the next section. 

The experimental instrument employed in the present work was a VIS/NIR soil sensor by Veris Tech-
nology Incorporation. As a tractor-mounted sensor that can collect real-time soil information, the spectro-
photometers and the optical system of Veris VIS/NIR soil sensor were built into a shank mounted on a tool-
bar and then pulled by a tractor during field investigations. Many factors in the field measurements such as 
temperature, humidity and light intensity can seriously affect the collected spectra and the subsequent meas-
urement results. Thus, this study was firstly focused on the laboratory measurements, in which many envi-
ronmental and soil factors were assumed to be identical. In the present work, the spectrophotometers (Ocean 
Optics USB4000 and Hamamatsu C9914GB) and the optical system (a tungsten halogen bulb and fibers) in 
the Veris Soil Sensor were dismounted from the tractor-mounted mobile platform to perform the laboratory 
measurements. All the data processing procedures in the present work were compiled with Matlab. A total of 
130 samples was adopted for the measurements. They were put in a Petri dish, and the surface was smoothed 
beforehand. During the measurements, the sample surface was pressed against a sapphire window of the 
Veris soil sensor. As a tradeoff between the minimization of the measured errors and time consumptions, 
each sample was detected three times while rotated by 120° for the next scan. After each measurement, the 
collected three spectra were averaged. It can be found that the first two large absorption peaks are located at 
around 1420 and 1930 nm, both of which are coincident with the characteristic absorption peaks of H2O [14]. 

The measured spectra are easily influenced by individual differences (sample particle size, intensity of 
light, measurement conditions, etc.), baseline variations, and substantial noises. Therefore, the pretreatment 
should be applied to minimize irrelevant and useless information of the spectra and increase the correlation 
between the spectra and the measured values. The frequently-adopted pretreatment methods include nor-
malization, the first- and second-order derivatives, multiplicative scatter correlation (MSC), standard normal 
variate (SNV), and detrending or any combination thereof [19, 20]. 

The pretreatment methods employed in this work were MSC, SNV, Savitzky–Golay (S–G) filter for 
smoothing, the first-order and second-order derivative, and a combination thereof. The SNV and MSC trans-
formations could remove the baseline drift from spectra caused by scattering and variations of particle sizes. 
To remove high frequency noise, the Savitzky–Golay polynomial smoothing filter can digitally smooth a 
given spectrum by approximating it within a specified data window using a specified order polynomial. Ac-
cordingly, the data can be best matched in the window on a least-square basis. In the present work, a filter 
with a polynomial of order 3 and a window with width 7 data points were used [14]. 

The selection of a representative training set plays a determinative role in the construction of prediction 
models, since the models established with the representative-characteristics samples can lead to accelerated 
regressions, an improvement of the prediction accuracy, and a reduction of storage space and costs. More-
over, the application range of the established models can be expanded by adding a small amount of represen-
tative samples beneficial to the model update and improvement. 

In the present study, the random sample (RS), The Kennard–Stone (K-S) methods, and the method of 
sample set partitioning based on joint x-y distance (SPXY) were used for the sample selection. The RS 
method refers to the random selection of a certain number of samples as the training set. The K-S algorithm 
aims at covering the multidimensional space in a uniform manner by maximizing the Euclidean distances 
between the instrumental response vectors (x) of the selected samples [21]. The SPXY method extends the 
K-S algorithm by encompassing both x and y differences in the calculation of inter-sample distances [22].  

Wavelength optimization on the full spectrum with the aim of enhancing accuracy is still a challenging 
task, especially when the collected spectra display strong overlapping and imperceptible distinctive features. 
The VIS-NIR range spectra are mainly composed of the overtones and combination bands of hydrogen 
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groups, and the absorption peaks are of weak intensity and relatively low sensitivity and have wide absorp-
tion band width, serious overlaps, and multiple correlations in spectral information. If the full spectrum were 
involved in the model, it would not only increase the complexity of the model and calculation load, but also 
reduce the prediction accuracy of the model owing to the irrelevant variables and collinearity between the 
variables. 

The successive projection algorithm (SPA) selects the wavelengths according to the contribution value 
sequence of the test samples and looks for the original spectral data with minimum redundant information. 
Accordingly, the overlapping information can be avoided and the redundant information can be eliminated in 
the selected wavelength data. This method can greatly reduce the calculation amount and improve the model 
stability and accuracy [23]. 

The genetic algorithm (GA) is a kind of random search optimization algorithm based on the rule of bio-
logical evolution. Owing to the invisible parallelism and adaptive and global optimization capacity, GA has 
become a common method for the optimization of wavelength in the construction of NIR prediction models. 
In combination with GA algorithm, the constructed NIR prediction models exhibit relatively high predictive 
abilities [24]. 

Calibration and validation. Among the training sets after selection with 130 samples, the calibration 
and validation sets were selected with the aim of predicting an unknown sample scientifically and exactly. 
The selected 100 samples were divided as the calibration data set, and the rest of the 30 samples were used 
as the validation set. In the calibration stage, the spectra were compressed using principal component analy-
sis (PCA), and an optimum number of the principal components (PCs) was determined using the leave-one-
out cross validation (LOOCV) technique, in which each sample was omitted and predicted using the calibra-
tion model established by the remaining samples [25]. With the pre-processed spectra, values of the predic-
tion residual error sum of squares (PRESS) in the leave-one-out cross validation for different numbers of 
PCs and soil contents were calculated. Thus, the number of PCs corresponding to the least PRESS values 
was determined as the optimal number of PCs. A suitable number of PCs is quite crucial for taking full ad-
vantage of the spectral information and noise-filtering, while some useless information, such as the measured 
errors, can be over-included for a greater number of PCs, also known as “over-fitting”. Subsequently, the 
models were constructed using the PCR method, in which multiple linear regressions were performed using 
the obtained optimum numbers of PCs. In the validation stage, the above-described calibration model devel-
oped from the training set (100 samples) was used to predict contents of the soil samples in the validation set 
(30 samples), and the predicted values were compared with the measured ones. The statistic parameters for eva-
luating the predictive capability of the models include the correlation coefficient (Rcc), RMSEP, and RPD [26].  

Results and discussion. The selection of an appropriate pretreatment method is very important for the 
establishment of the NIR prediction model. As stated above, the NIR spectra are affected by many factors, 
such as collinearity, physical properties, light scattering, machine noise, and so on. Generally, different 
methods were applied and compared for selecting the most appropriate one according to the requirements. 
The pretreatment could mine the weak signals and imperceptible information through some transformations 
on the original spectra. The combination and the sequence of different pretreatment methods need to be op-
timized in the practical applications. In this study, the PCR-based prediction models for OMC after different 
pretreatments were developed using the training set, and the prediction results are listed in Table 1. It can be 
seen that different methods have different influences, and the combination of the S-G filter for smoothing 
and MSC exhibit the most favorable results. Thus, it was chosen for later elaborate discussions.  

 
TABLE 1. Prediction Results of PCR Models with Different Pretreatments 

 
Pretreatment PCs Rcc RMSEP RPD 

Smooth 15 0.5307 0.4123 1.189 
1st derivative 7 0.6296 0.3547 1.3013 
2nd derivative 2 0.6808 0.3292 1.3116 
MSC 9 0.6324 0.4053 1.3005 
SNV 9 0.6206 0.4093 1.2879 
MSC+2nd derivative 7 0.6261 0.3837 1.2704 
MSC+1st derivative 6 0.5857 0.3927 1.2559 
MSC+ smooth 20 0.5779 0.4076 1.2079 
SNV+ smooth 18 0.7086 0.3434 1.4337 
SNV+1st derivative 6 0.5854 0.3928 1.2556 
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Continue Table 1
Pretreatment PCs Rcc RMSEP RPD 

SNV+2nd derivative 7 0.6415 0.3738 1.3058 
Smooth +MSC 17 0.7198 0.3432 1.5155 
1st derivative +MSC 8 0.5956 0.3438 1.2317 
2nd derivative +MSC 3 0.5801 0.3766 1.2215 
BS+SNV 19 0.5818 0.3823 1.1593 
1st derivative +SNV 8 0.5981 0.3432 1.2337 
2nd derivative +SNV 3 0.5805 0.3761 1.2233 

 
Table 2 shows the results of the PCR models with different sample selection methods. It can be seen 

that, using the random selection (RS), the prediction results are relatively poor; the prediction results using 
the K-S sample selection are better than the results using RS as Rcc increases from 0.329 to 0.7198, RMSEP 
decreases from 0.4537 to 0.3432, and RPD increases from 1.2826 to 1.5155; the prediction results using the 
SPXY results are best, with Rcc, RMSEP, and RPD up to 0.8298, 0.2738, and 1.7216, respectively. Conse-
quently, the SPXY method was chosen for further in-depth discussions in calibration and validation. 

 
TABLE 2. Prediction Results of PCR Models with Different Sample Selection Methods 

 
Method  PCs Rcc RMSEP RPD 

RS 17 0.329 0.4537 1.2826 
KS 17 0.7198 0.3432 1.5155 

SPXY 17 0.8298 0.2738 1.7216 
 
It can thus be concluded that, using the RS method, the samples are randomly selected by the computer, 

with strong randomness and poor repeatability, the selected training set cannot adequately represent the 
whole samples, and the constructed NIRS models are generally not accurate and robust enough; using the 
KS method, the number of similar samples in the training set can be reduced, and thus the constructed pre-
diction model is superior to the model using the RS method; using the SPXY method, both the spectral and 
target variables were taken into account, so the selected training set is more representative than that selected 
using the KS method and the established model is best in prediction accuracy. 
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Fig. 1. Correlation between the predicted and the measured values of OMC using GA-based PCR model. 
 

Table 3 lists the results of the PCR models with the use of different wavelength optimization methods, 
and Fig. 1 shows a comparison between the predicted results and the measured values using the GA-based 
PCR model. As shown in Table 3, SPA and GA can both increase the PCR model accuracy and greatly de-
crease the predicting errors. Both two methods can contribute to the optimization of wavelengths so as to 
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remove the effects of noise and enhance the predictive capability. This can be reflected in the increased cor-
relation coefficient Rcc and RPD as well as the decreased RMSEP. 

 
TABLE 3. Prediction Results of PCR Models with Different Wavelength Optimization Methods 

 
Method PCs Rcc RMSEP RPD 

  NULL 17 0.8298 0.2738 1.7216 
  SPA 7 0.8712 0.2362 1.9957 
  GA 18 0.9316 0.2142 2.3195 

 
SPA and GA employ simple operations in a vector space to obtain the subsets of variables with small 

collinearity, which can effectively eliminate the redundant information of the wavelength variables and thus 
improve the prediction precision. Specifically, SPA requires less computational work load than GA; how-
ever, the GA-based prediction model has a better prediction precision. Since GA takes the serial correlation 
characteristics of the spectral data into account in the optimization of wavelength, more spectral information 
is included, and the GA-PCA model is superior to the SPA-PCA model in the prediction of soil OMC.  

Conclusion. Visible-near infrared spectroscopy (Vis-NIRS) was proved to be an effective tool in the 
prediction of soil properties. Spectral pretreatments, sample selection and wavelength optimization play im-
portant roles in the construction of the Vis-NIRS prediction model. In order to establish an accurate and ro-
bust prediction model for soil OMC, 17 pretreatment methods, three sample selection methods and two 
wavelength optimization methods were applied in the Vis-NIRS model establishment. Results show that the 
combination of the S–G filter for smooth and MSC can effectively eliminate the effects of noise and baseline 
drift. Both KS and SPXY can select the representative samples, but the SPXY method overall considers both 
x and y differences in the calculation of inter-sample distances and can select the more representative sam-
ples and give more accurate results. SPA and GA can decrease the number of wavelengths enormously, sim-
plify the model and increase the accuracy remarkably. SPA requires less computational work, but GA is 
preferable in prediction accuracy. In conclusion, after spectral processing and selection of the training set, 
the GA-PCR model can accurately predict soil OMC and fully meet actual needs. 

This work was supported by the Science and Technology Service Network Initiative of Chinese Acad-
emy of Sciences (No. KFJ-EW-STS-069). 
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