V. 84, N 4

JULY — AUGUST 2017

РЭЛЕЕВСКОЕ И МАНДЕЛЬШТАМ-БРИЛЛЮЭНОВСКОЕ РАССЕЯНИЕ СВЕТА В СТЕКЛООБРАЗНЫХ СПЛАВАХ СИСТЕМЫ (Sb₂S₃)_x(GeS₂)_{100-x}

И. И. Шпак^{*}, Р. М. Евич, О. И. Шпак, С. И. Перечинский, Д. И. Блецкан, Ю. М. Высочанский

УДК 535.36:666.13.01

Ужгородский национальный университет, 88000, Ужгород, ул. Подгорная, 46, Украина; e-mail: shpak.univ@gmail.com

(Поступила 27 октября 2016)

Исследовано рэлеевское и мандельштам-бриллюэновское рассеяние света в халькогенидных стеклах системы Ge–Sb–S по разрезу $(Sb_2S_3)_x$ (GeS₂)_{100-x}, x = 0-50 мол.%. Определены соотношения Ландау—Плачека, скорость продольного гиперзвука, высокочастотный продольный упругий модуль и коэффициент экстинкции на длине волны $\lambda = 0.6328$ мкм.

Ключевые слова: халькогенидные стекла, рэлеевское и мандельштам-бриллюэновское рассеяние, соотношения Ландау—Плачека, скорость продольного гиперзвука, потери на рассеяние, координационное число.

The Rayleigh—Brillouin light scattering in the chalcogenide glasses of the Ge–Sb–S system in the $(Sb_2S_3)_x \cdot (GeS_2)_{100-x} (x = 0-50)$ set is investigated. The longitudinal hypersonic velocity, the high-frequency longitudinal elastic modulus, the extinction coefficient at the wavelength $\lambda = 0.6328 \mu m$, and the Landau–Placzek ratio are determined. The Landau–Placzek ratio for the glassy alloys of the Ge–Sb–S system depends strongly on the average coordination number and becomes maximal at Z = 2.67.

Keywords: chalcogeide glasses, Rayleigh—Brillouin light scattering, Landau—Placzek ratio, hypersonic velosity, extinction coefficient, coordination number.

Введение. Рэлеевское и мандельштам-бриллюэновское рассеяние света (РР и МБР) находит все более широкое применение для исследования и контроля материалов, используемых в оптическом приборостроении и квантовой электронике, является основой одного из практических и точных метрологических методов неразрушающего контроля, определения упругих и фотоупругих констант кристаллов и стекол [1—5]. В [2] отношение I_P/I_{MБ}, где I_P и I_{MБ} — интенсивности рэлеевской и мандельштам-бриллюэновских компонент рассеяния, рассматривалось в качестве критерия оптической "чистоты", который дает возможность оценить количество и размер как динамических (флуктуации плотности, концентрации и т. д.), так и статических (инородные примеси и включения) оптических неоднородностей, снижающих оптическую прочность материалов. Методом МБР измерены упругие и упругооптические константы, потери на рэлеевское рассеяние [2, 4]. В последнее время внимание направлено на исследование этим методом микронеоднородного строения халькогенидных стеклообразных полупроводников (ХСП), применяемых в современной оптоэлектронике и технике среднего и дальнего ИК диапазонов [2, 3, 5]. К таким ХСП можно отнести стеклообразные сплавы системы Ge–Sb–S, которые широко используются в акустооптическом материаловедении в качестве активных элементов дефлекторов и модуляторов лазерного излучения [6-8]. Поэтому измерения упругооптических характеристик таких стекол, особенно уровня оптических потерь в них, с помощью спектроскопии РР и МБР как структурно-чувствительного метода представляет несомненный интерес.

RAYLEIGH AND MANDELSHTAM–BRILLOUIN LIGHT SCATTERING IN THE CHALCO-GENIDE GLASSES OF THE $(Sb_2S_3)_x(GeS_2)_{100-x}$ SYSTEM

I. I. Shpak^{*}, R. M. Yevych, A. I. Shpak, S. I. Perechinskii, D. I. Bletskan, Yu. M. Vysochanskii (Uzhgorod National University, 46 Pidhirna Str., Uzhgorod, 88000, Ukraine; e-mail: shpak.univ@gmail.com)

В настоящей работе приведены результаты измерения спектров PP и МБР халькогенидных стекол системы $(Sb_2S_3)_x$ (GeS₂)_{100-x} с систематически меняющимся составом, их анализа и определения отношения Ландау—Плачека (ЛП), а также расчета скоростей продольного гиперзвука, высокочастотного упругого модуля, адиабатических упругооптических констант и потерь на рассеяние на длине волны $\lambda = 0.6328$ мкм (коэффициента экстинкции) в зависимости от среднего координационного числа Z при изменении состава сплавов.

Методика эксперимента. Фазовые равновесия и особенности стеклообразования в системе Ge–Sb–S исследованы в работах [9, 10]. Использована методика двухтемпературного синтеза стекол, при которой ампулы с навесками элементарных компонентов, взятых в соответствующих пропорциях, сначала нагреваются до 820—850 К со скоростью 3—4 К/мин, после чего выдерживаются при этих температурах в течение 12—15 ч. Затем температура ампул повышается на 20—30 К выше температуры плавления со скоростью 1—3 К/мин и расплав выдерживается в течение 15—20 ч. В качестве исходных компонентов использованы элементарные Ge с удельным сопротивлением ≥50 Ом · см, Sb и S чистоты не хуже B6.

Исследования спектров РР и МБР проведены по методике и на установке, описанной в [2, 4]. Методика измерений и расчета упругих и фотоупругих параметров, подробно изложенная в [2], основана на том, что сдвиги частот компонент спектра МБР пропорциональны произведению соответствующей скорости звука v и коэффициента преломления n, а интенсивности компонент зависят от упругооптических констант p_{ij}, v, n и плотности р. В экспериментах методом счета фотонов зарегистрированы спектры МБР в 90°-геометрии рассеяния. В качестве диспергирующего элемента использован трехпроходный сканируемый давлением интерферометр Фабри-Перо с резкостью интерференционной картины 35, область дисперсии 2.51 см⁻¹. Рассеяние возбуждалось одномодовым Не-Ne-лазером ($\lambda = 0.6328$ мкм, мощность ~50 мВт) с поляризацией луча перпендикулярно плоскости рассеяния. Анализировался свет обеих поляризаций. Использованы образцы в виде параллепипедов с полированными гранями. Погрешность определения R_{ЛП} = ±4-10 %. Ошибка определения скорости гиперзвука ≤2 %. Показатель преломления исследуемых стекол на длине волны Не—Ne-лазера измерен методом призмы на гониометре Г-1,5 фирмы ЛОМО. Образцы имели форму трехгранных призм с преломляющими углами ~11—13°, полированных до 14 класса чистоты, что обеспечивает погрешность не хуже ±0.004. Плотность сплавов измерена методом гидростатического взвешивания в толуоле с погрешностью ±0.01.

Результаты и их обсуждение. При возбуждении рассеяния монохроматического света с частотой v в изотропной среде в спектре рассеяния появляются несмещенная рэлеевская компонента и симметрично (относительно v) расположенные дублеты на расстоянии Δv , которые обусловлены рассеянием света адиабатическими флуктуациями плотности, распространяющиеся в среде со скоростью гиперзвуковых волн [1]:

$$\pm \Delta v/v = 2n(v/c)\sin\theta/2,\tag{1}$$

где v — частота падающего света; n — показатель преломления на длине волны падающего света; θ — угол рассеяния; v — скорость распространения продольной гиперзвуковой волны; c — скорость света в вакууме.

В интенсивность несмещенной компоненты в спектре рассеяния вносят вклад флуктуации показателя преломления $\langle \delta n^2 \rangle$, которые связаны с медленно релаксирующими и с "замороженными" при охлаждении стеклообразующего расплава неоднородностями и соответствуют некоторой "фиктивной" температуре $T_f \sim T_g$, где T_g — температура стеклования. К ним относятся изобарические флуктуации плотности $\langle \delta \rho^2 \rangle$ и флуктуации концентрации $\langle \delta c^2 \rangle$ [3, 11]. Вследствие этого интенсивность PP у веществ в стеклообразном состоянии может быть выше, чем в жидком или кристаллическом. Параметром, характеризующим развитие в стекле "замороженных" флуктуаций, является определяемое из спектров PP и MБР соотношение ЛП $R_{Л\Pi} = I_P/2I_{ME}$, где I_P и I_{ME} — интенсивности центральной (рэлеевской) и мандальштам-бриллюэновских компонент спектра (рис. 1). Результаты исследования PP и MБР в кислородсодержащих и особенно в ХСП-системах указывают на аномально высокие значения $R_{Л\Pi}$ и потерь на рассеяние [3—5, 11—14].

Теоретические трудности при объяснении таких значений $R_{\rm ЛII}$ преодолены за счет учета релаксационных свойств стеклообразующихся расплавов и введения представлений о "замораживании" флуктуаций, определяющих РР при прохождении расплава через интервал стеклования [11—13]. Для этого предложена теория "замерзающих" изобарических флуктуаций плотности при переходе от жид-

Рис. 1. Спектры РР и МБР стеклообразных сплавов системы Ge–Sb–S по разрезу (Sb₂S₃)_x(GeS₂)_{100-x}: *x* = 50 (*1*), 30 (*2*), 20 (*3*), 10 (*4*), 2 (*5*)

кого состояния к стеклообразному. Это дало возможность получить соотношение ЛП как параметр, характеризующий микронеоднородное строение многокомпонентного стекла в виде суммы вкладов от изобарических флуктуаций плотности (R_p) и флуктуаций концентрации (R_c) [2, 5, 11, 14]:

$$R_{\rm JIII} = I_{\rm P}/2I_{\rm MB} = R_{\rm \rho} + R_{\rm c},\tag{2}$$

$$R_{\rho} = (T_f / T)(\beta_{T_{f,0}} \rho v_{T,\infty}^2 - 1), \qquad (3)$$

$$R_{c} = \frac{T_{f}}{T} c_{11} \frac{(\partial \varepsilon / \partial C)_{PT}^{2}}{(\rho \partial \varepsilon / \partial \rho)_{TC}^{2}} \frac{V}{N'} \left(\frac{\partial \mu}{\partial C}\right)_{PT}^{-1}, \qquad (4)$$

где T — температура измерения (комнатная); $T_f \sim T_g$ — "фиктивная" (структурная) температура (при которой скорость структурных перестроек меньше скорости охлаждения стеклообразующего расплава); $\beta_{T_{f,0}}$ — статическая (равновесная) изотермическая сжимаемость при T_f ; $v_{T,\infty}$ — скорость распространения упругого возмущения при комнатной температуре и экстраполяции в область бесконечно больших частот; в случае стекла v_{∞} может быть определена из Δv с помощью соотношения (1); C = N/N' — концентрация второго компонента; N и N' — количество молей растворенного вещества и растворителя; μ — химический потенциал; V — объем.

Разделение вкладов флуктуаций плотности R_{ρ} и концентрации R_c в $R_{Л\Pi}$ выполнено с помощью соотношения (2). Величину R_c обычно определяют следующим образом. Рассчитываются значения R_{ρ} с использованием уравнения (3) и экспериментальных температур стеклования, плотности и акустических измерений [8, 15]. С учетом найденного по спектру РР и МБР значения $R_{Л\Pi}$ вычисляется величина $R_c = R_{Л\Pi} - R_{\rho}$. Определив частотные сдвиги Δv_L и Δv_T продольных и поперечных компонент спектра МБР, из (1) можно найти скорости продольной и поперечной гиперзвуковых волн в стекле. Расстояния между компонентами и интенсивности дублетов в спектрах РР и МБР содержат полную информацию об упругооптических постоянных стекол, а отношение ЛП дает возможность оценить коэффициент экстинкции для рэлеевской компоненты α_R , см⁻¹ [2, 11]:

$$\alpha_R = (R_{\Pi\Pi} + 1)8\pi^3 \kappa T/3\lambda^4 (n^4 p_{12})^2 c_{11}^{-1},$$
(5)

или для потерь на рассеяние в стеклах, дБ/км:

$$\alpha_R' = 0.434 \cdot 10^6 \alpha_R,\tag{6}$$

где $c_{11} = M_{\infty} = \rho v_L$ — высокочастотный продольный упругий модуль; p_{12} — упругооптическая постоянная. Измерив отношение интенсивностей МБР $R = I_{ME}/I_{ME}^{0}$ исследуемого образца и эталонного с известной постоянной (p_{12})₀, можно определить (p_{12})_{ad} по формуле [2]:

$$(p_{12})_{\rm ad} = (p_{12})_0 [R(\rho/\rho_0)]^{1/2} (n_0/n)^4 [(n+1)/(n_0+1)]^2 (\nu_L/\nu_{L0}).$$
⁽⁷⁾

В качестве эталона выбран плавленый кварц, для которого все необходимые параметры известны: ρ = 2.20 г/см³, *n*(6328 Å) = 1.457, *p*₁₂ = 0.270 [2]. Спектры МБР плавленого кварца представлены

в [2—4], а исследуемых стекол — на рис. 1. Интенсивность продольных компонент $I_{\rm ME}$ в стеклах пропорциональна коэффициенту экстинкции $\alpha_{\rm ME}$, определяемому для одной компоненты MEP [2, 3]:

$$\alpha_{\rm MB} = (8\pi^3/3)(\kappa T/\lambda^4)[(p_{12})^2/(\rho v_L^2)]n^8, \tag{8}$$

где *р* — плотность, *n* — показатель преломления.

В табл. 1 приведены результаты расчета скорости гиперзвука и других параметров спектра РР и МБР исследуемых стекол, а также коэффициенты преломления стекол и частоты f = v продольных гиперзвуковых фононов, на которых рассеивался свет. Видно, что до частот $\sim 2 \cdot 10^{10}$ Гц для всех составов стекол дисперсия скорости звука отсутствует (при $T \sim 20$ °C), что и следовало ожидать [1, 2]. Это означает, что различия скоростей гиперзвука, полученных из спектров РР и МБР с помощью соотношения (1) и данных акустических измерений на частоте 20 мГц (см. табл. 1), не выходят за пределы погрешности измерений (~2 %). Изменение состава стекол определяет перераспределение связей с различными силовыми константами, при этом имеет место постепенный переход от стекол с тетраэдрическими структурными единицами (GeS₂) к пирамидальным структурным единицам (Sb₂S₃), обладающим меньшей жесткостью [6—8]. В силу большего числа связей металл—халькоген (M–X) в тетраэдре GeS_{4/2} по сравнению с тригональной пирамидой SbS_{3/2} стабилизирующее действие Ge на жесткость структурного каркаса бинарного стекла оказывается при меньших содержаниях металла. Монотонное снижение скорости гиперзвука $V_L(x)$ (рис. 2, кривая 1) при изменении состава (увеличении содержания Sb₂S₃) связано с тем, что различие силовых постоянных связи (силовые константы связей Ge-S и Sb-S) в несколько раз больше силовых постоянных гомополярных связей [6, 7, 10]. Это приводит к тому, что уже при небольших концентрациях металла в составе сплавов жесткость структурно-химического каркаса исследуемых сплавов и скорость гиперзвука в них претерпевают существенные изменения.

Т а блица 1. Среднее координационное число Z, частота гиперзвука v, показатель преломления n, скорости низкочастотного V_L^U и гиперзвука V_L^G , отношения Ландау—Плачека $R_{Л\Pi}$, адиабатическая упругооптическая постоянная $(p_{12})_{ad}$, продольный высокочастотный упругий модуль M_∞ и коэффициент экстинкции α_R стеклообразных сплавов $(Sb_2S_3)_x(GeS_2)_{100-x}$

Состав	Ζ	ν, ГГц	$n_{\lambda = 0.6328 \text{ MKM}}$	<i>V_L^G</i> , м/с	<i>V_L^U</i> , м/с	$R_{ m JII}$	$(p_{12})_{\rm ad}$	ψ, К·Па ⁻¹	<i>М</i> ∞, 10 ⁻¹⁰ Дж/м ³	$\alpha_{R} \cdot 10^{3},$ cm^{-1}
GeS ₂	2.67	13.2	2.111	2798	2778	878	0.30	773.2	2.22	9.8
x = 2	2.65	13.2	2.113	2795		803	0.29	727.5	2.25	9.3
4	2.65	13.2	2.160	2716	2698	563	0.28	693.7	2.27	8.2
10	2.63	13.4	2.230	2696		317	0.27	632.7	2.31	5.3
30	2.58	15.0	2.500	2685	2660	164	0.27	437.2	2.37	3.0
50	2.53	19.5	2.801	2598	2620	117	0.28	383.4	2.49	1.8

Роль концентрационных флуктуаций в PP может быть оценена с помощью соотношения R_c/R_0 (или $R_c/R_{ЛП}$), зависимость которого от содержания Sb₂S₃ в сплавах приведена на рис. 2, кривая 2. Видно, что зависимость R_c/R_p от состава сплавов носит монотонно убывающий с концентрацией Sb₂S₃ характер, при этом отношение $R_c/R_{\rho}(x)$ исследуемых сплавов при $x \le 20$ мол.% Sb₂S₃ сменяется более резким при приближении к GeS₂. Такое поведение указанного параметра, по-видимому, определяется уменьшением изобарических флуктуаций плотности "замороженных" в интервале стеклования сплавов, поскольку концентрационное поведение $\beta_T(x)$ и $T_g(x)$ симбатное, при этом незначительное снижение $\beta_T(x)$ компенсируется сильнее выраженной возрастающей зависимостью $T_e(x)$ [8, 9, 15]. Сравнение концентрационного поведения отношения R_c/R_ρ (рис. 2) и коэффициентов экстинкции αR (табл. 1) указывает на преобладающий вклад флуктуаций концентрации в общие оптические потери в исследуемых сплавах. Расчетные потери на рассеяние исследуемых сплавов на несколько порядков выше в сравнении со стеклами оптического каталога, лазерными стеклами и специально очищенными материалами для волоконной оптики [2]. При этом следует учитывать, что концентрационные флуктуации в расплаве (которые после его охлаждения определяют микронеоднородное строение стекла), "замороженные" при $T = T_g$, могут усиливаться за счет микроскопических внутренних напряжений или взаимодействия с микропримесями, т. е. существование неоднородностей технологического происхождения также влияет на соотношение ЛП и, следовательно, вклад R_{c} . Отметим, что

Рис. 2. Зависимость скорости продольного гиперзвука $V_L(1)$ и отношения $R_c/R_\rho(2)$ от состава стеклообразных сплавов $(Sb_2S_3)_x(GeS_2)_{100-x}$

флуктуации концентрации увеличиваются по мере роста кристаллизационной способности стекол [9]. Всем этим подтверждается представление об определяющей роли "замороженных" флуктуаций концентрации в PP многокомпонентных стекол [3—5, 11—14].

В качестве параметра, описывающего степень связности структурно-химического каркаса некристаллических материалов (согласно топологической модели Филлипса—Торпа), может рассматриваться среднее количество ковалентных связей, приходящихся на один атом Z (среднее координационное число) [16, 17], которое рассчитывается по формуле $Z_{cp} = (4x + 3y + 2z)/100$, где x, y и z — атомные (молекулярные) доли Ge, Sb и S; 4, 3 и 2 — их координационные числа в ковалентно связанной структурной матрице стекла соответственно. Переход от цепочечно-слоистой структуры к трехмерно увязанному каркасу стекла с прочными направленными ковалентными связями реализуется в точке $Z_{cp} = Z_c$ (2.67) и называется топологическим [16]. Для стекол системы Ge–Sb–S при этом значении Z_c резко изменяются упругие модули (модуль сдвига G, упругости E, объемного сжатия B) вследствие топологических изменений в их структуре [17, 18]. Аналогичное концентрационное поведение проявляет и параметр $\psi = 10^9 Tq\chi \sim \langle \Delta \rho / \rho^{>2}$, где $\langle \Delta \rho / \rho \rangle^2$ — средний квадрат разности электронной плотности [7] в PP исследуемых сплавов. Поэтому можно предположить, что такое концентрационное поведение упругих модулей, коэффициента экстинкции и $R_{\rm лп}$ связано с реализацией топологического фазового перехода в системе (Sb₂S₃)_x(GeS₂)_{100-x} при $Z_{cp} \approx 2.67$, соответствующем стехиометрическому соединению GeS₂.

Анализ колебательных спектров методами ИК и КР спектроскопии показывает, что при введении незначительного количества Sb происходят сильная деформация тетраэдров [GeS₄] и укорочение длины тетраэдрических цепочек, которые являются основным структурным мотивом стекла GeS₂, что выражается в незначительном размытии основной колебательной моды GeS₂ в области 340—360 см⁻¹ [18, 19]. Следовательно, в области составов x < 20 мол.% Sb₂S₃ статистическое распределение и взаимное влияние разнородных по составу и симметрии структурных единиц (CE) (GeS_{4/2} и SbS_{3/2}) приводит к увеличению дисперсности их ассоциативов. Не исключается также возможность образования обрывов химических связей ввиду пространственной несовместимости и энергетического фактора (различие энергий химических связей) [20, 21]. Изменения таких определяемых по спектрам РР и МБР структурно-чувствительных параметров, как $R_{\Pi\Pi}$, скорость продольного гиперзвука V_L и потерь на рассеяние α_R (табл. 1), с составом в области, где структура сплавов определяется жесткими тетраэдрическими группировками GeS_{4/2} (Z = 2.66), более существенны, чем для стекол с цепочечнослоистой структурой (x > 20 мол.% Sb₂S₃). В этой области указанные параметры характеризуются практически сублинейной зависимостью от состава (рис. 2), поскольку распределение CE GeS_{4/2} и SbS_{3/2} является преимущественно статистически равномерным при неаддитивном проявлении пространственно разделенных тетраэдров [GeS₄] и ассоциированных [SbS₃] структурных группировок и частичным топологическим разупорядочением. Действительно, результаты исследования (радиальной функции распределения электронной плотности и интенсивности рентгеновского рассеяния) как функции состава x показывают, что структуру исследуемых сплавов в диапазоне $0 \le x \le 50$ нельзя рассматривать как идеальный раствор базовых СЕ GeS_{4/2} и SbS_{3/2} [18, 20]. Подтверждение такого предположения — немонотонный характер изменения температур стеклования Tg, кристаллизации Tc и плавления T_m стекол в этом концентрационном интервале [8, 20, 21]. Для концентраций x < 20 введение в GeS₂-кластеры в форме сильно деформированных включений SbS₃ вызывает резкое возрастание первого дифракционного пика (FSDP). При дальнейшем увеличении содержания сурьмы формирование цепочечно-слоистых кластеров Sb₂S₃ приводит к разветвлению GeS₂-кластеров, междукластерные расстояния при этом уменьшаются и снижается высота FSDP. Концентрационные кривые интегральной интенсивности FSDP и длины корреляции *D* в зависимости от среднего координационного числа для системы Ge–Sb–S принимают экстремальные значения при $Z_{cp} = Z_c$ [16—18].

Заключение. Результаты экспериментальных измерений рэлеевского и мандельштам-бриллюэновского рассеяния света в халькогенидных стеклообразных сплавах разреза Sb₂S₃—GeS₂ указывают на отсутствие дисперсии скорости гиперзвука при комнатной температуре вплоть до частот ~20 ГГц. Наиболее существенные изменения структурно-чувствительных параметров, определяемых из этих спектров ($R_{\rm ЛП}$, коэффициента экстинкции, скорости гиперзвука и ψ), наблюдаются в области незначительного содержания сульфида сурьмы в сплавах. Слабая зависимость высокочастотного продольного модуля и упругооптической постоянной от среднего координационного числа при изменении состава отражает постепенный переход от тетраэдрического строения непрерывной случайной структурно-химической сетки стекол к цепочечно-слоистому. Отношение Ландау—Плачека в сплавах системы Ge–Sb–S зависит от среднего координационного числа (концентрации Ge) и значительно возрастает при приближении к Z = 2.67. Такое поведение, по-видимому, связано с возможностью реализации топологического перехода в стеклообразных сплавах этой системы.

[1] И. Л. Фабелинский. Молекулярное рассеяние света, Москва, Наука (1965)

[2] А. И. Ритус. Тр. ФИАН, Москва, Наука (1982) 3-80

[3] Л. В. Максимов. Физ. хим. стекла, 2, № 3 (1996) 222—227

[4] Р. М. Евич, С. И. Перечинский, З. П. Гадьмаши, И. И. Шпак, Ю. М. Высочанский, В. Ю. Сливка. Физ. хим. стекла, **30**, № 1 (2004) 20—23

[5] И. И. Шпак, И. И. Росола, Р. М. Евич, С. И. Перечинский, Ю. М. Высочанский. Журн. прикл. спектр., 75, № 6 (2008) 814—818 [I. I. Shpak, I. I. Rosola, R. M. Yevych, S. I. Perechinskii, Yu. M. Vy-sochanskii. J. Appl. Spectr., 75 (2008) 815—819]

[6] M. A. Popescu. Non-Crystalline Chalcogenides, Dortrecht, Kluwer Academic Publishers (2000)

[7] **T. Katsujama, M. Matsumura.** Infrared Optical Fibers. The Adam Hilger Series on Optics and Optoelektronics, Bristol and Philadelphia (2002)

[8] G. Lucovski, M. Popescu. Non-Crystalline Materials for Optoelektronics, JNOE Publishers, Bucharest (2004)
 [9] Г. З. Виноградова. Стеклообразование и фазовые равновесия в халькогенидных системах, Москва, Наука (1984)

[10] А. П. Шпак, В. М. Рубиш. Стеклообразование и свойства сплавов в халькогенидных системах на основе мышьяка и сурьмы, Киев, ИМФ НАНУ (2006)

[11] J. Schroeder, R. Mohr, P. V. Macedo, C. J. Montrose. J. Am. Ceram. Soc., 56, N 10 (1973) 510-514

[12] N. L. Laberge, P. K. Gupta, P. B. Macedo. J. Non-Crystal. Sol., 17, N 1 (1975) 61-70

[13] J. Schroeder. J. Non-Crystal. Sol., 40, N 1-3 (1980) 295—301

[14] M. Shepilov, A. Anan'ev, L. Maksimov, V. Savostyanov, V. Golubkov, P. Onushchenko, V. Ananyev, A. Onushchenko. J. Non-Crystal. Sol., 450, N 1 (2016) 156–163

[15] Д. И. Блецкан, И. М. Митровций, И. И. Росола, И. Д. Туриница, В. И. Феделеш. Укр. физ. журн., **33**, № 3 (1988) 437—441

[16] J. C. Phillips. J. Non-Crystal. Sol., 34, N 2 (1979) 153-181

[17] M. F. Thorpe, D. J. Jacobs, M. V. Chubynsky, J. C. Phillips. J. Non-Crystal. Sol., 266-269 (2000) 859—866

[18] В. П. Захаров, В. С. Герасименко. Структурные особенности полупроводников в аморфном состоянии, Киев, Наукова думка (1976)

[19] Д. И. Блецкан, В. С. Герасименко, В. Н. Кабаций, М. Ю. Сичка. Материалы IX междунар. конф. "Некристаллические полупроводники-89", **1**, Ужгород (1989) 76—78

[20] P. P. Shtets, V. I. Fedelesh, V. M. Kabatsij, I. I. Shpak, A. A. Gorvat. J. Optoelectron. Advan. Mater., **3**, N 4(2001) 937—940

[21] А. П. Шпак, В. П. Иваницкий, В. С. Ковтуненко, Л. Ю. Куницкая, В. М. Рубиш. Неупорядоченные системы. Ч. І. Особенности структуры халькогенидных стекол и пленок, Киев, ИМФ НАНУ (2009)