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Сhitosan-zinc oxide nanoparticles (CZPs) were developed for solid-phase extraction. Combined artifi-
cial neural network-ant colony optimization (ANN-ACO) was used for the simultaneous preconcentration 
and determination of lead (Pb2+) ions in water samples prior to graphite furnace atomic absorption spec-
trometry (GF AAS). The solution pH, mass of adsorbent CZPs, amount of 1-(2-pyridylazo)-2-naphthol 
(PAN), which was used as a complexing agent, eluent volume, eluent concentration, and flow rates of sample 
and eluent were used as input parameters of the ANN model, and the percentage of extracted Pb2+ ions was 
used as the output variable of the model. A multi-layer perception network with a back-propagation learning 
algorithm was used to fit the experimental data. The optimum conditions were obtained based on the ACO. 
Under the optimized conditions, the limit of detection for Pb2+ ions was found to be 0.078 µg/L. This proce-
dure was also successfully used to determine the amounts of Pb2+ ions in various natural water samples. 

Keywords: lead, zinc oxide nanoparticles, chitosan, Artificial neural network, ant colony optimization, 
water samples. 
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Для твердофазной экстракции свинца из воды разработан метод получения наночастиц оксида 

цинка с хитозаном (CZPs). Муравьиный алгоритм в сочетании с искусственными нейронными сетя-
ми применялся для определения ионов свинца (Pb2+) в предварительно обогащенных образцах воды. 
Затем использовалась атомная абсорбционная спектрометрия в графитовой печи; pH раствора, 
масса адсорбента CZP, количество 1-(2-пиридилазо)-2-нафтола (PAN), которое использовали в ка-
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честве комплексообразующего агента, объем элюента, его концентрация, скорость потока образца 
и элюента служили входными параметрами модели муравьиного алгоритма, а процент выделенных 
ионов Pb2+ — как выходная переменная модель. Для согласования с экспериментальными данными 
использовалась многослойная система восприятия с алгоритмом обучения, основанным на  обрат-
ном распространении. В оптимизированных условиях, которые найдены на основе муравьиного алго-
ритма, предел обнаружения ионов Pb2+ равен 0.078 мкг/л. Разработанный метод успешно использо-
ван для определения содержания ионов Pb2+ в различных образцах естественной воды. 

Ключевые слова: свинец, наночастицы оксида цинка, хитозан, искусственная нейронная сеть, 
муравьиный  алгоритм, образцы воды. 
 

Introduction. Excess heavy metals such as lead in water are well-known sources of potential harm to 
aquatic life and human health. The extraction of toxic heavy metals from various samples (i.e., water sam-
ples) at trace amounts is therefore extremely important [1–4]. Lead is a toxic heavy metal with no known 
positive physiological role in the human body. It causes a range of diseases and has undesired effects on 
health. The main sources of lead exposure are water, smoking, food, contaminated air (mainly from tetra-
ethyllead used as a motor fuel additive), soil, and consumer products. Occupational exposure of lead in the 
workplace is one of the most common causes of lead poisoning in adults, particularly in the scrapping, 
smelting, printing, pigment production, battery manufacture, plastics, and chemical industries, as well as in 
mining and among metalworkers [3, 4]. Accordingly, it is essential to develop methods for the separation 
and analysis of trace amounts of lead in water samples. 

Chitosan is a natural biopolymer with an excellent capacity for adsorbing a wide variety of contami-
nants, including heavy metals and dyes, because it contains hydroxyl and amino groups. However, raw chi-
tosan has a tendency to agglomerate in aqueous media [5–7]. To overcome the drawbacks of chitosan and 
improve its applicability to environmental water treatment, we investigated chemical crosslinking of chito-
san with zinc oxide nanoparticles in the present study. The aim of nanotechnology is to generate nanoar-
rays/nanostructures with special chemical and physical properties that are not shown by their single particles 
or bulk states. The surface atoms of nanoparticles are unsaturated and have high chemical activity, which 
enables them to bind with other atoms. In this study, chitosan-zinc oxide nanoparticles (CZPs) were used as 
adsorbents for preconcentration of Pb2+ ions from water samples. This procedure is beneficial because of its 
simple design, low cost, and use of a nontoxic adsorbent with high extraction efficiency [7–10].  

An artificial neural network (ANN) is a useful tool in mathematics that can be used for modeling highly 
complex systems with many variables. The ANN does not require any detailed information about the physi-
cal parameters of the system, and instead uses available data for predicting the relationship between input 
and output variables. Among different types of ANNs, back-propagation neural networks are usually used 
because of their excellent robustness and fault tolerance, as well as their ability to estimate any continuous 
function [2, 11].  

Ant colony optimization (ACO) is a technique for optimization of problems. In nature, a colony of ants 
uses its swarm intelligence and capability to obtain the shortest path between the colony and food sources. 
This concept can also be used to identify and optimize a route length in a network or a graph [2, 12, 13]. The 
ACO technique can therefore be used for a variety of combinatorial optimization problems. 

This study evaluated the extraction ability of CZPs as an adsorbent for preconcentration of lead from 
water samples. The effects of different variables, including the solution pH, mass of adsorbent CZPs, amount 
of 1-(2-pyridylazo)-2-naphthol (PAN), eluent volume, eluent concentration, and sample and eluent flow 
rates were also investigated. The aims of this study were to (i) identify a good model based on the ANN sys-
tem for predicting the efficiency of lead extraction, (ii) optimize the lead-extraction capability by using a 
hybrid of ANN and ACO techniques, and (iii) develop a rapid and simple method for extraction of lead. 

Experimental. PAN, ZnO powder, ethanol, reagent grade Pb(NO3)2, and all acids were purchased from 
Merck (Darmstadt, Germany). A stock solution containing 1000 mg/L of lead was prepared by dissolving 
the appropriate amount of Pb(NO3)2 in double-distilled water. Working solutions were prepared by diluting 
an appropriate amount of stock solution with double-distilled water.  

Lead was determined using a Varian atomic absorption spectrometer (model SpectrAA-20 Plus) 
equipped with a graphite furnace (GTA-96). Details of the graphite furnace temperature program used for 
the determination of Pb are shown in Table 1. The solution pH was determined using a pH meter (model 630 
Metrohm) with a combined glass-calomel electrode. 
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TABLE 1. Optimum GF-AAS Operating Conditions for the Determination of Pb 
 

Wavelength 283.3 (0.5 nm) 
D2 Lamp On 

Temperature programming (°C – s) 

Drying 
85 – 5  

95 – 40 
120 – 10 

Ashing 
600 – 5 
600 – 5  

Atomization 
2100 –  2 

2100 – 0.8 
Cleaning 2300 – 2 

 
CZPs were synthesized using a previously reported method [14, 15]. Briefly, ZnO powder (1 g) was 

dissolved in 1% CH3COOH (100 mL). In this step, ZnO molecules were changed to zinc cations. Chitosan 
(1.0 g) was added to this solution. The mixture was then sonicated for 30 min, after which 1 mol/L NaOH 
was added dropwise to the solution until the pH was 10. The solution was then heated in a water bath at 
60°C for about 3 h. Finally, this solution was filtered and the residue was washed several times with deion-
ized (DI) water, and then dried at 50°C for 1 h in an electrical oven. A representative scanning electron mi-
croscopy (SEM) image of the CZPs is shown in Fig. 1. 
 

 
 

Fig. 1. The SEM image of chitosan-zinc oxide nanoparticle. 
 

An empty solid-phase extraction cartridge was packed with different amounts of CZP adsorbent, treated 
with 5 mL of HNO3 and methanol, and washed with DI water. 

Next, a sample solution (50 mL) containing 0.2 mg/L of Pb2+ ions was prepared and the pH was ad-
justed to between 7 and 10 with 0.1 mol/L NaOH. This solution was subsequently passed through the car-
tridge at a flow rate of 2–8 mL/min. In this step, the lead ions were retained on the adsorbent. The sorbent 
was then eluted with 1–3 mL of nitric acid as the eluent. Next, the lead concentration in the nitric acid was 
determined using graphite furnace atomic absorption spectrometry (GF AAS). For each sample solution, the 
extractions were conducted in triplicate and the average was reported. 

In this study, Neural Network Toolbox V7.12 of MATLAB mathematical software was applied to iden-
tify the optimum extraction efficiency of lead from water samples. An ANN is a combination of neurons 
(processing elements) that are linked together in a specified way based on the network type. The feedforward 
(FF) structure provides weighted connections between two adjacent layers of neurons, which obtain informa-
tion from the previous layer of neurons, and send their output to the next layer. The neurons between the 
input and output layers are considered to be hidden neurons. The overall output of neurons can be calculated 
as follows: 

netj = f
1

,
N

jr j
r

w b


  
 
                                           (1) 

where bj and netj are the bias and output of the jth neuron, and wjr is the weight from neuron r to neuron j. 
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As shown by Eq. (1), xr is strengthened or weakened through multiplication by weights and summing 
with bias coefficients. The biases are activation thresholds that add to the multiplication of inputs and their 
particular weight coefficients. The net output of each neuron passes through an activation or transfer func-
tion (f). Various transfer functions such as linear (purlin), radial basis, log-sigmoid, and tan-sigmoid (tansig) 
have been considered for ANNs [15, 16]. In this study, the transfer functions used are defined by the follow-
ing equations:  

Purelin (sum) = sum,                                                           (2) 

 Tansig(sum) = (1 – e–sum)/( + e–sum),                                                     (3) 

where tansig is used between the input and hidden layers, and purelin is used between the hidden and output 
layers. 

The ACO algorithm was first presented by Dorigo et al. [17] as a multi-agent technique for complicated 
problems in combinatorial optimization. In nature, ants work by themselves, independently from other col-
ony members. However, they can solve difficult problems by acting as a community. The path selection 
model is defined as follows: 
 Each ant chooses the next independent state. The probability of the kth ant moving from state i to a new 
state j is Pij

k(t), which can be determined using the following probability rule [13]: 

allowed

[ ( )] [ ]
if allowed ,

( ) [ ( )] [ ]

0 otherwise,
k

ij ij
kk

ij k ik ik

t
j

P t t

 

 


  


   



                                        (4) 

where ij refers to the pheromone density of the edge (i,j), ij = 1/Cij is the heuristic function, Cij refers to the 
cost of production for that particular stage to occur,  and  are the relative importance of pheromone trails 
and visibility values, respectively ( and  ≥ 0), and “allowedk” are the available states that the kth ant can 
choose from the ith state to the jth state. 

Updated ant pheromone trails are a key element in adaptive ACO learning. They help to ensure further 
improvement of solutions. Pheromone trails are updated by reducing the amount of pheromones on all links 
to simulate the evaporation of pheromones and ensure that no single path becomes dominant. This is accom-
plished using the following equation [13]: 

  ij
new = ij

old + 
K

k
ij

k
 ,     (0, 1),                                                      (5) 

where ij
new refers to the pheromone on link (i,j) after updating, ij

old is the pheromone on link (i,j) before 
updating,  refers to the parameter that controls the speed of evaporation, k is the number of the route, K is 
the number of the route in the solution, and K > 0 and ij

k are the increased amounts of pheromones on link 
(i,j) of route k found by the ant. This updating encourages the use of shorter routes. 

The mutation process refers to a genetic algorithm (GA) that alters each child with a predefined prob-
ability. Operators are able to help the ACO attain more solutions in the search space. Here, the mutation op-
erator is considered to progress to the convergence speed. 

Results and discussion. Optimization of CZP solid-phase extraction. Based on preliminary tests, seven 
parameters, i.e., solution pH, adsorbent CZP mass, amount of PAN (used as a complexing agent), eluent 
volume, eluent concentration, and eluent and sample flow rates, were selected. Table 2 shows the main vari-
ables and lead recoveries.  

The number of neurons in the output and input is equal to the number of output and input data, respec-
tively (1 and 7 in this study). The optimum configuration of the multi-layer perceptron (MLP) network was 
obtained using a trial and error method through selection of the number of neurons in the hidden layer (HL). 
The number of neurons in the HL is determined during an optimization method that minimizes error indexes. 
The number of suitable neurons in the HL generally depends on (1) the complexity of the correlation be-
tween output and input data, (2) the number of available training and test data, and (3) the noise severity im-
posed on the data collections [16]. A large number of neurons in the HL can cause overfitting, whereas a low 
number can result in a network that cannot obtain the desired error. In this study, a total of 57 experiments 
were divided randomly into three subsets: 68% for the training set, 16% for the validation set, and 16% for 
the test set. 
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TABLE 2. Experimental Data was Used for ANN Modeling 
 

Run pH 
Mass of 
adsorb-
ent, g 

[PAN], 
mol/L 

Sample flow 
rate, mL/min

Eluent con-
centration, 

mol/L 

Eluent 
volume, 

mL 

Eluent 
flow rate, 
mL/min 

Experime
ntal R, % 

Predicted 
R, % 

Training 
1 8.5 0.4 4 2 0.5 2 2 64.5a 64.5 
2 8.5 0.4 4 8 0.5 2 2 65.9 65.7 
3 8.5 0.4 4 2 1.5 2 2 63.9 63.9 
4 8.5 0.4 4 8 1.5 2 2 74.5 74.5 
5 8.5 0.4 4 2 0.5 3 2 62.8 62.9 
6 8.5 0.4 4 2 1.5 3 2 68.8 69 
7 8.5 0.4 4 8 1.5 3 2 90 90.1 
8 10 0.4 4 5 1 2 1 72.2 72.2 
9 7 0.4 4 5 1 3 1 44.2 44.3 

10 10 0.4 4 5 1 2 3 45.8 45.9 
11 10 0.4 4 5 1 3 3 66.8 66.7 
12 8.5 0.2 4 5 0.5 2.5 1 60.8 60.4 
13 8.5 0.6 4 5 0.5 2.5 1 86.8 86.7 
14 8.5 0.2 4 5 0.5 2.5 3 73.9 73.7 
15 8.5 0.6 4 5 0.5 2.5 3 91.2 91.1 
16 8.5 0.2 4 5 1.5 2.5 3 82.7 82.6 
17 7 0.2 4 2 1 2.5 2 37 36.9 
18 10 0.2 4 2 1 2.5 2 53.3 53.4 
19 7 0.6 4 2 1 2.5 2 58.7 58.8 
20 10 0.6 4 2 1 2.5 2 57.9 58.9 
21 7 0.2 4 8 1 2.5 2 49.3 49 
22 10 0.6 4 8 1 2.5 2 68.2 68.4 
23 8.5 0.4 2 2 1 2.5 1 19.5 19.6 
24 8.5 0.4 6 2 1 2.5 1 28.6 28.8 
25 8.5 0.4 2 8 1 2.5 1 49.6 49.6 
26 8.5 0.4 6 8 1 2.5 1 28.4 28.6 
27 8.5 0.4 2 2 1 2.5 3 14.2 14.2 
28 8.5 0.4 6 2 1 2.5 3 43.5 43.7 
29 8.5 0.4 2 8 1 2.5 3 37.1 37.2 
30 7 0.4 2 5 0.5 2.5 2 36.5 36.1 
31 10 0.4 2 5 0.5 2.5 2 52.5 52.5 
32 7 0.4 6 5 0.5 2.5 2 47.4 47.1 
33 7 0.4 2 5 1.5 2.5 2 55.3 55.3 
34 10 0.4 6 5 1.5 2.5 2 55.1 55.4 
35 8.5 0.2 6 5 1 2 2 81.3 81.4 
36 8.5 0.6 6 5 1 2 2 69.8 69.9 
37 8.5 0.2 6 5 1 3 2 61.7 61.8 
38 8.5 0.6 6 5 1 3 2 80.3 80.3 
39 8.5 0.4 4 5 1 2.5 2 83.5 83.6 

    Validation 
1 8.5 0.4 4 8 0.5 3 2 64.6 64.6 
2 8.5 0.2 4 5 1.5 2.5 1 84.6 82.8 
3 8.5 0.6 4 5 1.5 2.5 1 92.5 86.6 
4 10 0.2 4 8 1 2.5 2 64.7 71.5 
5 7 0.6 4 8 1 2.5 2 69.9 69.7 
6 10 0.4 2 5 1.5 2.5 2 70.4 70.4 
7 8.5 0.2 2 5 1 2 2 45.4 45.4 
8 8.5 0.6 2 5 1 2 2 57.4 57.9 
9 8.5 0.2 2 5 1 3 2 56.3 56.4 
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Continue Table 2

Run pH 
Mass of 
adsorb-
ent, g 

[PAN], 
mol/L 

Sample flow 
rate, mL/min

Eluent con-
centration, 

mol/L 

Eluent 
volume, 

mL 

Eluent 
flow rate, 
mL/min 

Experime
ntal R, % 

Predicted 
R, % 

Test 
1 7 0.4 4 5 1 2 1 51.4 46.8 
2 10 0.4 4 5 1 3 1 77.5 77.2 
3 7 0.4 4 5 1 2 3 51.5 52.4 
4 7 0.4 4 5 1 3 3 73 72.4 
5 8.5 0.6 4 5 1.5 2.5 3 72.6 72.6 
6 8.5 0.4 6 8 1 2.5 3 40.8 40.9 
7 10 0.4 6 5 0.5 2.5 2 47.4 47.4 
8 7 0.4 6 5 1.5 2.5 2 66.9 66.9 
9 8.5 0.6 2 5 1 3 2 96.8 99.4 

a  Average triplicate measurements. 
 
The number of neurons in the HL was evaluated by minimizing the mean-squared error (MSE) and 

AARD%, and maximizing the determination coefficient (R2) values of the test, validation, and training data 
sets. The MSE, AARD%, and R2 equations are as follows: 

MSE = exp cal 2

1

1
( ) ,

N

i i
i

y y
N 

                                                           (6) 

AARD% = exp cal exp

1

1
( ) / 100,

N

i i i
i

y y y
N 

   
 

                                              (7) 

R2 = 

exp 2 exp cal 2

1 1

exp 2

1

( ) ( )
,

( )

N N

i i i
i i

N

i
i

y y y y

y y

 



  



 


                                                    (8) 

where yi
exp is the experimental extraction efficiency, yi

cal is the predicted extraction efficiency, y is the aver-
age value of the experimental extraction efficiency data, and N is the number of points. 

All data were normalized in the interval [0,1] to avoid saturation of its parameters and improve the net-
work convergence rate, according to the following equation: 

 xnorm = (x – xmin)/(xmax – xmin),                                                            (9) 

where x is variable, xmax is the maximum value, and xmin is the minimum value. 
This method identified the ANN model with one HL consisting of 17 neurons as the optimum structure. 

Figure 2 indicates the optimum ANN model topology for lead. The most generally used criteria, with MSE, 
AARD%, and R2 for training, testing, and validation, and all data sets are presented in Table 3. The results 
show that the ANN model produced excellent agreement between the predicted and experimental data. As 
shown in Fig. 3, variations in the MSE were observed during the training phase using the Levenberg–
Marquardt (LM) algorithm for lead, and the MSE value converged to approximately 5 × 10−6 in four itera-
tions. Training of the MLP network was therefore satisfactorily terminated. The experimental data versus the 
predicted data for lead are plotted in Fig. 4; this plot also indicates the goodness of fit between the input data 
and the output data given by the ANN model. 
 

TABLE 3. Statistical Criteria for Evaluation of ANN Model 
 

Criterion All Train Validation Test 
MSE 0.0003 0.000005 0.0014 0.0005 

AARD% 0.82 0.29 2.26 1.64 
R2 0.994 0.9999 0.956 0.992 

 
 

 

672-6



ABSTRACTS ENGLISH-LANGUAGE ARTICLES 
 

378

3

4

5

6

7

8

9

10

11

12

13

14

1

2

3

4

5

6

Hidden layer

Output layer

Input layer

bias
bias

1

2

15

1

16

17

7

 
 

Fig. 2. Optimal ANN structure. 
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Fig. 3. Training, validation and test mean squared errors for the LM algorithm. 
 

The ACO technique was used to optimize the ANN model input space with the objective of maximizing 
lead recovery. The ACO-specific parameter values used in simulation of optimization were as follows: num-
ber of ants = 50;  = 1;  = 2;  = 0.05; and mutation rate = 0.2. An optimum condition was selected after 
evaluation of the ACO for 20 iterations to achieve good extraction efficiency. The optimized conditions were 
as follows: solution pH 9.8, CZP amount 0.59 g, amount of PAN 6 mol/L, eluent volume 2.4 mL, eluent 
concentration 0.5 mol/L, flow rate 8 mL/min, and eluent flow rate 1.5 mL/min. The ANN prediction of the 
recovery under the optimum conditions was 99.2, and the residual error between the predicted and experi-
mental data was 1.2%. These data confirm the validity of the constructed ANN model. 

It is well known that binding of metal ions in a chelated compound either on a solid support or in solu-
tion is generally dependent on several factors, including size, charge, and the nature of the metal ions [18]. 
Moreover, the nature of the donor atoms, which are generally sulfur, oxygen, phosphorus, or nitrogen, de-
termine the binding characteristics and selective extraction of such chelated compounds with particular metal 
ions based on various selectivity factors. Furthermore, buffering conditions favor extraction of particular 
metal ions and binding to active groups or donors [18]. These factors have been well documented for the 
solution chemistry and solid-phase extraction of particular metal ions by chelates immobilized on a solid 
support surface; the effects of pH were therefore investigated in the present study.  
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Fig. 4. Predicted extraction by ANN versus experimental values. 
 

PAN exists in various monomeric species depending on the pH of the aqueous phase. The acid dissocia-
tion constants pKNH and pKOH of PAN are 1.99 and 12.2, respectively. The yellow cation (H2PAN+) exists at 
lower pH (>3), whereas the neutral form (HPAN), which is insoluble in aqueous solution and responsible for 
the formation of complexes with metal ions, exists in the pH range 4–10. The anionic species (PAN–), which 
is red and soluble in aqueous solution, exists at pH greater than 12 [19]. A 1:1 complex between PAN and 
lead ions was formed [20]. Moreover, when the solution pH was above the isoelectric point of the nanoparti-
cles (about 8.75) [10], the nanoparticle surfaces became negatively charged, leading to strong electrostatic 
attraction between the nanoparticles and cationic complex (Pb–PAN). We therefore selected pH 9.8 for the 
next investigation. 

The results show that the extraction efficiency for lead ions increased with increasing amount of ad-
sorbent. When the amount of adsorbent increased, the available number of sorption sites on the CZP surfaces 
increased, enlarging the concentration gradient between the Pb2+ ions in the sample solution and on the sur-
faces of the CZPs [21]. The enlarged concentration gradient increased the interactions between the Pb–PAN 
complex and the CZP adsorbent, improving the extraction efficiency for Pb2+ ions [21]. 

Effects of coexisting ions. In this study, the effects of common coexisting ions on the extraction of lead 
ions were investigated. Solutions containing 50 µg/L of Pb2+ and added coexisting ions were analyzed as 
described above. The tolerance limit was identified as the amount of coexisting ions that caused the extrac-
tion efficiency for Pb2+ ions to be less than 95%. The results indicate that 500-fold increases in Na(I), K(I), 
Mg(II), Ca(II), and Ba(II), and 50-fold increases in Ni(II), Mn(II), Cd(II), Zn(II), and Co(III) ions had no 
significant impact on the determination of Pb2+ ions.  

Evaluation of the methods performance. In this study, the linear range under the optimum conditions 
occurred between 5 and 400 µg/L, with a correlation coefficient of 0.998. In accordance with the IUPAC 
definition, the limit of detection of this procedure was calculated based on three times the standard deviation 
of 10 runs of the blank and was found to be 0.078 µg/L. In addition, the relative standard deviation (RSD%) 
of 10 replicate measurements was 1.8% (n = 10, C = 50 µg/L). 

To obtain a high enrichment factor, a larger sample solution volume is needed. To study the effects of 
sample volume, 25, 50, 100, 250, and 500 mL of solutions containing 50 µg of lead were evaluated using the 
above method. A quantitative Pb2+ ion extraction efficiency greater than 97% was obtained when the sample 
solution volume was less than 250 mL. The enrichment factor was therefore 104 for a sample solution vol-
ume of 250 mL, because the elution volume was 2.4 mL. 
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Analysis of real samples. The proposed procedure was used for the preconcentration and determination 
of trace amounts of Pb(II) in environmental water samples; the results are shown in Table 4. The recoveries 
of lead ions ranged from 97.5 to 99.5%, indicating that the proposed procedure is reliable. 

 
TABLE 4. Determination of Lead in Water Samples (N = 3) 

 
Lead content, µg/L 

Sample 
Added Found 

Recovery, 
% 

0.0 7.5 ± 0.4 – Tap water 
20.0 27.4 ± 0.3 99.5 
0.0 8.5 ± 0.6 – 

River water 
20.0 28.3 ± 0.9 99.0 
0.0 10.7 ± 1.1 – 

Ground water 
20.0 30.2 ± 0.9 97.5 

 
Conclusion. A selective procedure was established for the determination of trace amounts of Pb(II) in 

water samples, using CZPs modified with PAN as a chelating agent. Quantitative extraction of lead ions 
from the aqueous samples at trace levels was achieved at pH 9.8. The enrichment factor was 104 for a 
maximum sample solution volume of 250 mL. ANN-ACO was used for simulation and optimization of the 
method. The results showed that ACO is a good tool for calculating the optimum factors. This method is 
simple, fast, and gives a high enrichment factor with a low limit of detection. 
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