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Определены прямые матричные элементы оператора энергии взаимодействия спин–чужая ор-
бита конфигураций npn′h и np5n′h. Прямые матричные элементы в совокупности с обменными 
предназначены для дальнейшего численного расчета параметров тонкой структуры и других ха-
рактеристик атомов, в частности гиромагнитных отношений. Расчет коэффициентов при ради-
альных интегралах выполнен в одноконфигурационном приближении, в формализме неприводимых 
тензорных операторов и в двух представлениях: LSJM и представлении несвязанных моментов.  
Выведена формула для расчета прямых матричных элементов рассматриваемых конфигураций  
в представлении несвязанных моментов и проверена на матрицах небольших рангов с M = ±7 (1-го 
ранга) и M = ±6 (4-го ранга). Расчет остальных прямых матричных элементов выполнен для матри-
цы с M = 0 (12-го ранга). Полученные величины переведены в LSJM-представление с помощью мат-
рицы коэффициентов Клебша—Гордана и проведено их сравнение с независимым расчетом  
в LSJM-представлении. Полное согласие прямых матричных элементов рассматриваемого взаимо-
действия в двух разных схемах расчета свидетельствует о достоверности полученных результатов. 

Ключевые слова: матрица оператора энергии, взаимодействие спин–чужая орбита,  
LSJM-представление, представление несвязанных моментов. 
 

The direct matrix elements of the energy operator for the npn′h and np5n′h configurations are deter-
mined taking into account the spin–other-orbit interaction. Direct matrix elements, together with exchange 
ones, are intended for further numerical calculation of fine structure parameters and other characteristics of 
atoms, such as gyromagnetic ratios. The coefficients for radial integrals are calculated in the single-
configuration approximation, in the formalism of irreducible tensor operators, and in two representations: 
LSJM and the representation of unrelated moments. A formula has been derived for calculating the direct 
matrix elements of the considered configurations in the representation of unrelated moments. It has been 
carefully tested on small rank matrices with M = ±7 (1 rank) and M = ±6 (4 rank). The calculation of all 
other direct matrix elements has been performed for a matrix with M = 0 (12 rank). The values obtained 
have been transformed into the LSJM-representation using the matrix of Clebsch–Gordan coefficients and 
compared with an independent calculation in the LSJM-representation. The complete agreement of direct 
matrix elements of the interaction considered in two different calculation schemes indicates the reliability of 
the results obtained. 

Keywords: energy operator matrix, spin–other-orbit interaction, LSJM-representation, unrelated  
moment representation. 
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Введение. Современные методы теоретической атомной спектроскопии позволяют проводить 
расчеты атомных систем, необходимые для решения практических задача в различных разделах фи-
зики. При расчетах атомных систем наряду с ab initio методами используют различные варианты по-
луэмпирического расчета, который позволяет вычислить энергии уровней тонкой структуры в преде-
лах экспериментальной ошибки измерения. Для этого важен учет в матрице оператора энергии [1, 2] 
малых магнитных взаимодействий, таких как спин–чужая орбита. 

Высоковозбужденные конфигурации с p- и h-электронами на внешних оболочках мало исследо-
ваны, однако появляются экспериментальные энергии уровней тонкой структуры как наиболее точно 
измеряемые величины у некоторых элементов. В продолжение [3] построению матрицы оператора 
энергии конфигураций npn′h и np5n′h посвящена настоящая работа. 

Взаимодействие спин–орбита (своя и чужая), как и взаимодействие спин–спин, является магнит-
ным, так как соответствующие операторы энергии содержат спиновые переменные. Эти взаимодей-
ствия ответственны за расщепление уровней. Оператор энергии взаимодействия спин–орбита для 
двухатомных электронов имеет вид [1, 2]: 

           
2 2

1 1 12 1 12 2 1 2 2 21 2 21 1 22 2 3 3 3 2 2 3 3 3
1 12 12 2 12 12

1 2 1 2

2 2
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H
m c r r r m c r r r

              
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Формулу (1) можно представить в следующем виде:        (1) (1) (1) (1)
1 1 1 2 2 2

SOH r l s r l s     [2], где пер-

вые слагаемые в каждой фигурной скобке — одноэлектронные двухпространственные операторы, 
относятся к взаимодействию спин–своя орбита. Остальные слагаемые в (1) относятся к взаимодей-
ствию спин–чужая орбита. Соответствующие операторы являются операторами момента количества 
движения первого электрона относительно второго и второго электрона относительно первого. 

Расчет матричных элементов оператора энергии взаимодействия спин–своя орбита не представ-
ляет трудностей как в представлении несвязанных моментов, так и в LSJM-представлении. Кроме то-
го, в Приложении II [2] представлена таблица коэффициентов при радиальных интегралах в матрич-
ных элементах оператора энергии спин–своя орбита для конфигураций pl с произвольным значением 
орбитального момента l второго электрона. Таблица проверена по формулам из [2] в двух представ-
лениях и в конфигурациях npn'p и npn'd, поэтому основное внимание в настоящей работе, как и в [3], 
уделено взаимодействию спин–чужая орбита как наиболее сложному. 

Взаимодействие спин–чужая орбита — физическое взаимодействие, которое вносит вклад 
в энергию уровней тонкой структуры, хотя и значительно меньший по сравнению со взаимодействи-
ем спин–своя орбита. Тем не менее его необходимо учитывать в полной матрице оператора энергии 
для того, чтобы уменьшить невязки между расчетными и экспериментальными энергиями в числен-
ном эксперименте по определению параметров тонкой структуры полуэмпирическим методом. 
У многих конфигураций есть примесные уровни других конфигураций той же четности. В частности, 
у конфигурации 3p7h атома кремния примесными являются уровни конфигурации 3p7f. В многочис-
ленных исследованиях (см., например, [4, 5]) показано, что учет в матрице оператора энергии взаи-
модействия спин–чужая орбита, а также взаимодействий спин–спин и орбита–орбита позволяет по-
лучить нулевые невязки по энергиям уже в одноконфигурационном приближении, что значительно 
упрощает расчет параметров тонкой структуры.  

В [3] рассмотрены обменные матричные элементы оператора энергии взаимодействия спин–
чужая орбита конфигураций с p и h электронами на внешних оболочках. Настоящая работа посвяще-
на прямым матричным элементам указанного взаимодействия. Как и в [3], расчет выполнен в форма-
лизме неприводимых тензорных операторов в одноконфигурационном приближении и в двух пред-
ставлениях: LSJM и несвязанных моментов. 

В LSJM-представлении (приближении LS-связи) для конфигурации npnh имеем следующие 
уровни тонкой структуры: 3I765, 1I6; 3H654, 1H5; 3G543, 1G4, т. е. три группы уровней с L = 6, 5, 4, по три 
триплетных и одному синглетному уровню для каждого значения L. В этом приближении, как и  
в других типах векторной связи, матрица оператора энергии разделяется по квантовому числу J  
(J — полный электронный момент атома). Следовательно, для рассматриваемой конфигурации имеем 
одну матрицу 4-го ранга (J = 5), две матрицы 3-го ранга (J = 6 и J = 4) и две матрицы 1-го ранга (J = 7 
и J = 3). Невысокий ранг субматриц оператора энергии очень удобен при параметризации энергети-
ческих спектров, поскольку число уравнений для определения параметров тонкой структуры полу-
эмпирическим методом значительно сокращается. Также упрощается процедура численной диагона-
лизации матриц. 
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Расчет прямых приведенных матричных элементов оператора энергии взаимодействия спин–
чужая орбита выполнен по формуле, полученной из выражений в [2]: 
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    (2) 

Здесь основной параметр суммирования k принимает значения k = 1 и k = 3; S1 — радиальный 
интеграл спиновых взаимодействий Марвина Mk–1 (nl, nl) при k = 1; S2 — интеграл Марвина Mk–1  

(nl, nl), k = 1. Для неэквивалентных электронов Mk–1 (nl, nl)  Mk–1 (nl, nl), S1 и S2 — разные ради-
альные интегралы. Причем во второй квадратной скобке (2) остается только первое слагаемое, второе 
обращается в нуль из-за равенства нулю приведенного матричного элемента оператора сферической 
функции (l1Ck+1l1). Выражения для множителей B и a приведены в [3]. Значения приведенных мат-
ричных элементов оператора сферической функции заимствованы из Приложения 1 [2]; 9j-символы 
рассчитаны по разным формулам из [6]. Прямые приведенные матричные элементы оператора энер-
гии взаимодействия спин–чужая орбита для конфигурации npn'h представлены в табл. 1 в виде коэф-
фициентов при радиальных интегралах S1, S2 и S2. Квадратный корень в последнем столбце — общий 
множитель для всех элементов строки. Связь полного матричного элемента с приведенным (зависи-
мость от квантового числа J) задается выражением (15) из [3]. 
 

Т а б л и ц а  1.  Прямые приведенные матричные элементы оператора энергии  
взаимодействия спин–чужая орбита конфигураций npn'h 

 
Матричный 
элемент 

S1 (k = 1) S2 (k = 1) S2' (k = 3)  

3 3I I  0 180/13 36/13 91  
3 3H H  198/25 18 -252/25 55  
3 3G G  –198/25 24 252/25 30  
3 3I H  –9/5 –27/13 –252/65 65  
3 3H G  729/25 –9 504/25 5  
3 1H I  13/10 17/26 42/65 130  
3 1I H  –13/10 –17/26 –42/65 130  
3 1H G  63/50 –21/10 84/25 10  
3 1G H  –63/50 21/10 –84/25 10  

3 1I I  –1 35/13 6/13 182  
3 1H H  28/25 14/5 –42/25 110  
3 1G G  –6/25 32/5 84/25 15  

П р и м е ч а н и е. Невыписанные матричные элементы равны нулю. 
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В представлении несвязанных моментов (термин из [2]) состояния двухэлектронного атома 
зависят только от индивидуальных квантовых чисел отдельных электронов. Поэтому отсутствует 
необходимость вводить дополнительные квантовые числа, являющиеся результатом сложения мо-
ментов количества движения. В этом представлении матрица оператора энергии разделяется по маг-
нитному квантовому числу M. Таких матриц много от 1-го до 12-го ранга. Не обязательно рассматри-
вать все матрицы. Достаточно ограничиться самой удобной матрицей с M = 0 (12-го ранга), из кото-
рой можно получить матричные элементы всех 12 уровней конфигурации. В представлении несвя-
занных моментов волновая функция задается следующим набором квантовых чисел 
ψ(l1,l2,s1,s2,ml1,ml2,mS1,mS2). В одноконфигурационном приближении волновые функции различаются 
четверкой квантовых чисел — орбитальных и спиновых проекций электронов. Выпишем их для мат-
рицы с M = 0: 

1 2 1 2

1. 1 0 1 / 2 1 / 2

2. 0 0 1 / 2 1 / 2

3. 1 0 1 / 2 1 / 2

4. 0 0 1 / 2 1 / 2

5. 0 1 1 / 2 1 / 2

6. 1 1 1 / 2 1 / 2

7. 0 1 1 / 2 1 / 2

8. 1 1 1 / 2 1 / 2

9. 1 2 1 / 2 1 / 2

10. 1 1 1 / 2 1 / 2

11. 1 2 1 / 2 1 / 2

12. 1 1 1 / 2 1 / 2.

l l s sm m m m

 





 
 

 

  
 


 

           (3) 

Здесь волновые функции пронумерованы в соответствии с нумерацией столбцов в табл. 1 из [3]. Ана-
логами (противоположный знак всех проекций) являются волновые функции: 1–3, 2–4, 5–7, 6–12,  
8–10, 9–11. Матричные элементы, рассчитанные с этими волновыми функциями, одинаковы, поэтому 
количество вычислений матричных элементов оператора энергии с M = 0 сокращается вдвое. Это 
преимущество матрицы с M = 0 по сравнению с остальными матрицами представления несвязанных 
моментов. Для дырочных конфигураций p5h (почти заполненная p-оболочка и h-электрон) в (3) необ-
ходимо изменить знак орбитальных и спиновых проекций p-электрона (ml1,mS1). Расчет прямых мат-
ричных элементов оператора энергии взаимодействия спин–чужая орбита с волновыми функциями 
(3) выполнен по формуле [2]: 
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Здесь  1 3

2
s s s   в псевдостандартной системе фаз: 

 
   
   

1 1 1 2 2
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, 1 ,
,

, 1 .

k
K

k

M n l n l K k
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



    
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       (5) 

Параметр суммирования k принимает значения: k = 1 и k = 3, параметр суммирования K = k  1. 
Выражение для множителей a приведено в [3]; t12 — единичные орбитальные двухэлектронные опе-
раторы; z1 и z2 — единичные спиновые одноэлектронные операторы. 

Для упрощения записи обозначим радиальные интегралы Марвина Mk–1 в (5) следующим обра-
зом: Mk–1(n1l1,n2l2) = S1 при k = 1, Mk–1(n2l2,n1l1) = S2, k = 1; Mk–1(n2l2,n1l1) = S2 при k = 3. Учитывая  
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вышеизложенное и выполняя все необходимые операции в (4), получаем рабочие формулы для вы-
числения прямых матричных элементов в представлении несвязанных моментов для k = 1 и k = 3: 

 

     

     

 

1 2 1 1 2 1
2 1

1 2 2 1 2 2
1 1

1 2

1
1

011 101 121 211
12 2 12 1 12 2 12 1

1
2

011 101 121 211
12 2 12 1 12 2 12 1

1: 1 , 6 11

5
2 15 2 15

39

1 , 6 11

10
15 2 15 ,

39

3: 1

l l s

l l s

l l s m m m
s s

l l s m m m
s s

l l s

k m m z

t S t S t S t S

m m z

t S t S t S t S

k

    

    

 

    

 
     
 

    

     
 

    

     

1 1 2 1
2 2

1 2 2 1 2 2
1 1

231 1
12 1 2

231 1
12 2 2

330
, 56

13

330
1 , 28 .

13

l l s

l l s

m m m
s s

l l s m m m
s s

m m t z S

m m t z S

  

    

   

    

       (6) 

Коэффициенты при радиальных интегралах S1, S2 и S2, рассчитанные с волновыми функциями 
представления несвязанных моментов (3), приведены в табл. 2 для электронной ph и дырочной p5h 
конфигураций. Для дырочной конфигурации не требуется пересчитывать тензорные произведения t12. 
Достаточно изменить знак у слагаемых с нечетным рангом единичного орбитального оператора  
p-электрона t1. Для единичных спиновых операторов используются дырочные волновые функции,  
у которых в (3) необходимо изменить знак спиновых проекций mS1. 

 
Т а б л и ц а  2.  Прямые матричные  элементы  оператора  энергии  взаимодействия  
спин–чужая орбита конфигураций ph и p5h, рассчитанные с волновыми функциями  

представления несвязанных моментов (3) 
 

Матричный 
элемент λiλk 

ph p5h 
 

S1 S2 S2 S1 S2 S2 
1-1, 3-3 3 10/13 0 -1 -10/39 0 –
5-5, 7-7 6/5 3 168/65 –2/5 –1 –56/65 –

6-6, 12-12 –4/5 –16/13 28/65 12/5 48/13 –84/65 –
8-8, 10-10 4/5 16/13 –28/65 –12/5 –48/13 84/65 – 
9-9, 11-11 –21/5 72/13 –138/65 7/5 –24/13 46/65 –
1-2, 3-4 –2 10/39 0 2 –10/39 0 2  
1-4, 2-3 –1 5/39 0 –1 5/39 0 2  
1-5, 3-7 –9/10 –1/26 –56/65 3/10 1/78 56/195 15  

1-6, 3-12 –1/10 –40/39 28/195 –1/10 –38/39 28/195 30  
1-8, 3-10 –1/5 –157/78 56/195 1/5 155/78 –56/195 30  
1-9, 3-11 0 0 2/13 0 0 –2/39 210  
1-10, 3-8 3/5 0 –28/195 3/5 0 –28/195 30  
1-12, 3-6 6/5 0 –56/195 –6/5 0 56/195 30  
2-5, 4-7 1/5 –1 –56/195 1/5 –1 –56/195 30  

2-6, 4-12 –3/10 –1/78 –56/195 9/10 3/78 56/65 15  
2-7, 4-5 2/5 –2 –112/195 –2/5 2 112/195 30  

2-9, 4-11 0 4/39 4/39 0 –4/39 4/39 105  
2-10, 4-8 3/10 1/78 56/195 –9/10 –1/26 –56/65 15  
2-11, 4-9 0 2/39 8/39 0 2/39 –8/39 105  
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Продолжение табл. 2
Матричный 
элемент λiλk 

ph p5h 
 

S1 S2 S2 S1 S2 S2 
5-6, 7-12 0 10/13 0 0 –10/13 0 2  
5-8, 7-10 0 5/13 0 0 5/13 0 2  
5-9, 7-11 9/10 –3/26 36/65 –3/10 1/26 –12/65 14  
5-10, 7-8 –23/10 3/13 28/65 17/10 –3/13 28/65 2  
5-12, 6-7 –8/5 3/26 56/65 –2/5 3/26 –56/65 2  
6-9, 11-12 0 0 –20/13 0 0 –20/13 7  
6-11, 9-12 –2/5 –53/13 24/65 2/5 51/13 –24/65 7  
8-9, 10-11 0 0 –40/13 0 0 40/13 7  
8-11, 9-10 –1/5 –28/13 12/65 –1/5 –24/13 12/65 7  

П р и м е ч а н и е.  В графе “матричный элемент” представлены только индексы i и k, соответствую-
щие нумерации столбцов в табл. 1 из [3]. Невыписанные матричные элементы равны нулю. 

 
 
Cравнение результатов расчета прямых матричных элементов в двух представлениях. Для 

сравнения результатов расчета прямых матричных элементов оператора энергии взаимодействия 
спин–чужая орбита в двух разных схемах матричные элементы представления несвязанных моментов 
необходимо перевести в LSJM-представление (приближение LS-связи). Перевод осуществляется  
с помощью унитарной матрицы коэффициентов Клебша—Гордана, приведенной в табл. 1 [3], и за-
ключается в следующем. В матричном виде: матрица коэффициентов Клебша—Гордана умножается 
на матрицу представления несвязанных моментов из табл. 2, полученное произведение транспониру-
ется и вновь умножается на матрицу коэффициентов Клебша—Гордана. В ручном варианте: коэффи-
циенты одной строки из табл. 1 [3] попарно умножаются на коэффициенты другой строки из той же 
таблицы, а затем умножаются на соответствующие элементы матрицы представления несвязанных 
моментов из табл. 2. Полученные произведения суммируются. Обе версии перевода матричных эле-
ментов из представления несвязанных моментов в LSJM-представление совпадают. При таком пере-
воде получаются полные матричные элементы. Они представлены в табл. 3 в виде коэффициентов 
при радиальных интегралах S1, S2 и S2 с аналогичными коэффициентами для матрицы оператора 
энергии спин–своя орбита. Последние получены из выражений Приложения 2 [2] в приближении  
LS-связи. Видно, что квадратный корень для всех радиальных интегралов одинаковый, что является 
косвенным доказательством достоверности расчета прямых матричных элементов оператора энергии 
взаимодействия спин–чужая орбита. Если при независимом расчете в LSJM-представлении приве-
денные матричные элементы из табл. 1 умножим на коэффициенты, учитывающие зависимость от 
квантового числа J (табл. 4 в [3]), то получим в точности те же результаты, что и в табл. 3 для элек-
тронной конфигурации ph. 

 
Т а б л и ц а  3.  Прямые полные матричные элементы оператора энергии взаимодействия  

спин–чужая орбита конфигураций ph и p5h 
 

Матричный 
элемент 

ph p5h 
 

S1 S2 S2 p h S1 S2 S2 p h 

3 3
7 7I I  0 

180

13


 

36

13


 

1

2
 

5

2
 0 

60

13
 

12

13
 

1

2


 

5

2
 – 

3 3
6 6I I  0 

30

13
 

6

13
 

1

12


 

5

12


 0 

10

13


 

2

13


 

1

12
 

5

12


 – 

3 3
5 5I I  0 

210

13
 

42

13
 

7

12


 

35

12


0 

70

13


 

14

13


 

7

12
 

35

12


 – 
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Продолжение табл. 3
Матричный 
элемент 

ph p5h 
 

S1 S2 S2 p h S1 S2 S2 p h 

3 3
6 6H H  

33

5


 15  

42

5
 

1

12
 

29

12
 

11

5
 5  

14

5


 

1

12


 

29

12
 – 

3 3
5 5H H  

33

25
 3 

42

25


 

1

60


 

29

60

 11

25


 1  

14

25
 

1

60
 

29

60


 – 

3 3
4 4H H  

198

25
 18  

252

25


 

1

10


 

29

10

 66

25


 6  

84

25
 

1

10
 

29

10


 – 

3 3
5 5G G  

132

25
 16  

168

25


 

2

5


 

12

5
 

44

25


 

16

3
 

56

25
 

2

5
 

12

5
 – 

3 3
4 4G G  

33

25


 4 

42

25
 

1

10
 

6

10


 

11

25
 

4

3


 

14

25


 

1

10


 

6

10


 – 

3 3
3 3G G  

33

5


 20 

42

5
 

1

2
 3  

11

5
 

20

3


 

14

5


 

1

2


 3  – 

3 3
6 6I H  

3

10


 

9

26


 

42

65


 

1

12


 

1

12
 

1

10
 

3

26
 

14

65
 

1

12
 

1

12
 35  

3 3
5 5I H  

3

22


 

45

286


 

42

143


 

5

132


 

5

132
 

1

22
 

15

286
 

14

143
 

5

132
 

5

132
 143  

3 3
5 5H G  

729

275
 

9

11


 

504

275
 

18

110

 18

110
 

243

275

 3

11
 

168

275


 

18

110
 

18

110
 11  

3 3
4 4H G  

81

25
 1  

56

25
 

1

5


 

1

5
 

27

25


 

1

3
 

56

75


 

1

5
 

1

5
 6  

3 1
5 5I H  

13

330


 

17

858


 

14

715


 

1

132


 

1

132


 

13

110
 

17

286
 

42

715
 

1

132
 

1

132


 130 33  

3 1
5 5G H  

21

550


 

7

110
 

28

275


 

3

110
 

3

110
 

63

550
 

21

110


 

84

275
 

3

110


 

3

110
 330  

3 1
6 6H I  

13

30
 

17

78
 

14

65
 

1

12
 

1

12
 

13

10


 

17

26


 

42

65


 

1

12


 

1

12
 30  

3 1
4 4H G  

7

50
 

7

30


 

28

75
 

1

10


 

1

10


 

21

50


 

7

10
 

28

25


 

1

10
 

1

10


 30  

3 1
6 6I I  

1

3
 

35

39


 

2

13


 

1

12
 

5

12


 1  

35

13
 

6

13
 

1

12


 

5

12


 42  

3 1
5 5H H  

28

75


 

14

15


 

14

25
 

1

60
 

29

60

 28

25
 

14

5
 

42

25


 

1

60


 

29

60


 30  

3 1
4 4G G  

2

25
 

32

15


 

28

25


 

1

5


 

6

5


 

6

25


 

32

5
 

84

25
 

1

5
 

6

5


 5  

П р и м е ч а н и е.  Невыписанные матричные элементы равны нулю. 
 
Как отмечено выше, дырочные конфигурации в независимом LSJM-представлении получить 

нельзя. Для них остается только результат перевода из представления несвязанных моментов в LSJM-
представление. Однако здесь есть свои критерии проверки достоверности результатов. Как показали 
наши многочисленные исследования предыдущих конфигураций pl, матричные элементы триплет-
триплет в дырочных конфигурациях в три раза меньше по сравнению с электронными, а триплет-
синглет в три раза больше — все с противоположным знаком, как видно из табл. 3. Таким образом, 
достоверность матричных элементов табл. 3 полностью доказана. 
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Заключение. Определены прямые матричные элементы оператора энергии взаимодействия 
спин–чужая орбита. Расчет коэффициентов при радиальных интегралах выполнен в одноконфигура-
ционном приближении, в формализме неприводимых тензорных операторов и в двух представлени-
ях: LSJM и несвязанных моментов. Выведена формула для расчета рассматриваемых матричных эле-
ментов в представлении несвязанных моментов, которая тщательно проверена на матрицах неболь-
ших рангов: M = 7 (1-й ранг) и M = 6 (4-й ранг). По формуле рассчитаны все прямые матричные 
элементы указанного взаимодействия в представлении несвязанных моментов для матрицы с M = 0. 
Осуществлен перевод полученных результатов в LSJM-представление с помощью матрицы коэффи-
циентов Клебша—Гордана. Для электронной конфигурации ph проведено сравнение с независимым 
расчетом в LSJM-представлении и доказана достоверность прямых матричных элементов оператора 
энергии взаимодействия спин–чужая орбита. Взаимодействие спин–орбита представлено самым 
большим числом радиальных интегралов: два относятся к взаимодействию спин–своя орбита  
(p и h), три — к прямой части рассматриваемого оператора энергии (S1, S2 и S2), три — к обменной 
части (S3, S4 и S4). 
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