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Laser-induced breakdown spectroscopy (LIBS) coupled with the nonlinear multivariate regression 
method was applied to analyze magnesium (Mg) contents in soil. The plasma was generated using a 100 mJ 
Nd:YAG pulsed laser, and the spectra were acquired using a multi-channel spectrometer integrated with a 
CCD detector. The line at 383.8 nm was selected as the analysis line for Mg. The calibration model between 
the intensity of characteristic line and the concentration of Mg was constructed. The traditional calibration 
curve showed that the concentration of Mg was not only related to the line intensity of itself, but also to 
other elements in soil. The intensity of characteristic lines for Mg (Mg I 383.8 nm), manganese (Mn) (Mn I 
403.1 nm), and iron (Fe) (Fe I 407.2 nm) were used as input data for nonlinear multivariate calculation. 
According to the results of nonlinear regression, the ternary nonlinear regression was the most appropriate 
of the studied models. A good agreement was observed between the actual concentration provided by induc-
tively coupled plasma mass spectrometry (ICP-MS) and the predicted value obtained using the nonlinear 
multivariate regression model. The correlation coefficient between predicted concentration and the meas-
ured value was 0.987, while the root mean square error of calibration (RMSEC) and root mean square error 
of prediction (RMSEP) were reduced to 0.017% and 0.014%, respectively. The ratio of the standard devia-
tion of the validation to the RMSEP increased to 8.79, and the relative error was below 1.21% for nine vali-
dation samples. This indicated that the multivariate model can obtain better predicted accuracy than the 
calibration curve. These results also suggest that the LIBS technique is a powerful tool for analyzing the micro-
nutrient elements in soil by selecting calibration and validation samples with similar matrix composition. 
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Для анализа содержания магния в почве применена спектроскопия лазерно-искровой плазмы 

(LIBS) с использованием метода нелинейной многомерной регрессии. Для генерации плазмы применен 
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импульсный Nd:YAG-лазер мощностью в импульсе 100 мДж, а регистрация спектров осуществлена 
с помощью многоканального спектрометра с ПЗС-детектором. Для анализа содержания Mg выбра-
на линия на длине волны 383.8 нм. Зависимость интенсивности характеристической линии от кон-
центрации Mg определялась с помощью созданной калибровочной модели. Построение традицион-
ной градуировочной кривой показывает, что на интенсивность выбранной линии влияет не только 
концентрация Mg, но и содержание других элементов в почве. Поэтому в качестве входных данных 
для нелинейного многопараметрического расчета использована интенсивность характеристических 
линий магния (Mg I 383.8 нм), марганца (Mn I 403.1 нм) и железа (Fe I 407.2 нм). В соответствии с 
результатами применения нелинейной регрессии наиболее приемлема из изученных моделей трех-
мерная нелинейная регрессия. Наблюдалось удовлетворительное совпадение величины, полученной 
расчетом по выбранной нелинейной регрессионной модели, со значением концентрации, измеренной с 
помощью масс-спектрометрии с индуктивно-связанной плазмой (ICP-MS). Коэффициент корреля-
ции между рассчитанной и измеренной концентрацией 0.987, причем среднеквадратичная ошибка 
калибровки (RMSEC) и расчета (RMSEP) снижены до 0.017 и 0.014 %. Отношение стандартного 
отклонения валидации к RMSEP возросло до 8.79, а относительная ошибка оказалась ниже 1.21 % 
для девяти образцов проверки. Это подтверждает, что многомерная модель может обеспечить 
лучшую прогнозную точность, чем калибровочная кривая. Полученные результаты также свиде-
тельствуют о том, что метод LIBS является мощным инструментом для анализа микроэлементов 
в почве путем выбора калибровочных и валидационных образцов со схожими по составу матрицами.  

Ключевые слова: лазерно-искровая спектроскопия, почва, магний, нелинейная многопараметри-
ческая калибровка. 

 
Introduction. Accurate analysis of the nutritious elements in soil is of great importance in precision ag-

riculture. In particular, the reduction of agricultural production costs is important for crop fertilization. Preci-
sion agriculture is a farming management concept based on observing, measuring and responding to inter 
and intra-field variability in crops. Precision fertilization is a key component of precision agriculture based 
on division of the field into grids using GPS, then testing for soil nutrients and computing the fertilizer input 
needed using the fertilization model, before finally applying fertilizer using a variable rate applicator. Quan-
titative detection of the element concentrations in soil is important to improve precision fertilization. Com-
pared with traditional chemical analysis methods, LIBS is faster and more effective in the quantitative detec-
tion of element concentrations. 

The LIBS technique is an atomic emission spectroscopy technique that uses a pulsed laser as an excita-
tion source [1]. Spectrochemical analysis using LIBS is determined not only by the concentration of the ana-
lyte in the sample, but also by the experimental conditions, e.g., delay time, laser characteristics, sample 
characteristics, atmosphere gas, and other parameters [2]. Thus, a detailed analysis of the experimental pa-
rameters is required to obtain a reliable quantitative result. The most common approach to performing quan-
titative LIBS analysis is the calibration curve method with matrix-matched standards. The LIBS technique 
has been used in various fields [3–7] and the application of LIBS in agriculture for heavy metal pollution, 
soil fertility, plant materials, and fertilizer is of particular interest to precision fertilization [8–11]. The de-
termination of nutrient elements in soil has been examined in the literature because of its importance to the 
continued improvement of precision fertilization [12–15]. The analyses conducted in these studies have fo-
cused on total carbon (C), inorganic C, organic C, total nitrogen (N), and total phosphorus (P) in soil. How-
ever, few investigations have been devoted to the research of analyzing the Mg element in soil [16–18]. 
Moreover, most of these studies have carried out qualitative analysis, and only a few studies have been re-
ported in the literature dealing with quantitative analysis. This may be attributed, in part, to the limited atten-
tion paid to the role of the Mg element in plant growth. However, Mg element in soil has a major function in 
the photosynthesis and metabolism of plants and can promote growth, strengthen disease resistance, and in-
crease yield. The oxide and hydrate forms of Mg have good surface activation and degrading functions on 
the organic pollution in soil. Therefore, experimental parameters for LIBS analysis of Mg in soil should be 
estimated, together with the investigation of new strategies of calibration for LIBS analysis of Mg in soil. 

Many researchers have recently used the multivariate calibration method for quantitative analysis of 
LIBS. Taking into account the properties of samples and accuracy of prediction, we see that the characteris-
tic chemometric algorithms include different approaches, such as multiple linear regression, principal com-
ponents regression, partial least squares, and nonlinear multiple regression, all which have been used in 
LIBS analysis [19–22]. In the present study, we applied the LIBS technique to determine the concentration 
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of Mg in soil for the goal of precision fertilization. Soil samples collected from a rice field containing vari-
ous amounts of Mg were used to construct the relationship between LIBS intensity and the Mg concentratio. 
In addition, linear regression and nonlinear multivariate regression were used to predict the concentration of 
Mg in soil samples, and a suitable nonlinear multivariate regression model with Fe and Mn as inter-element 
interference with lower RMSEC and RMSEP was obtained. This means that the results of this study can 
measure the Mg content in soil more accurately. 

Experimental. A schematic drawing of the experimental setup is shown in Fig. 1. A Q-switched 
Nd:YAG laser (Ultra ICE 450, USA), which can deliver up to a maximum of 100 mJ/pulse at 1064 nm 
wavelength with a pulse duration of 6 ns and a maximum repetition of 20 Hz, was used in this experiment. 
The beam was focused onto the soil sample pellet (soils described below) using a plano-convex K9 lens 
(25 mm diameter, f = 50 mm). The light emitted from the plasma was collected by a fused silica quartz lens 
of 40 mm focal length. The end of the optical fiber was connected to the entrance slit of a multiple spec-
trometer (2048-USB2, Avantes, the Netherlands). The spectrometer has three channels containing separate 
grating and charge coupled device array. This equipment offers a large spectral range from 190 to 510 nm 
with a spectral resolution of 0.1 nm. The spectra were recorded and processed by a personal computer. A 
homemade gate pulse generator was employed to trigger the laser and the spectrometer. When triggered, the 
generator can produce a burst of pulses, which was used to fire the laser and trigger the spectrometer after a 
set delay time. The operating conditions were laser pulsed energy 90 mJ, repetition rate 1 Hz, detection delay 
1.8 µs, and integration time 1.05 ms. 
 

 
Nd:YAG Laser                               Mirror 
 
 
 
                Spectrometer                     Lens 
 
 
            PC                                      Soil Plasma 
 

                      Sample Stage 

 
Fig. 1. Schematic diagram of LIBS experimental system. 

 
Thirty soil samples were collected from a rice field (Huaiyuan, Anhui Province). The sampling position 

was 10–25 cm below the ground, which was considered to be the main area from which the plant roots ab-
sorb micronutrients. The collected soil was first dried naturally and then ground into powder. The ground 
samples were sieved through 100 mesh screens to achieve sample homogeneity. The powdered samples were 
compressed under 10 tons of pressure for 2 min to improve the stability of LIBS emissions. Pellets were ana-
lyzed in duplicate when assessing the element concentration using LIBS. At the same time, traditional induc-
tively coupled plasma mass spectrometry (ICP-MS) was used to measure the concentration of Mg in soil 
samples (Table 1).  
 

TABLE 1. Measured Mg Concentration in Soil Samples (% dry weight) Using ICP-MS 
 

Sample Concentration, % Sample Concentration, % Sample Concentration 
1 1.098 11 0.972 21 1.122 
2 1.140 12 1.146 22 0.978 
3 1.092 13 1.278 23 1.266 
4 1.212 14 1.128 24 1.176 
5 1.260 15 1.230 25 1.254 
6 1.086 16 1.164 26 1.236 
7 1.308 17 1.308 27 1.038 
8 1.122 18 1.242 28 1.314 
9 1.416 19 1.314 29 1.212 

10 1.110 20 1.158 30 1.14 
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During the LIBS experiment, the soil pellet was mounted on an x-y rotary stage, which was constantly 
rotated with a stepper motor to minimize heterogeneity. Thirty spectra were averaged for each soil pellet to 
improve the signal/noise ratio and reduce statistical error caused by laser shot-to-shot fluctuation. 

Results and discussion. Selection of characteristic line. The LIBS spectrum at 270–290 and 380–410 nm 
of sample 1 (Table 1) is shown in Fig. 2. The laser pulsed energy and delay time were optimized at 90 mJ 
and 1.8 µs, respectively. Each spectrum was generated according to a 30 shot average. Figure 2 shows that 
strong emission lines for Mg, manganese (Mn), and iron (Fe) were apparent in the spectrum. The feature 
spectral lines of Mg element detected by LIBS were at 280, 285.2, 382.9, 383.2, and 383.8 nm, respectively. 
According to the National Institute of Standards and Technology (NIST) database, the spectral line at  
383.8 nm is observed easily without the interference of other spectral lines, and the relative intensity of this 
line is the strongest. The feature lines of Mn and Fe were abundant and, based on the relative intensity and 
the interference of other elements, the emission lines of Mn I at 403.1 nm and Fe I at 407.2 nm were selected 
as the analytical lines. 
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Fig. 2. LIBS spectrum of soil sample. 

 
Quantitative analysis using calibration curve. The average spectrum (30 shot) of each sample was ob-

tained by subtracting the baseline by Lorentz fit using Matlab software. The relationship between the inten-
sity of the LIBS emission line of Mg 383.8 nm and the actual concentration of Mg in soil samples was first 
determined using the traditional calibration curve. We used 21 of the 30 soil samples as the calibration set to 
construct the calibration model, with Mg concentration varying from 0.972% to 1.416 (Fig. 3a). It provides a 
regression model with a correlation coefficient of only 0.766. The remaining nine of the soil samples, with 
unknown Mg contents, were used to estimate the prediction accuracy of LIBS technique for analysis of the 
Mg content. Figure 3b shows the LIBS predicted content and the reference content of Mg. The correlation 
coefficient is 0.831, and the slope of the calibration curve is 1.52. It is worth mentioning that the simple cali-
bration curve only considered the objective element Mg (Mg I 383.8 nm). However, in a LIBS spectrum, 
there are different atomic and ionic lines emitted from the same element. The intensities of these emitted 
lines are not only dependent on the emitted elemental species concentration, but they are also affected by the 
other corresponding elemental species in the plasma. As the soil samples are very complex, the other corre-
sponding elements can obstruct the result of calibration curve. The application of multiple characteristic 
lines would provide more information to construct the nonlinear multivariate calibration method, making it 
possible to achieve more accurate modeling of the inter-element interference. In other words, the nonlinear 
multivariate calibration method can reduce the influence of the matrix effect. Therefore, the measurement 
accuracy of LIBS can be improved effectively. 
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Fig. 3. Spectral intensity as a function of the percentage of Mg in soil. 

 
Nonlinear multiple regression analysis. The nonlinear multivariate model is an advanced analytical tool 

used in the field of chemometrics, which generally involves the development of mathematical models to ana-
lyze complex samples. For the soil sample with the multi-component coexistence, the measuring signal is 
typically related to many factors. Therefore, in the current application, the intensity of feature spectral lines 
is taken as the I (independent) variables and the elemental concentrations are the C (dependent) variables. 
The second order nonlinear multivariate analysis model can be expressed as follows: 

2
0, , ,

1
[ ] ( [ ] [ ] ) [ ],

m

j j i j i m i j i j
i

C a a I a I e


                 (1) 

where Cj is the concentration of element j; ej is the residual error; j and m are the number of samples and the 
number of variants, respectively; Ii is the intensity of one of characteristic lines of the corresponding ele-
ments; and a0,j and ai,j are the regression coefficients determined by nonlinear multivariate calibration. 

During the quantitative analysis using LIBS, the results of determination can be influenced by the con-
centration of the analyzed elements. Moreover, the other inter-elements contained in the samples play an 
important role in detecting the object. It can be assumed that the concentration of Cj has a relationship with 
the intensity of Cj and/or the other interfering elements (Ii), as indicated in the following equation [23]: 

Cj = f(I1, I2, ... ,Ii),                           (2) 

where Cj refers to the concentration of the analytical element predicted, and Ii is the integrated intensity of 
inter-element in the sample.  

In the soil, Mg is present in the mineral state, non-exchangeable state, water-soluble state, or exchange-
able state. Therefore, it is valuable to consider Mn and Fe as the inter-elements for Mg lines and then  

 CMg = a0 + a1IMg + a2IMg
2 + a3IFe + a4IFe

2 + a5IMn + a6IMn
2,               (3) 

where CMg is the Mg concentration; IMg, IFe, and IMn are the intensities of Mg I at 383.8 nm, Fe I at 407.2 nm, 
and the characteristic spectrum line intensity of Mn I at 403.1 nm, respectively. 

The quality of the nonlinear multivariate model can be evaluated in many ways. In this paper, four indi-
cators were applied to evaluate the accuracy of the model from different aspects: (i) the determination coef-
ficient (R2), (ii) the root mean square error of calibration (RMSEC) was used to assess the calibration qual-
ity, (iii) the root mean square error of prediction (RMSEP) was calculated to compare prediction accuracy, 
and (iv) the ratio of standard deviation of the validation to RMSEP (RPD) was used to assess the model sta-
bility. The following formulas were used to calculate RMSEC, RMSEP and RPD: 

c 2
c1RMSEC ( )N

i ii y y N  ,                (4) 

p 2
p1RMSEP ( )

N
i ii y y N  ,              (5) 

p 2
p1RPD ( ) RMSEP

N
i ii y y N  ,                      (6) 

where yi is the known elemental concentration; yi is the calculated elemental concentration;yi is the mean 
elemental concentration; Nc and Np indicate the number of calibration and prediction samples, respectively. 
An accurate model should have an R2 value close to 1, a small RMSEC and RMSEP, and RPD > 2. 
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The 30 soil samples were divided into calibration (21 samples) and prediction (9 samples) sets. Two 
second-order nonlinear multivariate models were constructed for Mg elements, with the interfering elements 
of Fe and Mn, respectively. The results of quantitative analysis of Mg element by the nonlinear multivariate 
model are presented in Table 2. The final nonlinear multivariate was expressed as Eq. (3).  

Figure 4 shows the calibration and prediction results of the nonlinear multivariate model with Fe as the 
interfering element. For the prediction samples, the nonlinear multivariate model showed better accuracy 
than the calibration curve, which indicates that the consideration of physical background can improve the 
prediction results. The RMSEC was 0.026%, RMSEP was 0.016%, and RPD was 4.75. However, the corre-
lation coefficient was only 0.944, which is not sufficiently close to 1. The residuals mainly come from the 
other interfering elements, e.g., Mn.  
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Fig. 4. Models to consider the impact of Fe on Mg: (a) the calibration model and (b) the validation model. 
 

To improve the correlation coefficient, the nonlinear multivariate model with Mg, Fe, and Mn lines in-
put as variables was applied to compensate for the residuals. The calibration and prediction results of the 
nonlinear multivariate model with Fe and Mn as the interfering elements are shown in Fig. 5. The results in 
Table 2 indicated that there is a strong relationship between the prediction concentration and the ICP-MS 
measured concentration, and the correlation was increased to 0.987. The RMSEC decreased from 0.026 to 
0.017%, and RMSEP was lowered to 0.014%, as compared with 0.016% for the nonlinear multivariate 
model with Fe as the interfering elements, and RPD was increased to 8.79. Utilizing multiple lines enables 
the nonlinear multivariate model to extract more useful spectral information to construct a more accurate 
model than the above two methods. For soil samples, the second-order nonlinear transformation makes the 
nonlinear multivariate model capable of handling the nonlinearity more accurately. Hence, the nonlinear 
multivariate model with Fe and Mn as the interfering elements is supposed to have better accuracy across the 
wide concentration range, as presented in Table 2.  
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Fig. 5. Models considering the impact of Fe and Mn on Mg:  

(a) the calibration model and (b) the validation model. 
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TABLE 2. Results of Multivariate Nonlinear Regression Models 
 

Model R2 calibration RMSEC, % R2 validation RMSEP, % RPD 
Mg with Fe influence 0.944 0.026 0.962 0.016 4.75 
Mg with Fe and Mn influence 0.968 0.017 0.987 0.014 8.79 

 
Compared with the above two methods, the present nonlinear method had better calibration and predic-

tion performance. The reduction of the RMSEP in the present nonlinear method was almost 10% of the 
above two method. In particular, the RPD was increased to nearly 9, which indicated that the practicality of 
model is good. When using the present nonlinear model, the mean relative error for soil samples was 1.21%. 
It should be noted that the present model achieved a better accuracy compared with the linear method for the 
complex soil samples. It may therefore be considered a good-potential method to improve the accuracy of 
LIBS and promote the development of LIBS for soil analysis.  

Conclusion. The potential of LIBS was evaluated for predicting the concentration of Mg in soil samples 
by coupling with the nonlinear multivariate regression method. The analysis was carried out based on linear 
and nonlinear regression calibration curves. The results indicated that the unary linear regression method 
cannot produce a successful quantitative analysis for complex soil samples using only the intensity of Mg as 
the variable. Indeed, the poor linearity of the conventional calibration curves can strongly affect the accuracy 
of the prediction. Subsequently, the nonlinear multivariate regression method takes into account the concen-
tration of Mg. For inter-element interference, the intensities of Mg and Fe with nonlinear transformation 
were considered to establish the nonlinear multivariate regression model. The results showed that the use of 
characteristic lines in the nonlinear model significantly improved the accuracy compared with the linear re-
gression model. The quantitative analysis results were improved by the introduction of the intensities of Mg, 
Fe, and Mn as variables in nonlinear multivariate regression analysis. The R2 between predicted concentra-
tion and actual value was 0.987, while the RMSEC and RMSEP were reduced to 0.017% and 0.014%, re-
spectively. Moreover, the RPD was increased to 8.79. Together, these results indicate the good quality of the 
nonlinear multivariate regression.  

Three different regression calibration methods were compared in this paper. The results showed that the 
nonlinear multivariate regression had better accuracy with Fe and Mn as the inter-element interference. It is 
reasonable to believe that there is further potential to improve the ability of this nonlinear multivariate 
method by accounting for more inter-element interference. Our future research is committed to implement-
ing real time and on-line measurement of trace elements in soil for application in precision agriculture.  
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