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Выделение групп флуорофоров в растворенном органическом веществе с помощью каноническо-

го тензорного разложения PARAFAC трехмерных спектров флуоресценции возбуждение/испускание 
широко используется при изучении природных вод, однако его расчет, особенно на стадии валида-
ции, требует очень больших временных затрат. Рассмотрены несколько стратегий ускорения ка-
нонического тензорного разложения для спектров молекулярной флуоресценции морских вод. Пока-
зано, что стратегии с оптимизацией большого количества параметров экстраполяции не позволя-
ют достичь значительного ускорения из-за больших временных затрат на эту операцию. Предло-
жено решение, когда оптимизация шага проводится для одной переменной один раз на несколько 
итераций алгоритма. Подобный подход позволяет достичь ускорения расчетов с использованием 
линейного поиска. Максимальное ускорение в 2.3 раза достигнуто при использовании стратегии ли-
нейного поиска, в которой шаг экстраполяции является степенной функцией номера итерации, хотя 
в этом случае на некоторых стадиях работы алгоритма наблюдается коллинеарность последова-
тельных шагов. 

Ключевые слова: молекулярная флуоресценция, трехмерные спектры испускание/возбуждение, 
флуорофоры, каноническое тензорное разложение PARAFAC, линейный поиск. 

 
Recovery of fluorophore groups in dissolved organic matter using the PARAFAC canonical tensor 

decomposition of fluorescence excitation-emission matrix (EEM) is widely used in the study of natural 
waters. However, fitting the PARAFAC model, especially for its validation, is very time consuming. Several 
strategies for accelerating the PARAFAC fitting to the EEM of sea waters were considered. It was shown 
that strategies with optimization of a large set of hyperparameters do not result in significant acceleration 
due to high time costs for this operation. It was proposed to perform optimization for one variable once for 
several iterations of the algorithm. This approach made it possible to achieve acceleration of calculations 
using line search strategy. The maximum acceleration by 2.3 times was achieved for the line search strategy 
using the extrapolation step in a power function of the iteration number, although in this case, sequential 
steps are collinear at some stages of the algorithm.  

Keywords: molecular fluorescence, fluorescence excitation–emission matrix, canonical tensor decom-
position PARAFAC, line search. 

 
Введение. В спектре флуоресценции растворенного органического вещества (РОВ) в природных 

водах нельзя выделить полосы индивидуальных соединений из-за их исключительно сложного соста-
ва, поэтому принято рассматривать группы флуорофоров РОВ — условные соединения, которым 
приписывают определенные оптические характеристики, связанные с происхождением и трансфор-
мацией органического вещества в водах [1]. Для повышения возможностей по характеризации от-
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дельных флуорофоров при оптическом изучении природных вод широко применяется флуоресцент-
ный метод с регистрацией трехмерных спектров испускания/возбуждения [2]. Простейшим алгорит-
мом обработки трехмодальных данных является их развертывание в обычную матрицу, однако име-
ется неоднозначность развертывания и, самое главное, теряется связь между соседними точками [3]. 
Поэтому в последнее время широкое развитие получил алгоритм канонического тензорного разложе-
ния, основанный на параллельном факторном анализе (PARAFAC), который позволяет обрабатывать 
трехмерные спектры флуоресценции с сохранением их первоначальной структуры [4] и получать 
данные об индивидуальных соединениях или классах близких по оптическим свойствам веществ [5]. 
Несомненные достоинства канонического тензорного разложения — единственность решения (хотя 
оно требует значительных расчетных ресурсов для больших наборов данных), соответствие физиче-
ской модели спектров молекулярной флуоресценции [6], выделение спектров возбуждения и испус-
кания отдельных флуорофоров, а также вкладов отдельных флуорофоров без использования допол-
нительной априорной информации. Сложным является выбор количества компонент в каноническом 
тензорном разложении [7]: хотя единственное решение существует для любого количества компо-
нент, не у каждого из них есть физический смысл. Распространен анализ делением на половины 
(split-half analysis) [8], который заключается в сравнении разложений двух половин набора данных. 
Для анализа спектров флуоресценции нами предложен вариант статистического рассмотрения ре-
зультатов многократного разложения на половины исходного набора — метод “случайного” деления 
на половины [9]. Количество поднаборов из двух половин из n образцов Сn

n /2 растет быстрее, чем 2n/2, 
и велико даже для небольших n. Требуемое время расчетов возрастает многократно, даже если вы-
борку для статистической оценки качества модели сделать небольшой долей от этого числа [9]. Со-
ответственно, необходимо разрабатывать алгоритмы для ускорения расчетов PARAFAC. В данной 
работе рассмотрено применение алгоритма акселерации — линейного поиска. 

Теория. На примере трехмерного тензора X, собранного из спектров возбуждения/испускания 
флуоресценции, задачу канонического тензорного разложения [10] можно представить как 

 
2

2

, , , , ,
, , , ,

min
R

i r j r k r i j k
i j k r

A B C X
    
 

  
A B C

A B C X , 

где   — произведение Хатри—Рао, или поколоночное произведение Кронекера. 
Если первое измерение тензора соответствует длинам волн испускания, второе — длинам волн 

возбуждения флуоресценции, третье — образцам, то столбцы матрицы A содержат величины, про-
порциональные спектрам испускания различных флуорофоров, матрицы B — спектрам их возбужде-
ния, а матрицы C — их вкладам в спектр каждого образца. Это выполняется при условии, если пара-
метр R (количество компонентов) правильно выбран для данного тензора X [5]. Назначить конкрет-
ные единицы измерения значениям матриц без наложения дополнительных ограничений на решение 
не позволяет неопределенность шкалы, поскольку из имеющегося решения всегда можно сделать 
другое решение с такой же нормой невязки путем умножения его на комбинацию констант: 

     , , , , , , , , ,i r j r k r r i r r j r r k r i r j r k r
r r r

A B C A B C A B C         , если 1 r r r r     . 

Модель также обладает неопределенностью перестановки: если столбцы каждой из трех матриц 
поменять местами одинаковым образом, получится еще одно решение с такой же нормой невязки. 
Универсального решения этой задачи в замкнутой форме не существует, поэтому для его поиска, как 
правило, применяют покоординатный спуск (alternating least squares), решая подзадачи для каждой 
матрицы A, B, C отдельно, фиксируя две другие матрицы. У этих подзадач существуют решение, вы-
ражаемое в явном виде через псевдообратные матрицы [11], и критерии значимости параметров и 
адекватности модели [12]. В целом, для решения задачи необходимо выполнять следующие шаги до 
достижения сходимости: 

 1 1i i i


  A X C B , 

 1 1i i i


  B X A C , 

 1 1i i i


  C X B A , 

где A+ — псевдообратная к матрице A. 
По сравнению с градиентными и Ньютон-подобными подходами, где происходит оптимизация 

всех параметров сразу, покоординатный спуск требует меньше оперативной памяти [13]. В некото-
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рых случаях применение регуляризации совместно с линейным поиском может улучшить результаты 
разложения [14]. Метод Левенберга—Маркуардта может приводить к локальному минимуму в отли-
чие от покоординатного спуска с линейным поиском [15]. 

Во многих случаях сходимость покоординатного спуска затруднена из-за малого размера шага 
в одном направлении [16]. Этим можно воспользоваться, выполняя экстраполирующие шаги каждый 
раз после обычных шагов алгоритма:  

 1 1i i i


  A X C B , 

 1 1i i i


  B X A C , 

 1 1i i i


  C X B A , 

 1 1i i A i i    A A A A , 

 1 1i i B i i    B B B B , 

 1 1i i C i i    C C C C . 

Если выбор коэффициентов экстраполяции A, B, C занимает меньше времени, чем расчет про-
изведений Хатри—Рао и матриц, псевдообратных к ним, то использование экстраполяции позволяет 
снизить время вычисления разложения. 

Особенно заметными оказываются проблемы, связанные с медленной сходимостью, когда один 
или несколько компонентов канонического тензорного разложения коллинеарны [15]. В этом случае 
до тех пор, пока шаг вычисления псевдообратных матриц может дать полезное направление, линей-
ная экстраполяция дает улучшение невязки [17]. 

Набор данных и методы. Использован набор спектров флуоресценции морских вод, собранных 
во время 63 рейса (2015 г.) исследовательского судна “Академик Мстислав Келдыш” [9], состоящий 
из 30 образцов по 58 длинам волн возбуждения и 391 длине волны испускания. Программная реали-
зация алгоритма линейного поиска выполнена на языке программирования R с использованием паке-
тов albatross [9] версии 0.3-5 и multiway [18] версии 1.0-6. Решение задачи канонического тензорного 
разложения останавливали при относительном изменении нормы невязки 10–8. Перед выполнением 
расчетов зону, включающую сигнал рассеяния, из спектров удалили и интерполировали с использо-
ванием алгоритма LOESS [19]. 

Рассмотриваем три стратегии линейного поиска: полную, одномерную и степенную. Полная 
стратегия линейного поиска заключается в минимизации функции от переменных A, B, C, соответ-
ствующих шагам экстраполяции по измерениям исходного тензора: 

    
2

, , , , , , , ,
, , , ,
min Δ Δ Δ

A B C
i j k i r A i r j r B j r k r C k r

i j k r
X A A B B C C

  

        
 

  . 

Функцию минимизировали с помощью алгоритма L-BFGS-B [20] с начальными значениями 0.2  
и ограничениями в [0; 1000] для всех трех переменных. Итерацию пропускали, если не удавалось 
снизить функцию потерь по сравнению с шагом без экстраполяции. 

Одномерная стратегия линейного поиска заключается в минимизации функции от одной пере-
менной, соответствующей шагу экстраполяции, общему для всех трех измерений исходного тензора: 

    
2

, , , , , , , ,
, ,

min Δ Δ Δi j k i r i r j r j r k r k r
i j k r

X A A B B C C


        
 

  . 

Функцию минимизировали с помощью безградиентного метода одномерной оптимизации [21] 
с ограничениями в [0; 1000]. 

Степенная стратегия линейного поиска [22] заключается в том, чтобы делать шаг экстраполяции, 
равный степенной функции от номера итерации n: 

1/ pn  . 

По умолчанию p = 3. Каждый раз, когда экстраполяция не приводит к снижению невязки, шаг не ис-
пользуют, а перед следующей попыткой параметр p увеличивают на 1. 

Расчет модели стандартным алгоритмом, а также с выбранными стратегиями линейного поиска 
повторяли 512 раз со случайными равномерно распределенными начальными значениями параметров 
для получения статистической оценки эффективности алгоритмов ускорения расчета модели. 



ПРИМЕНЕНИЕ ЛИНЕЙНОГО ПОИСКА ДЛЯ РАСЧЕТА 
 

93

Результаты и их обсуждение. Использование полной стратегии показало значительное сниже-
ние количества итераций, требуемых для решения задачи канонического тензорного разложения, од-
нако суммарное время на ее решение выросло из-за ресурсоемкой операции по определению опти-
мальной длины шага: вычисление произведений Кронекера и псевдообратных матриц в стандартном 
алгоритме происходит быстрее. По умолчанию алгоритм L-BFGS-B останавливается, если относи-
тельное изменение функции потерь 107, где  — машинная точность. Только снижение критерия 
остановки до 1012 и использование оптимизации один раз на 10 стандартных итераций алгоритма 
обеспечивало достижение паритета по времени расчета модели. 

Аналогично полной стратегии оптимизировано использование одномерного линейного поиска: 
оценку шага проводили только каждые четыре итерации, а точность решения  ослаблена с 

4(  / 3)      до 8(  / 3)     . Это позволило в два раза превзойти по времени стандартный 

вариант алгоритма без линейного поиска, не снижая точности конечного решения. 
Степенная стратегия линейного поиска сама по себе снижает общее время вычислений, а также 

позволяет достигать существенного ускорения в 2.3 раза при достижении сходимости с необходимой 
точностью, если выполнять ее каждые две итерации. На рис. 1 показаны времена, затрачиваемые на 
решение задачи канонического тензорного разложения с использованием рассмотренных стратегий 
линейного поиска. 

 

 
 

Рис. 1. Время решения задачи канонического тензорного разложения: “Нет” — без линейного поиска; 
A,B,C |10 — полная  стратегия  раз в 10 итераций;  |4 — одномерная  стратегия  раз  в 4 итерации; 
n1/p|2 — степенной  шаг   раз  в  две  итерации;   точка — медиана,  прямоугольник — область  между  

 25 и 75 перцентилями,  штриховая линия — размах 
 
Многомерная оптимизация даже при значительном пропуске дорогостоящих итераций может 

замедлить решение задачи, хотя в случае большого числа запусков можно говорить о небольшом 
уменьшении общего времени расчетов; одномерная оптимизация в большинстве случаев обеспечива-
ет значимое преимущество по сравнению со стандартным алгоритмом без линейного поиска, степен-
ная стратегия консистентно выигрывает по времени расчетов у исходного варианта без ускорения. 

На рис. 2 показаны совместные распределения процессорного времени, затраченного на вычис-
ление разложений, и количеств итераций. Видно, что использование методов оптимизации заметно 
поднимает стоимость одной итерации по сравнению с методом без линейного поиска, что приходится 
компенсировать пропуском итераций. Пропуская слишком много итераций или ослабляя критерии 
остановки оптимизатора, получаем размеры шагов экстраполяции недостаточного качества, которые 
не приведут к решению быстрее, чем неускоренный метод. В отличие от стратегий, использующих 
оптимизацию, степенной метод практически не увеличивает вычислительную стоимость итераций, 
что позволяет применять его чаще, даже если предложенные шаги не всегда оптимальны. 
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Рис. 2.  Распределения  процессорного  времени  и  количества  итераций  при  решении  задачи  
канонического тензорного разложения с использованием различных стратегий линейного поиска: 

1 — “Нет” (), 2 — A,B,C|10 (), 3 — |4 (), 4 — n1/p|2 () 
 

На рис. 3 на примере индивидуальных траекторий показаны косинусы углов между последова-
тельными шагами с использованием различных стратегий линейного поиска: все параметры канони-
ческого разложения представлены в виде одного вектора x, после чего вычислен косинус: 
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Метод без линейного поиска практически сразу начинает предлагать шаги в одном и том же 
направлении, тогда как одномерная стратегия и степенной метод позволяют полностью использовать 
текущее направление и начать следующий шаг в другом направлении. (Метод без ускорения требует 
гораздо больше шагов, чем другие методы, поэтому график не продолжается дальше 30 итераций.) 
Ближе к концу траектории степенная стратегия перестает улучшать невязку и приводит к нескольким 
коллинеарным шагам. 

 
Рис. 3. Косинус угла между соседними шагами как функция от номера итерации  
при  использовании  различных   алгоритмов   линейного  поиска:  A,B,C  (1),   

n1/p|2 (2) и “Hет” (3) 
 
На рис. 4 представлены результаты анализа спектров флуоресценции. Для выбора количества 

компонент набор данных перемешивали, разделяли на половины (64 раза) и сравнивали результаты 
разложения двух половин по величине среднего косинуса угла между соответствующими друг другу 
столбцами матриц A и B. Хотя многие пары четырехкомпонентных разложений после сравнения ока-
зываются ниже порога в 0.95 [23], медиана для среднего косинуса угла между соответствующими 
компонентами выше данного порога, что не достигается для пятикомпонентных моделей. Это позво-
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ляет считать разложение на четыре компоненты правильным решением для данного набора данных. 
Три компоненты коррелируют друг с другом и с индексом гумификации образца [24]. Компонента, 
связанная с флуоресценцией триптофана, ожидаемо демонстрирует отрицательную корреляцию с ин-
дексом гумификации, поскольку связана с автохтонным органическим веществом [25]. 

 

 
 

Рис. 4.  Валидация   канонического   тензорного   разложения   методом   случайного   деления  
на половины (а) и спектры групп I—IV флуорофоров на основании PARAFAC-разложения (б):  

возбуждение (1) и испускание (2) 
 
Заключение. Полная, одномерная и степенная стратегии линейного поиска применены к задаче 

канонического тензорного разложения набора спектров молекулярной флуоресценции (испуска-
ния/возбуждения) морских вод с установленным ранее числом флуорофоров, равным четырем. Уско-
рение расчетов обеспечивают одномерная и степенная стратегии при ослаблении критерия сходимо-
сти и выборе оптимального шага не на каждой итерации. Оптимальным представляется использова-
ние степенной стратегии с начальной степенью экстраполяции 1/3, что позволяет добиться макси-
мального ускорения работы алгоритма для канонического тензорного разложения PARAFAC, прово-
дить разложение больших наборов данных (несколько сотен спектров) и увеличить количество раз-
биений при проведении статистического рассмотрения качества полученной модели для повышения 
надежности выбора числа компонент (флуорофоров). 

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследова-
ний (проект № 20-33-90280). 
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