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A rapid identification method for flue-cured tobacco quality was proposed based on Raman spectrosco-
py. Considering the critical quality factors of flue-cured tobacco-like 0il content, softness, and glossiness,
four statistical methods, random forest, K-nearest neighbor, logistic regression, and partial least squares,
can effectively improve the accuracy of quality identification. We randomly collected 149 flue-cured tobacco
samples from multiple producing areas in China. After Raman spectroscopy analysis, Savitzky—Golay convo-
lution smoothing and multi-scatter correction were done. The functional groups were analyzed to select
characteristic peaks as features for discriminant analysis. The results show that the Raman spectroscopic in-
formation can distinguish the quality of flue-cured tobacco with an accuracy greater than 95%, whereas the
partial least-squares approach delivers an accuracy of 100%. We conclude that Raman spectroscopy can be
considered a vital avenue for identifying the quality of flue-cured tobacco.
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IIpeonosicern memod Ovicmpou udenmuguxkayuu Kavecmea mabaxa ObIMOBOU CYWKU, OCHOBAHHUIL
HA CReKmpOCKonuu KomMourayuonno2o paccesinus ceema (KP). C yuemom kpumuueckux ¢pakmopos kaue-
cmea (codepacanus mabauHo2o MACIA, MASKOCMU U 2TIAHYESUMOCMU) Yembipe CIamucmuyeckux mMemood
— cayuaiinoeo neca, k-onudcatiuux coceoeltl, 102UCIUYECKOU peepecCull U YACMUYHbIX HAUMEHbUUUX K8aO-
pamog — Mo2ym 3¢hhexmusHo noevbiCums MOYHOCHb onpedeneHus kavecmea. I[locne ananuza 149 odpasyos
mabaxa uz Heckonbkux paionoe Kumas memooom KP-cnekmpockonuu 6binOIHEHbl C2IANCUBAHUE CEEPMKU
Casuykoeo—I ones u koppexyus MHOICeCMBEHH020 pacceanus. PYHKYUOHATbHbIE SPYNNbl NPOAHATUSUPOBA-
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Hbl 015 86160PA XAPAKMEPHBIX NUKOE 8 Kauecmee NPUSHAKO8 Ol OUCKpUMUHAnmHo20 ananusa. Iloxasano,
umo KP-cnexmpockonus no3gosisem onpeoeiums Ka4ecmeo mabaxa OblMOGoU CYUKU ¢ moyHocmbvio >95%,
6 Mo 6pems KaK Memoo YACMUYHLIX HAUMEHbWUX Keaopamoe obecneyusaem mounocms 100%.
KP-cnexmpockonus A615emcs 8asiCHbIM MemoOOM onpeoenenus Kavecmsa madaxa ObiMOBOU CYUIKU.

Knrouesnle cnosa: cnekmpockonus KOMOUHAYUOHHO20 PACCESHUsL C8emd, Ka4ecmeo mabaka ObLMOgol
CYUIKU, OUCKDUMUHAHMHbIL AHATU3.

Introduction. The flue-cured tobacco has substantial economic value as one of the essential economic
crops in China. In practice, it is crucial to classify and rank the quality of flue-cured tobacco. The quality of
flue-cured tobacco is affected by many factors, such as production area, climate, and processing technology
[1, 2]. The appearance and the internal qualities of flue-cured tobacco are closely related. The appearance
quality of flue-cured tobacco is often indicated by internal quality [3, 4]. Specifically, the appearance quali-
ties of flue-cured tobacco related to oil content, softness, and glossiness are intricately linked with maturity,
physicochemical properties, and gas quality [5]. Usually, professional personnel conduct the appearance
grading for the oil content, softness, and glossiness with a visual, tactile, aural, and olfactory inspection.
Such classifications for flue-cured tobacco based on empirical perceptions lack objective authenticity and are
susceptible to external factors. Furthermore, the implementation of this procedure is time consuming and
cost intensive for industrialization.

Raman spectroscopy refers to scattering, in which a substance vibrates after being irradiated by light.
Raman spectroscopy can reveal information about the structure and content of the substance under inspec-
tion [6]. Raman spectroscopy is widely used in agriculture and animal husbandry [7-9], food [10, 11], chem-
icals [12, 13], medicine [14, 15], and other industries owing to its wide detection range, high sensitivity, and
nondestructive testing of samples.

Recently, spectral technology combined with stoichiometry has been applied to identify flue-cured to-
bacco varieties and grades. For example, Wang et al. [16] realized the rapid discrimination of flue-cured to-
bacco aroma type by using visible-near-infrared spectroscopy combined with the principal component analy-
sis and the partial least-squares discriminant analysis; the discrimination accuracy reached 100%. Bin et al. [17]
established an automatic identification method for tobacco grading based on near-infrared spectroscopy and
the extreme learning machine algorithm. It was found that the extreme learning machine algorithm had the
best prediction performance, achieving an overall accuracy of sample classification greater than 90%. Also,
Marcelo et al. [18] analyzed standard tobacco bunches through near-infrared imaging and support vector ma-
chine-discriminant analysis (SVM-DA). Their results showed that the model’s prediction accuracy for to-
bacco types “smoking Virginia” and “air smoking Burley” was 80.4 and 88.1%, respectively. Additionally,
the model’s prediction accuracy for the “smoked Virginia” and “air-smoked Burley” types was 95.9 and
96.5%, respectively. The overall prediction accuracy of tobacco quality was between 61.5 and 100.0%.
Finally, the prediction accuracy for “air-dried white leaves” was between 78.8 and 100.0% [19] established
a nil-CNN model for tobacco leaf area classification with a discrimination accuracy of 95% based on apply-
ing a convolutional neural network to NIR spectral data.

Although there have been many discriminant studies on flue-cured tobacco based on near-infrared spec-
troscopy, this work is aimed at adopting Raman spectroscopy for identifying and classifying flue-cured to-
bacco and thus providing an essential alternative. In this study, Raman spectroscopy combined with stoichi-
ometry was used to effectively identify different grades as per the oil content, softness, and gloss intensity of
flue-cured tobacco.

Materials and methods. A total of 149 tobacco samples were collected from multiple areas such as
Hubei, Henan, Hunan, and others. The main varieties include Yunyan 87, K326, Longjiang 911,
and Hongda. The grade distribution is mainly B2F upper limit, B2F lower limit, C2F upper limit, and C2F
lower limit. More details are shown in Fig. 1. All tobacco samples were collected from 2019 to 2020 and
then redried by China Tobacco Hubei Industry Co., Ltd. to make flue-cured tobacco.

According to the current national flue-cured tobacco grading standards, an officer responsible for grad-
ing scored the oil content, softness, and glossiness of 149 test flue-cured tobacco samples. The total oil con-
tent score was 20 points, the softness score was 18 points, and the glossiness score was 10 points. Based on
scores, flue-cured tobacco was divided into class 1, class 2, and class 3 with respect to oil content, softness,
and glossiness, reflecting the different grades of flue-cured tobacco quality. The specific classification crite-
ria and the distributions are shown in Table 1.
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Fig. 1. Information on different production areas and grades of tobacco.

TABLE 1. Classification Criteria and Distributions of Flue-Cured Tobacco Samples

Class Oil content ' Softness : Glossiness :
Score Sample size Score Sample size | Score Sample size
1 18-20 20 13-18 84 9-10 46
15-17 57 7-12 51 7-8 77
3 1-14 72 1-6 14 1-6 26

Nexus intelligent Fourier transform infrared spectrometer was used in the experiment. This instrument
is equipped with an Nd:YV Oy laser that has a 1064-nm wavelength as the excitation source. The laser power
is 0.3 W. The scanning beam is within the range 1/3000 to 1/100. Each sample is scanned 400 times. The
Raman spectra of various samples are shown in Fig. 2.
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Fig. 2. Original Raman spectra.

Matlab R2016a was used to preprocess the original Raman spectra, the Savizky—Golay (SG) convolu-
tion smoothing, and multivariate scattering correction. The random forest (RF), K-nearest neighbor (KNN),
and logistic regression (LR) algorithms used for discriminant analysis were performed in Python 3.7, and the
partial least-squares (PLS) discrimination analysis was performed in R 4.0.2. Samples for each class were
randomly divided into training and test data sets in a ratio of 7:3, and the value of accuracy was calculated
for the evaluation of discriminations, which is the proportion of the number of correctly discriminated sam-
ples to the total number of samples.

Results and discussion. Raman spectroscopy preprocessing. The spectrum data are often affected by
many factors, such as the stability of the spectrum collection instrument, electrostatic noise, sample shape
background, and light scattering. In Fig. 2, the Raman spectra of flue-cured tobacco of different quality types
have similar trends and peaks, but the signal-to-noise ratio is low. Therefore, it is not easy to analyze their
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characteristics and classification directly. In this study, the SG convolution smoothing on the original flue-
cured tobacco Raman spectrum is implemented to reduce noise interference. The selection of smoothing
window width and polynomial order in SG convolution smoothing have an incredible effect on smoothing
results. For a single sample, for example, smoothing results for different window widths and cubic polyno-
mials are shown in Fig. 3a. Finally, a window width of 31 (W = 31) with the cubic polynomial was selected
to smooth all the raw Raman spectra, and the results after smoothing are shown in Fig. 3b.

The multivariate scattering correction (MSC) can effectively eliminate the light scattering caused by
physical factors such as uneven distribution of samples, different particle sizes, and ambient temperatures.
The multivariate scattering correction can significantly improve the spectral signal-to-noise ratio. This study
establishes the discriminant models by the Raman spectral data processed with multivariate scattering cor-
rection. It is based on using the linear least-squares technique to fit the linear model between a reference
spectrum, which is generally the mean of the data set and other spectra of the data set. A corrected spectrum
is constructed by changing the scale and the offset of the sample spectrum to get as close to the reference
spectrum as possible. The Raman spectrum after processing with multivariate scattering correction for each
class is shown in Fig. 3.
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Fig. 3. Process of smoothing the raw Raman spectra for different window widths.

Extraction and analysis of characteristic wavelengths. We collected 934 spectral data points for each
sample in the Raman spectra. It is challenging to build a model efficiently with these data points. Therefore,
the preprocessing of the spectral data is necessary. Extracting the characteristic wavelengths of the spectra
can significantly reduce the complexity of the original high-dimensional data, speed up the modeling speed,
and increase the robustness of the model.

Raman spectra often contain much information about functional groups at the position of characteristic
peaks, reflecting the chemical composition and chemical content in flue-cured tobacco to a certain extent.
The tobacco leaves of different quality levels have different chemical substances and contents. Therefore,
their corresponding vibrational spectra will also be different [20] and selecting only the specific Raman
characteristic peaks in each category is necessary for dimensionality reduction. The characteristic wave-
lengths selected based on the oil content, softness, and glossiness are shown in Table 2.

There are 16 selected characteristic wavelengths for each category of oil content, softness, and glossi-
ness. The extracted Raman characteristic wavelengths in each category seem to overlap. However, there are
some differences between them in terms of peak shape, intensity, and width. In the oil content spectra, there
are normal peaks at 1599, 2104, 2200, and 2933 cm™!. However, at 2933 cm !, the intensities of the Raman
spectra for the low oil content are stronger than that for the high and medium oil content.

0 1000 2000 3000 4000 0 1000 2000 3000 4000 v, cm!
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TABLE 2. Extracted Characteristic Wavelengths Based on Oil Content, Softness, and Glossiness

Class | Selected wavelengths | No.
Oil content

411,519, 596, 843, 1136, 1290, 1344, 1429, 1599, 2104, 2200, 2763,
2933, 3045, 3242, 3342

426,511, 596, 850, 1159, 1298, 1344, 1429, 1599, 2104, 2200, 2748,
2933, 3045, 3226, 3327

411, 519, 580, 827, 1159, 1290, 1336, 1437, 1599, 2104, 2200, 2756,
2933, 3045, 3203, 3350

411, 426, 511, 519, 580, 596, 827, 843, 850, 1136, 1159, 1290, 1298,

Total 1336, 1344, 1429, 1437, 1599, 2104, 2200, 2748, 2756, 2763, 2933, 31

3045, 3203, 3226, 3242, 3327, 3342, 3350
Softness

411,519, 588, 835, 1128, 1282, 1344, 1437, 1599, 2104, 2200, 2740,
2933, 3045, 3242, 3342

418,519, 580, 850, 1151, 1290, 1336, 1429, 1599, 2104, 2200, 2733,
2933, 3045, 3242, 3330

426, 519, 596, 850, 1151, 1298, 1344, 1429, 1599, 2104, 2193, 2744,
2933, 3045, 3276, 3319

411, 418, 426, 519, 580, 588, 596, 835, 850, 1128, 1151, 1282, 1290,

Total 1298, 1336, 1344, 1429, 1437, 1599, 2104, 2193, 2200, 2733, 2740, 32

2744, 2933, 3045, 3242, 3276, 3319, 3330, 3342
Glossiness

426, 519, 596, 850, 1136, 1290, 1344, 1429, 1599, 2104, 2200, 2756,
2933, 3045, 3242, 3342

426, 519, 596, 835, 1144, 1290, 1336, 1429, 1599, 2104, 2196, 2763,
2933, 3045, 3234, 3319

418,534, 627, 820, 1151, 1290, 1340, 1437, 1599, 2104, 2200, 2748,
2933, 3045, 3203, 3334

418, 426, 519, 534, 596, 627, 820, 835, 850, 1136, 1144, 1151, 1290,

Total 1336, 1340, 1344, 1429, 1437, 1599, 2104, 2196, 2200, 2748, 2756, 33

2763, 2933, 3045, 3203, 3234, 3242, 3319, 3334, 3342

16

16

16

16

16

16

16

16

16

It may be due to more alkanes in low-oil flue-cured tobacco than in high or medium oil content. The
peak at 1599 cm™! is presumed to be from the C=C skeleton vibration of nicotine. The peaks at 2104 and
2200 cm! are generally because of the vibrations of alkynes. The Raman peak at 2933 cm™! is due to the
C-H vibrations of alkanes, most probably the straight-chain alkanes such as n-eicosane and n-tetracosane.
All three kinds of flue-cured tobacco containing high, medium, and low oil contain nicotine and straight-
chain alkanes. Nicotine itself has a unique aroma of tobacco at high-temperature decomposition, and it can
produce a variety of tobacco resin fragrances. Consequently, it closely relates to the oil content of flue-cured
tobacco and affects its color, aroma, and taste.

The 16 characteristic peaks at 411, 519, 596, 843, 1136, 1290, 1344, 1429, 1599, 2104, 2200, 2763,
2933, 3045, 3242, and 3342 cm™! wavelengths were extracted from high-oil tobacco leaves. Peaks 411, 519,
and 596 cm ™! are supposed to be from the skeletal stretching vibrations of reducing sugar, 843 cm™' resulting
from C-C vibrations of the volatile component of the benzyl alcohol branch chain, 1136 cm™! originates from
C-C ring vibrations of nicotine. Moreover, peaks at 1344 and 1429 cm™! are assigned to C-C ring vibrations
of pinane and 3045 cm™!' to C=C-H vibrations of cibai trienediol. Finally, the peak occurring at 3242 and
3342 cm ' may be attributed to C-OH vibrations of cibai trienediol or benzyl alcohol. The main components
of flue-cured tobacco oil are nicotine, cipertrienol, pinane, and benzyl alcohol.

Discriminant analysis with Raman spectroscopy. Currently, two main discrimination methods are based
on Raman spectroscopy data. The first discrimination method contains linear methods, such as principal
component analysis (PCA) and PLS. The second discrimination method comprises nonlinear methods such
as KNN and BP neural network. This paper presents the combination of RF, KNN, LR, and PLS discrimina-
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tion analyses to identify the class of oil content, softness, and glossiness of flue-cured tobacco. Selecting the
optimal model provides rapid and accurate identification of flue-cured tobacco quality.

The RF method is an extended model based on decision trees and self-sampling integration. A decision
tree is a tree structure that can manage classification problems. For an input sample, each decision tree is a
classifier. Hence, N trees will have N classifiers. The RF method integrates all classification results; the most
frequent category is output as the final result. During high-dimensional data processing, the model can select
feature subsets randomly, making its training speed faster. For unbalanced data, it can effectively balance er-
rors. However, when the sample data are too noisy, over-fitting can occur [21].

The KNN method finds the sample category by voting on the categories of the K sample points closest
to the sample in the feature space. Generally, the category with the most votes is regarded as the final cate-
gory of the sample. The K value is usually determined by cross-validation as a critical factor of prediction
accuracy. The model is simple to use, fast to train, and highly tolerant of outliers. However, when the sample
distribution is unbalanced, the model prediction error is relatively large [22].

LR is a machine-learning algorithm mainly used to solve two classification problems, but its extension
can be used to solve multiple classification problems. It uses the logistic function to measure the relationship
between the predicted label and multiple feature variables and the maximum likelihood method to estimate
the model’s parameters [23]. It does not need to scale the input features or require too much calculation, so
the model is very efficient. However, the data need to be linearly separable, and for nonlinear features, some
transformations of the data are required.

PLS discrimination analysis is a linear discriminant method based on partial least-squares regression. It
combines the advantages of principal component analysis and canonical correlation analysis. PLS discrimi-
nation analysis eliminates redundant information in the matrix by decomposing the spectrum matrix and the
concentration matrix, thereby obtaining variables with solid explanations. It can also process high-
dimensional data [24] and is suitable for situations where the correlation between variables is strong and the
noise is considerable. It has good robustness and solid predictive ability.

Discrimination results and discussion. As mentioned above, samples for each class are randomly divid-
ed into training and test sets with a ratio of 7:3. Therefore, different samples in the training and test sets
cause slight differences in the discrimination results. In order to ensure the stability of the model, the exper-
iment is repeated five times for each model, and the discriminant accuracy obtained in each experiment is
recorded separately. Then, the average is used to measure the final discrimination result of the model.

As shown in Table 3, when Raman spectral data are used with KNN, RF, LR, and PLS discrimination
analysis to identify the class of tobacco oil content, the discriminant accuracy of oil obtained by SG prepro-
cessing is about 40-50%. However, with SG & MSC preprocessing, the overall accuracy of four models on
the training and test sets is greater than 95%. Moreover, the accuracy of each class is more than 90%. How-
ever, the discrimination accuracy of class 1 samples is slightly lower than that of other samples in the train-
ing set and the test set, mainly because of the small number of class 1 tobacco samples, which only account-
ed for 13.4% of the total number of samples. After comparing the classification results of the above four
models, it can be found that Raman spectra data with PLS discrimination analysis gives the best results for
oil content class identification, reaching 100%.

From the discrimination results of the softness in Table 3, the Raman spectral data with four models can
identify the softness of flue-cured tobacco. The discriminant accuracy of softness obtained by SG prepro-
cessing is about 50-60%. However, for SG & MSC preprocessing, the overall accuracy for the training and
the test sets is greater than 95%. The accuracy of most of the classes remains above 85%. The accuracy of
class 3 in the test set is only 55% in the logistic regression model. It is because there are only 4 samples in
the test set of class 3. Hence, it has little influence on the overall accuracy. It is also evident that partial least-
squares discrimination analysis with the Raman spectra data yields an accuracy of 100% for softness identi-
fication.

Table 3 shows the classification results for the glossiness of flue-cured tobacco with the Raman spectra
data and four models. The discriminant accuracy for glossiness obtained by SG preprocessing is about
45-55%. However, with SG & MSC preprocessing, training accuracy goes up to 100%. For the test set, the
overall accuracy of the logistic model reached 99%, and the remaining models reached 100%. Therefore, the
Raman spectroscopy combined with these four types of models can effectively distinguish the class of gloss-
iness of flue-cured tobacco.
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TABLE 3. Discrimination Results of Oil Content, Softness, and Glossiness

Training set Test set
Data . Model Three Three
preprocessing Class 1|Class 2 |Class 3 Class 1|Class 2 |Class 3
overall overall

Oil content
RF 1.00 | 1.00 | 1.00 1.00 0.90 | 1.00 | 1.00 0.99
KNN 0.96 | 1.00 | 1.00 0.99 0.97 | 1.00 | 1.00 1.00
5G & MSC LR 0.99 | 1.00 | 1.00 1.00 0.90 | 0.99 | 1.00 0.98
PLS 1.00 | 1.00 | 1.00 1.00 1.00 | 1.00 | 1.00 1.00
RF 0.87 | 0.97 | 0.98 0.96 0.03 | 043 | 0.52 0.42
e KNN 0.37 | 0.63 | 0.69 0.63 0.03 | 0.36 | 0.52 0.39
LR 0.00 | 0.12 | 0.95 0.50 0.00 | 0.08 | 0.87 0.46
PLS 0.00 | 0.19 | 0.88 0.50 0.00 | 0.14 | 0.87 0.47

Softness

RF 1.00 | 1.00 | 1.00 1.00 0.98 | 1.00 | 1.00 0.99
SG & MSC KNN 1.00 | 1.00 | 1.00 1.00 1.00 | 1.00 | 0.95 1.00
LR 1.00 | 1.00 | 0.88 0.99 1.00 | 0.98 | 0.55 0.95
PLS 1.00 | 1.00 | 1.00 1.00 1.00 | 1.00 | 1.00 1.00
RF 1.00 | 0.98 | 0.90 0.97 0.76 | 0.29 | 0.05 0.53
KNN 093 | 0.54 | 0.22 0.73 0.89 | 0.32 | 0.00 0.60
SG LR 0.90 | 0.43 | 0.00 0.65 0.84 | 0.30 | 0.00 0.57
PLS 0.90 | 0.24 | 0.00 0.59 0.90 | 0.23 | 0.00 0.59

Glossiness
RF 1.00 | 1.00 | 1.00 1.00 1.00 | 1.00 | 1.00 1.00
SG & MSC KNN 1.00 | 1.00 | 1.00 1.00 1.00 | 1.00 | 1.00 1.00
LR 1.00 | 1.00 | 1.00 1.00 1.00 | 0.98 | 1.00 0.99
PLS 1.00 | 1.00 | 1.00 1.00 1.00 | 1.00 | 1.00 1.00
RF 093 | 099 | 091 0.95 021 | 0.71 | 0.20 0.46
KNN 0.85 | 0.86 | 0.51 0.80 0.21 | 0.81 | 0.07 0.49
SG LR 0.21 | 095 | 0.17 0.59 0.03 | 0.85 | 0.05 0.45
PLS 0.02 | 0.99 | 0.09 0.53 0.00 | 0.96 | 0.03 0.52

In conclusion, the PLS discrimination method performs best among the other four models when using
the Raman spectroscopy to discriminate the class of oil content, softness, and glossiness of flue-cured tobac-
co. Therefore, compared with manual classification, the Raman spectroscopy combined with partial least-
squares discrimination analysis can accurately identify flue-cured tobacco quality.

Conclusions. In this study, 149 flue-cured tobacco samples were collected from different regions in
China, in which oil content, softness, and glossiness were taken as the critical quality factors. Based on the
Raman spectroscopy, a rapid quality identification method for flue-cured tobacco quality was established.
First, through the analysis and comparison, the raw Raman spectra of all samples were very similar, suggest-
ing the similarity of the major chemical components of flue-cured tobacco. Owing to the lousy signal-to-
noise ratio, it was difficult to directly analyze its characteristics and identification features. Second, the
Savitzky—Golay convolution smoothing and multivariate scattering correction were applied to reduce noise.

Moreover, to reduce the complexity of the high-dimensional data and speed up the algorithm, we select-
ed the relevant Raman characteristic peaks of the samples for each class as the characteristic features through
the analysis of the functional groups. We found differences in peak shape, intensity, and width at the extract-
ed Raman characteristic wavelengths. For example, in the spectrum based on oil content, the Raman spec-
trum intensity at 2933 cm™! for low oil content is more substantial than that for high and medium oil content.
Third, four statistical approaches, random forest, K-nearest neighbor, logistic regression, and partial least
squares, were adopted for discriminant analysis. The results showed that the Raman spectroscopic infor-
mation could distinguish the quality of flue-cured tobacco very well, with the overall accuracy of the four
discrimination methods reaching more than 95%. However, owing to the unbalanced distribution of samples,
the accuracy of some classes was slightly lower. From the perspective of accuracy for classification, it is
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recommended to use the partial least-squares approach with the Raman spectral data to identify the quality of
flue-cured tobacco.
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