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По эмиссионным спектрам низкого разрешения лазерно-искровой плазмы эталонных образцов 
низколегированных сталей осуществлена калибровка концентраций C, Mn, Si, Cr, Ni и Cu. На основе 
предварительной обработки данных в виде нормировки спектров на длине волны эмиссионной линии 
Fe II 252.0609 нм и вычета базовой линии, а также выбора спектральных переменных оригинальным 
методом поиска комбинации движущихся окон для метода частичных наименьших квадратов по-
строены многопараметрические калибровочные модели для указанных элементов со следующими 
характеристиками: для C (в диапазоне концентраций до 0.7 %) среднеквадратичное и остаточное 
отклонения в проверочной выборке составили 0.04 % и 4.7, Mn (до 1.9 %) 0.02 % и 24.8, Si (до 0.9 %) 
0.01 % и 12.9, Cr (до 1 %) 0.01 % и 21.8, Ni (до 0.7 %) 0.007 % и 23.3, Cu (до 0.5 %) 0.006 % и 23.2 со-
ответственно. Модели являются количественными (остаточное отклонение >3) для шести рас-
сматриваемых элементов, включая C. 

Ключевые слова: лазерно-искровая эмиссионная спектроскопия, метод частичных наименьших 
квадратов, выбор спектральных переменных, низколегированные стали. 
 

Calibration of concentrations of C, Mn, Si, Cr, Ni, and Cu by the low-resolution laser induced break-
down spectroscopy is made in reference to low-alloy steels etalons. Data preprocessing in the form of spec-
trum normalization at Fe II 252.0609 nm emission line wavelength and baseline correction, as well as spec-
tral variables selection with an original method of searching combination moving window for the partial 
least squares method made it possible to build multivariate calibration models for all considered elements 
with the following characteristics: for C (in the concentration range up to 0.7%) the value of root-mean-
square error and residual predictive deviation is 0.04 % and 4.7, Mn (up to 1.9%) – 0.02 % and 24.8, Si  
(up to 0.9%) – 0.01 % and 12.9, Cr (up to 1%) – 0.01 % and 21.8, Ni (up to 0.7%)– 0.007 % and 23.3, Cu 
(up to 0.5%) – 0.006 % and 23.2, respectively. Models are quantitative (residual predictive deviation > 3) 
for all six elements considered, including carbon.  

Keywords: laser induced breakdown spectroscopy, partial least squares, spectral variable selection, 
low-alloy steels. 

 
Введение. Сталь и другие сплавы на основе железа являются базовыми материалами, использу-

емыми в строительстве различных конструкций, автомобилей, кораблей, машин, инструментов и бы-
товой техники. Особые ее свойства — ударная вязкость, прочность, твердость, коррозионная стой-
кость — определяются в основном технологическими примесями и легирующими добавками, кото-
рые можно разделить на две категории: неметаллические (углерод, азот, фосфор, сера) и металличе-
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ские (марганец, хром, никель). Марганец является эффективным раскислителем и десульфуризато-
ром и может улучшить закалочную способность и горячую обрабатываемость стали. Хром позволяет 
значительно повысить прочность, стойкость к окислению, твердость, коррозионную износостойкость 
стали. Поэтому для классификации или сортировки важно точно определить концентрацию неоснов-
ных элементов в стали. Для сталелитейной промышленности актуальны технологический анализ рас-
плавленных сталей, анализ стальных материалов в полевых условиях, сортировка стальных заготовок 
или отходов в процессе производства. Для определения состава сталей обычно применяют методы 
масс-спектрометрии [1], оптической эмиссионной спектроскопии с использованием искрового разря-
да [2], индуктивно-связанной плазмы [3] или тлеющего разряда [4], лазерно-искровой эмиссионной 
спектроскопии (LIBS) [5].  

Метод LIBS на сегодняшний день считается полуколичественным [6], но в то же время имеет ряд 
преимуществ: возможность экспрессного анализа материалов на открытом воздухе, относительно 
низкая стоимость и отсутствие необходимости предварительной обработки образцов. Такие достоин-
ства могут стать определяющими, особенно в управлении промышленными процессами, где приме-
нение других аналитических методов связано с серьезными трудностями. Недостатки LIBS-анализа 
сталей и их сплавов, связанные с нестационарностью лазерно-искровой плазмы, ведущей к неста-
бильности перекрывающихся эмиссионных линий железа с линиями исследуемых примесей и доба-
вок, и флуктуациями интенсивности линий и непрерывного излучения, не позволяют разработать ка-
либровочные модели высокого качества с помощью методов классической спектроскопии с низким 
разрешением в компактных устройствах. В этом случае большим потенциалом обладают многопара-
метрические модели, учитывающие большое количество спектральных переменных. Поэтому разра-
ботка более совершенных многопараметрических методов обработки эмиссионных спектров имеет 
первостепенное значение для применения LIBS в сортировке и анализе сталей.  

Эксперимент. Исследованы 65 эталонных образцов стали: УГ0д-УГ7д, УГ9д, УГ17е-УГ21е, 
УГ75, УГ79, УГ82, УГ83, УГ84, УГ86, УГ88-УГ97 производства ИСО, Россия; 51/1-58/1, 63/2-65/2, 
72-76, 101-103, 110-125 производства IMZ, Польша, легированных примесями следующих химиче-
ских элементов: C (в диапазоне не более 0.8 %), Mn (2.0 %), Si (1.2 %), Cr (1.0 %), Ni (0.8 %) и Cu (0.5 %). 
Для возбуждения лазерно-эрозионной плазмы использован двухканальный YAG:Nd-лазер [7]. Для 
каждого образца с помощью малогабаритного спектрометра FireFly 4000 зарегистрированы по 50 
эмиссионных спектров в диапазоне 172—507 нм с разрешением 0.4 нм и шагом 0.1 нм в пяти точках 
на поверхности. Экспериментальная установка и условия измерений описаны в [8].   

Результаты и их обсуждение. В предыдущей работе [9] для калибровки концентрации примесей 
в сталях был использован широкополосный метод частичных наименьших квадратов (PLS) [10] — 
билинейный статистический метод, который одновременно проецирует матрицу спектров и столбец 
концентрации в новое маломерное пространство латентных переменных, характеризуемое условием 
максимальности корреляции проекций спектров и проекции концентрации в этом пространстве. Ме-
тод дает хорошие результаты в случае, когда матрица спектров мультиколлинеарна и количество об-
разцов значительно меньше числа спектральных переменных. Для проведения калибровки матрица 
спектров и вектор концентрации должны быть разделены на обучающий и проверочный наборы дан-
ных. В [9] для этой цели был применен алгоритм Кеннарда—Стоуна [11]. Образец с концентрацией, 
наиболее близкой к середине рассматриваемого диапазона, выбирается первым в набор обучающих 
данных. Остальными образцами обучающего набора являются наиболее удаленные по концентрации 
от уже выбранных. Количество образцов в обучающей и проверочной выборках должно примерно 
соответствовать соотношению 3:2 [12]. Одним из критериев качества многопараметрических моделей 
является среднеквадратичное отклонение калибровки RMSEP в образцах проверочной выборки. По-
строенные калибровочные модели по всему измеренному диапазону длин волн характеризуются сле-
дующими значениями RMSEP: 0.06 % для С, 0.12 % для Mn, 0.09 % для Si, 0.13 % для Cr, 0.07 % для 
Ni и 0.08 % для Cu, сравнение с которыми позволит определить целесообразность применения мето-
дов предобработки спектров, формирования выборок образцов и выбора спектральных переменных. 

В данной работе до построения калибровочных моделей найдены и исключены выбросы в серии 
последовательных спектров, измеренных в каждой из пяти точек на поверхности образца. Критерий 
выброса — превышение суммарной интенсивностью спектра 10 % отклонения от средней величины 
по всем используемым для построения модели лазерным импульсам. После выявления выбросов 
проведено усреднение оставшихся спектров по всем пяти точкам. В отличие от моделей [8, 9] перед 
нормировкой спектров на интенсивность выбранной эмиссионной линии Fe II 252.0609 нм в качестве 
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предварительной обработки данных применена коррекция базовой линии. Среди большого количе-
ства разработанных методов коррекции базовой линии спектров [13] чаще всего используется один 
из видов полиномиальной аппроксимации. Недостатками таких методов являются интерактивность и 
невысокая точность в условиях низкого отношения сигнал/шум.  

Используемый адаптивный метод наименьших квадратов со штрафом и итеративным пересчетом 
весов (airPLS) [14] не требует какого-либо интерактивного вмешательства и предварительного обна-
ружения особенностей в спектре. Целевой функцией airPLS является  
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где первое слагаемое — сумма взвешенных коэффициентами wi разностей экспериментальных значе-
ний спектральных переменных xi и отсчетов базовой линии zi, второе слагаемое характеризует глад-
кость базовой линии, m — количество спектральных переменных. Единственным задаваемым коэф-
фициентом  = 2 · 107 определяется компромисс между точностью аппроксимации и гладкостью ба-
зовой линии. В начале работы алгоритма коэффициенты wi принимаются равными единице. Каждая 
последующая итерация нахождения базовой линии использует разницу между значениями спек-
тральных переменных и отсчетами базовой линии, определенными на предыдущем этапе. Если раз-
ница больше нуля, то соответствующие коэффициенты обнуляются, если меньше, то  
wi

t = exp[t(xi – zi
t–1)/|dt|], где t — номер итерации, вектор d состоит из отрицательных элементов разно-

сти векторов x и zt–1. Реализация алгоритма airPLS доступна в виде программного обеспечения с от-
крытым исходным кодом [15]. Версия для пакета MATLAB реализована на основе разреженных мат-
риц и требует исключительно малых вычислительных ресурсов. 

Для расширения диапазонов концентраций проверочных выборок, среднеквадратичное отклоне-
ние калибровки по которым является целевой функцией применения метода частичных наименьших 
квадратов, обучающая и проверочная выборки формировались случайным образом. При этом выпол-
нялось условие обязательного отбора в обучающую выборку двух эталонных образцов с минималь-
ными калибруемыми концентрациями и двух — с максимальными. После построения калибровочной 
зависимости две пробы с экстремальными значениями концентрации были исключены из рассмотре-
ния, что незначительно сузило диапазон моделирования. При использовании такого метода калибро-
вочная модель является интерполяционной и ее точность менее подвержена влиянию краевых по 
концентрации образцов. По причине случайного характера формирования выборок моделирование 
повторялось 10 раз для каждого элемента. Окончательный отбор модели проводился по худшей сум-
ме величин среднеквадратичного отклонения калибруемой концентрации в обеих выборках, что га-
рантирует лучшие показатели моделей при ином выборе образцов в выборках. 

Особенностью разработанных многопараметрических моделей является также применение вы-
бора спектральных переменных. Многомерный анализ данных оперирует латентными переменными, 
которые содержат только важную для моделирования информацию, извлеченную из мультиколлине-
арных широкополосных спектров. Классический одно- или маломерный подход использует имеющие 
четкий физический смысл спектральные переменные. Классический и многопараметрический подхо-
ды принципиально различаются в плане использования спектральной информации. Наилучшие ре-
зультаты можно получить при компромиссном подходе с выбором спектральных переменных, кото-
рый позволяет предотвратить переоценку многопараметрических моделей [16]. Методы выбора спек-
тральных переменных эффективны при работе с большими объемами сильно коррелированных дан-
ных и нацелены на определение подмножества переменных, описывающих бо́льшую часть важной 
для построения многопараметрической модели информации. Известно большое количество подхо-
дов, которые использовались для извлечения полезной информации в различных областях спектро-
скопии. Среди рассмотренных нами ранее методов выбора спектральных переменных (интервальные 
методы PLS, генетический алгоритм, ранжирование спектральных переменных по их коэффициенту 
корреляции с искомым параметром [17], алгоритм последовательного проецирования [18]) выбрана 
оригинальная модификация [19] поиска комбинации движущихся спектральных окон [20] в интер-
вальном методе PLS (scmwiPLS). 

Метод scmwiPLS использует не отдельные спектральные переменные, а спектральные интервалы 
— окна. На первом этапе с помощью широкополосной модели определяется оптимальное количество 
латентных переменных по минимальному значению среднеквадратичного отклонения калибровки по 
проверочной выборке. На втором этапе ширина окна фиксируется на одну спектральную переменную 
больше, чем оптимальное количество латентных переменных в широкополосной модели. Это усло-
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вие минимизирует ширину окна, сохраняя при этом возможность выбора латентных переменных да-
же в одном окне. Первое окно сдвигается на одну спектральную переменную за шаг и разрабатывает-
ся многопараметрическая модель с использованием метода PLS. После прохождения первым окном 
всего диапазона, оптимальное положение этого окна определяется минимальным среднеквадратич-
ным отклонением и фиксируется. Процедура повторяется для последующих спектральных окон до 
включения в модель всего спектрального диапазона. В этом случае моделирование осуществляется 
путем объединения спектральных переменных, принадлежащих уже фиксированным окнам и сдви-
гающемуся окну. На третьем этапе выбирается модель с минимальной величиной RMSEP в зависи-
мости от количества окон. На рис. 1 представлен эмиссионный спектр эталона низколегированной 
стали и выбранные методом scmwiPLS спектральные переменные для калибровки Mn.  

 

Рис. 1. Эмиссионный спектр эталона низколегированной стали и выбранные  
методом scmwiPLS спектральные переменные для калибровки Mn (точки) 

 
Результаты калибровки марганца приведены в табл. 1, где представлены количество выбранных 

спектральных переменных, среднеквадратичное отклонение в обучающих и проверочных выборках 
образцов и остаточное отклонение предсказания (RPD), равное отношению стандартного отклонения 
калибруемого параметра в выборке к среднеквадратичному отклонению калибровки. Чем выше RPD, 
тем ближе калибровочная зависимость к прямой. Пороговое значение RPD, при котором калибровка 
считается количественной, равно трем [21], поэтому все представленные модели являются количе-
ственными. 

 
Т а б л и ц а  1.  Результаты калибровки марганца для 10 вариантов наборов  

обучающей и проверочной выборок 
 
№ Количество выбран-

ных спектральных 
переменных 

RMSE обучаю-
щей выборки, %

RPD обучаю-
щей выборки 

RMSE провероч-
ной выборки, % 

RPD проверочной 
выборки 

1 286 0.03 19.1 0.01 36.2
2 252 0.02 26.7 0.02 32.9
3 325 0.02 31.4 0.01 34.5
4 198 0.02 24 0.02 21.8
5 300 0.02 33.6 0.01 30.9 
6 136 0.008 63.7 0.02 23.0
7 319 0.01 41.2 0.02 20.9
8 176 0.02 25.4 0.02 24.8
9 310 0.02 32.6 0.03 15.1 

10 336 0.02 30.3 0.02 19.1
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Для дальнейшего построения моделей для каждого элемента выбран худший по точности вари-
ант с близкими RPD в обучающей и проверочной выборках из 10 случайных наборов (№ 8 для мар-
ганца). Характеристики выбранных моделей для всех калибруемых концентраций показаны в табл. 2. 
Все шесть калибровочных моделей являются количественными. Можно сделать вывод о сбалансиро-
ванности моделей, так как параметры калибровки по всем элементам близки в обоих наборах данных. 
Соответствие эталонной концентрации марганца и оценки, полученной с помощью разработанной 
многопараметрической калибровочной модели с выбором спектральных переменных, представлено 
на рис. 2.  

 
Т а б л и ц а  2.  Характеристики калибровочных моделей для исследуемых элементов 

 
Эле-
мент 

RMSE обу-
чающей 

выборки, % 

RPD обу-
чающей 
выборки 

Концентрация 
для обучающей 
выборки, %

RMSE прове-
рочной выбор-

ки, %

RPD про-
верочной 
выборки 

Концентрация для 
проверочной  
выборки, %

C 0.05 4.5 0.003—0.750 0.04 4.7 0.029—0.640
Mn 0.02 25.4 0.008—1.970 0.02 24.8 0.106—1.810 
Si 0.02 11.4 0.006—1.060 0.01 12.9 0.043—0.790
Cr 0.01 17.0 0.008—0.998 0.01 21.8 0.035—0.940
Ni 0.008 20.9 0.005—0.690 0.007 23.3 0.039—0.600
Cu 0.007 18.8 0.004—0.620 0.006 23.2 0.012—0.460

 

 
Рис. 2. Соотношение между предсказанной с помощью scmwiPLS модели  

и эталонной концентрацией Mn 
 

Таким образом, по сравнению с [9] при использовании одних и тех же эмиссионных спектров 
эталонных образцов низколегированных сталей за счет применения коррекции базовой линии и ино-
го метода формирования обучающей и проверочной выборок получены калибровочные модели  
с лучшими показателями среднеквадратичного отклонения и расширенным диапазоном концентра-
ций шести элементов. Для С диапазон расширился от 0.130—0.430 до 0.029—0.640, для Mn 
от 0.470—1.150 до 0.106—1.810, для Si от 0.150—0.330 до 0.043—0.790, для Cr от 0.090—0.430 
до 0.035—0.940, для Ni от 0.050—0.250 до 0.039—0.600 и для Cu от 0.060—0.260 до 0.012—0.460.  

Заключение. Предварительная обработка спектров с помощью адаптивного метода наименьших 
квадратов со штрафом и итеративным пересчетом весов и нормировки на интенсивность эмиссион-
ной линии железа Fe II 252.0609 нм и выбор спектральных переменных с помощью поиска комбина-
ции движущихся окон в методе частичных наименьших квадратов повышают качество многопара-
метрических моделей калибровки концентраций технологических примесей и добавок в низколеги-
рованных сталях по спектрам, полученным с помощью лазерно-искровой эмиссионной спектроско-
пии низкого разрешения, и делают калибровку количественной для рассматриваемых элементов. Для 
калибровочной модели углерода среднеквадратичное отклонение RMSEP = 0.04 %, остаточное  
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отклонение в проверочной выборке RPDP = 4.7, для Mn — 0.02 % и 24.8, Si — 0.01 % и 12.9, Cr — 
0.01 % и 21.8, Ni — 0.007 % и 23.3, Cu — 0.006 % и 23.2.  
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