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Продемонстрирована возможность спектроскопической идентификации фаз твердых раство-
ров замещения переменного состава, формирующихся при получении смешанных молибден-вана-
диевых оксидов сольвотермическим методом. В основе идентификации лежит изменение частоты 
колебаний (V=O) в результате частичного замещения ванадиевых центров кристаллической ре-
шетки на молибден в смешанном оксиде. 

Ключевые слова: смешанные оксиды молибдена и ванадия, твердые растворы замещения,  
инфракрасная спектроскопия. 
 

The possibility of spectroscopic identification of substitution solid solutions formed via solvothermal 
synthesis of molybdenum-vanadium mixed oxide was demonstrated. The method is based on the investigation 
of the shift of the (V=O) absorption band due to reduction of vanadium centers in the mixed oxide upon 
partial substitution of vanadium with molybdenum in the crystalline lattice. 

Keywords: molybdenum-vanadium mixed oxides, substitution solid solutions, IR spectroscopy. 
 

Введение. Среди разрабатываемых в настоящее время гетерогенных катализаторов парциально-
го окисления органических веществ наибольшую эффективность демонстрируют смешанные оксиды 
ванадия-молибдена [1—4]. Для их получения используют пиролитические методы, основанные на 
реакциях совместного твердофазного высокотемпературного разложения молибдатов и ванадатов 
аммония, основным продуктом которых являются фазы шпинельного типа [2, 5]. Каталитическая ак-
тивность смешанных оксидов такого рода обусловлена наличием парамагнитных центров V(IV), ко-
торые ярко проявляются в спектрах электронного парамагнитного резонанса (ЭПР) [6, 7]. Указанные 
центры участвуют в образовании на поверхности катализатора супероксидных кислородных соеди-
нений [8, 9], а также генерации синглетной формы кислорода [10, 11], ответственных за окисление 
органического субстрата.  

Диаграмма состояния системы V2O5—MoO3 предполагает наличие целого семейства смешанно-
оксидных фаз, характеризующихся различными по структуре кристаллическими решетками, которые 
в большинстве случаев могут быть идентифицированы дифракционными методами. В то же время 
близость структуры кристаллических решеток оксидов молибдена и ванадия, построенных из кисло-
родных полиэдров, открывает возможность соосаждения указанных оксидов. Ранее было показано [12], 
что смешанно-оксидные фазы молибдена-ванадия могут быть выращены в сольвотермических усло-
виях в водных растворах за счет совместной поликонденсации соответствующих оксокислот. В отли-
чие от продуктов пиролитического синтеза полученные таким образом смешанные оксиды представ-
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ляют собой твердые растворы замещения, построенные на основе решетки ксерогеля пентаоксида ва-
надия и являющиеся результатом частичной замены части ванадиевых узлов на атомы молибдена. 
Благодаря высокому содержанию парамагнитных каталитически активных центров V(IV), локализо-
ванных преимущественно на поверхности ламелей, формирующих кристаллическую решетку [12, 13], 
фазы такого рода могут рассматриваться в качестве эффективных высокоселективных катализаторов 
обессеривания углеводородного сырья, способных катализировать превращения молекул, размер ко-
торых меньше размера полостей кристаллической структуры катализатора [14]. Вследствие форми-
рования твердых растворов замещения, структурно идентичных матричной кристаллической решет-
ке, роль которой выполняет один из индивидуальных оксидов, установление факта появления сме-
шанно-оксидной фазы в процессе сольвотермического синтеза затруднительно, поскольку не может 
быть выполнено традиционными для этих целей методами (рентгенографией, электронографией, 
элементным анализом).  

Цель настоящей работы — изучение возможности использования ИК-спектроскопии для уста-
новления динамики состава молибден-ванадиевых фаз при сольвотермическом соосаждении.  

Эксперимент. Фазы смешанных оксидов молибдена-ванадия получены сольвотермическим ме-
тодом [12, 15] за счет поликонденсации 0.2 М водных растворов смешанных оксокислот молибдена-
ванадия при 100 ºС. Полнота превращения смешанной оксокислоты в оксидный продукт, превыша-
ющая 80 %, достигалась при проведении сольвотермического синтеза в течение 4 ч. Растворы сме-
шанных оксокислот молибдена-ванадия синтезировали методом ионного обмена с использованием 
смеси 0.2 М растворов молибдата натрия (Na2MoO4), метаванадата натрия (NaVO3) и катионита КУ-2 
в Н-форме. Соотношение оксид-ванадиевой и оксид-молибденовой составляющих в продуктах син-
теза задавалось на стадии получения смешанных оксокислот и в пересчете на индивидуальные окси-
ды (xV2O5:yMoO3) составляло (в мольных долях) x:y = 0.75:0.25, 0.60:0.40, 0.50:0.50, 0.40:0.60, 
0.25:0.75. Для сравнения использовались фазы индивидуальных оксидов молибдена и ванадия, синте-
зированные аналогичным образом в сольвотермических условиях из растворов соответствующих ин-
дивидуальных оксокислот. Полученные смешанные оксиды в виде частиц неправильной формы раз-
мером (в зависимости от составов) от 100 нм до 1.2 мкм отделялись от маточного раствора методом 
центрифугирования, подвергались четырехкратной промывке в дистиллированной воде и высушива-
лись при комнатной температуре. 

Состав полученных оксидных фаз исследован с помощью рентгенофлуоресцентного анализа 
(рентгеновский анализатор Malvern Panalytical Epsilon 1). Рентгенофазовый анализ выполнен  
с использованием рентгеновского дифрактометра (PANalytical X'Pert PRO MRD, CuK-излучение). 
ИК-спектры зарегистрированы с помощью спектрометра Shimadzu IRTracer 100.  

Результаты и их обсуждение. ИК-спектры микрокристаллических индивидуальных оксидов 
молибдена и ванадия, выращенных в сольвотермических условиях (рис. 1), типичны для оксидных 
фаз, полученных осаждением из водных растворов. В спектре можно выделить три информативных 
участка: 2500—3700, 1100—2500 и 400—1100 см–1. Полосы поглощения, соответствующие диапазо-
ну 2500—3700 см–1, могут быть отнесены к валентным колебаниям различных форм воды, связанной 
как с поверхностью оксидных частиц, так и с оксидным каркасом. Разнообразие гидратных форм 
(молекулы воды, интеркалированные в межслоевое пространство оксидного каркаса, а также молеку-
лы, физически и химически связанные с оксидным каркасом) различной координации в сочетании 
с проявлениями терминальных ОН-групп при 3100—3500 см–1, приводят к формированию в указан-
ном спектральном диапазоне набора плохо разрешенных полос. В области 1100—2500 см–1 наблю-
даются деформационные колебания терминальных ОН-групп и связей в молекулах гидратной воды 
(1400—1700 см–1).  

Наиболее информативной является область 400—1100 см–1, в которой проявляются колебания 
связей в оксидном каркасе. Так, в ИК-спектре индивидуального пентаоксида ванадия, выращенного 
в сольвотермических условиях, отчетливо видна узкая полоса поглощения при 1009.6 см–1, соответ-
ствующая валентным колебаниям связи V=O в пирамидальных структурах [VO5] [16, 17], что свиде-
тельствует о высокой степени закристаллизованности оксидного продукта. В ИК-спектре также про-
являются колебания связей VO…H (в виде плеча вблизи 908 см–1), что указывает на присутствие 
в оксиде значительного количества низкоэнергетических водородных связей [18]. Кроме того, в ИК-
спектре индивидуального оксида ванадия обнаруживаются колебания мостиков VOV в оксидном 
каркасе [16]: при 755 см–1 (валентные колебания) и 496 см–1 (деформационные колебания). 
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Рис. 1. ИК-спектры фаз пентаоксида ванадия (а) и триоксида молибдена (б),  
полученных методом сольвотермического синтеза 

 
Структура ИК-спектра индивидуального микрокристаллического триоксида молибдена, выра-

щенного в сольвотермических условиях, аналогична структуре спектра индивидуального пентаокси-
да ванадия (в обоих случаях оксиды имеют слоистую структуру, построенную из кислородных поли-
эдров): полосы поглощения при 899.9 и 595.5 см–1 соответствуют валентным и деформационным ко-
лебаниям мостиковых связей МоОМо, а интенсивная полоса при 971.8 см–1 может быть отнесена  
к валентным колебаниям связи Мо=О в пирамидах [МоО6] оксидного каркаса [19, 20].  

Данные рентгеновской дифракции (рис. 2) свидетельствуют о том, что кристаллическая решетка 
продуктов сольвотермического соосаждения оксокислот молибдена и ванадия повторяет кристалли-
ческую решетку ксерогеля пентаоксида ванадия в том случае, если мольная доля оксид-молибдено-
вой составляющей 60 % и однозначная идентификация полученного смешанного оксида на основе 
дифракционных данных не представляется возможной. В то же время, по данным рентгенофлуорес-
центного анализа (табл. 1), инкорпорирование молибдена происходит даже в случае использования 
прекурсоров с низким содержанием оксид-молибденовой составляющей (25 мол.%). Следует отме-
тить, что фазовая неоднородность смешанного оксида возрастает с увеличением содержания молиб-
дена в смешанной оксокислоте (выполняющей роль прекурсора смешанно-оксидной фазы), на что 
указывает разброс значений состава получаемого смешанного оксида. Последнее, по-видимому, яв-
ляется следствием кристаллизации триоксида молибдена в качестве индивидуальной фазы, проявля-
ющейся на дифрактограмме только при высоком содержании молибдена в смешанном оксиде (для 
образцов состава 0.25V2O5:0.75MoO3). Таким образом, традиционные дифракционные методы иссле-
дования фазового состава не позволяют выполнить идентификацию смешанно-оксидных фаз молиб-
дена-ванадия при невысоком содержании оксид-молибденовой составляющей (до 60 мол.%).  
 

Т а б л и ц а  1.  Содержание (ат.%) молибдена и ванадия в смешанно-оксидных фазах  
 

Состав прекурсора  
смешанно-оксидной фазы 

V Мо 

0.75V2O5:0.25MoO3 78.97±0.93 21.03±0.93 
0.60V2O5:0.40MoO3 63.20±0.90 36.80±0.90 
0.50V2O5:0.50MoO3 57.78±3.23 42.22±3.23 
0.40V2O5:0.60MoO3 46.15±10.52 53.85±10.52 
0.25V2O5:0.75MoO3 32.70±14.23 67.30±14.23 
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Рис. 2. Рентгеновские дифрактограммы смешанно-оксидных фаз молибдена и ванадия,  
полученных методом сольвотермического синтеза 

 

 

Рис.  3.   Динамика   изменения   положения   полосы   поглощения   (Э=О)   (Э — Мо,  V)   
в структуре ИК-спектра в зависимости от состава смешанно-оксидной фазы xV2O5:yMoO3:  

x:y = 0.75:0.25 (1), 0.60:0.40 (2), 0.50:0.50 (3), 0.40:0.60 (4), 0.25:0.75 (5) 
 

Представленные на рис. 3 результаты ИК-спектроскопического исследования свидетельствуют  
о том, что уже при малом содержании оксид-молибденовой составляющей в смешанном оксиде 
наблюдается сдвиг характеристической линии, соответствующей валентным колебаниям связей Э=О 
(Э — Мо, V) в пирамидальных структурах, формирующих решетку оксида, от 1009.6 см–1 (для инди-

1000   800   600   400   , см–1 

 h-MoO3 

 

V2O5-ксерогель 

T, %

     10     20     30      40     50     60     70    2, град 

1 
 

2 
 
 

3 
 

4 
 
 

5 

0.75V2O5:0.25MoO3

 
 
 
 

0.6V2O5:0.4MoO3 
 
 

0.5V2O5:0.5MoO3 

 
 
 

0.4V2O5:0.6MoO3 

 
 
 

0.25V2O5:0.75MoO3



СВИРИДОВА Т. В. и др. 
 

184 

видуального пентаоксида ванадия) до 978.4 см–1 (для смешанного молибден-ванадиевого оксида, по-
лученного из смешанной оксокислоты с содержанием молибдена 25 мол.%). Последнее является 
следствием замены части ванадиевых центров в катионной подрешетке пентаоксида ванадия на мо-
либденовые, приводящее к изменению энергии части связей Э=О в пирамидальных структурах окси-
дной решетки. Одновременно по данным ЭПР-спектроскопии для смешанно-оксидных фаз при росте 
в их составе оксид-молибденовой составляющей наблюдается резкий рост концентрации парамаг-
нитных центров V(IV) в смешанном оксиде [6, 12]. В свою очередь замена части центров V(V) в ка-
тионной подрешетке оксида на центры Mo(VI) при образовании твердого раствора замещения, при-
водящая к образованию пропорционального количества центров V(IV) для сохранения общей элек-
тронейтральности, существенно влияет на энергию колебания кратных связей, результатом чего яв-
ляется сдвиг полосы валентных колебаний связи Э=О даже при частичной замене ванадиевых цен-
тров на молибденовые (табл. 2). Последнее позволяет контролировать процессы образования твердо-
го раствора замещения в условиях, когда дифракционные методы малоинформативны. В данном случае 
ИК-спектроскопия может рассматриваться прежде всего как качественный метод идентификации 
смешанно-оксидных молибден-ванадиевых фаз, поскольку спектроскопические проявления эффекта 
замещения имеют место уже при малом содержании оксид-молибденовой составляющей в смешан-
ном оксиде.  
 

Т а б л и ц а  2.  Изменение частоты колебаний (Э=О) (Э — Мо, V)  
в зависимости от состава смешанно-оксидной фазы 

 

Состав прекурсора смешанно-оксидной фазы (Э=О), см–1 
V2O5 1009.6 

0.75V2O5:0.25MoO3 978.4
0.60V2O5:0.40MoO3 975.8
0.50V2O5:0.50MoO3 973.3
0.40V2O5:0.60MoO3 970.7 
0.25V2O5:0.75MoO3 968.1

MoO3 971.8
 

Заключение. Автовосстановление ванадиевых центров в случае формирования смешанных ок-
сидов молибдена-ванадия при образовании твердых растворов замещения приводит к изменению ча-
стоты колебания кратных связей в пирамидальных структурах оксидной решетки, что проявляется  
в ИК-спектрах. Это открывает возможность идентификации с использованием ИК-спектроскопии ка-
талитически активной фазы твердого раствора замещения переменного состава, образование которой 
в отличие от обычных шпинелей не сопровождается существенными структурными изменениями.  

Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундамен-
тальных исследований (грант № Х21-025). 
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