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Методами однофотонной спектроскопии исследовано фотообесцвечивание графеновых кван-
товых точек в агрегированном состоянии на кремниевой подложке, в полимерных матрицах и мем-
бранах эритроцитов. Установлены типичные времена и характер изменения статистических 
свойств флуоресценции графеновых квантовых точек. Показано, что изменение микроокружения 
нанообъектов не приводит к корреляции испущенных фотонов. Результаты важны при использова-
нии графеновых квантовых точек для биомедицинской визуализации.  

Ключевые слова: графеновые квантовые точки, однофотонная спектроскопия, фотостабиль-
ность, полимерные матрицы, эритроциты. 
 

Single-photon spectroscopy is used to study photobleaching of graphene quantum dots in aggregated 
state on a silicon substrate, in polymer matrices and red blood cell membranes. We have established typical 
photobleaching times and characterized changes in the emission statistics of graphene quantum dots in the 
single-photon detection regime. We have also found that changing the microenvironment of nanoobjects 
does not lead to significant correlations of emitted photons. The reported results are important for the im-
plementation of graphene quantum dots in biomedical imaging.  

Keywords: graphene quantum dots, single-photon spectroscopy, photostability, polymer matrices, red 
blood cells. 
 

Введение. Исследование испускания отдельных квантовых объектов под воздействием внешнего 
возбуждения имеет давнюю традицию в Институте физики НАН Беларуси. Начало подобных иссле-
дований было положено академиком Б. И. Степановым, который развил квантово-механическую тео-
рию люминесценции и поглощения света, позволяющую единым образом описать характеристики 
этих процессов, и внес значительный вклад в понимание природы их спектров [1]. Б. И. Степанов 
совместно со своим учеником академиком П. А. Апанасевичем развили спектральную теорию про-
стейших излучающих систем, обладающих лишь несколькими энергетическими уровнями, и, в част-
ности, для системы с двумя уровнями П. А. Апанасевич предсказал появление специфической формы 
спектра, впоследствии названной “триплетом Апанасевича”, под действием интенсивной классиче-
ской накачки [1, 2]. 
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Данная работа посвящена анализу излучения под действием когерентной накачки одной из важ-
ных разновидностей подобных систем с небольшим числом уровней, задействованных в излучатель-
ном процессе, — квантовых точек, а именно их реализации на основе графена. 

Графеновые квантовые точки (ГКТ) — перспективный углеродный наноматериал с набором 
свойств, подходящих для различных применений в биомедицине [3—9]. ГКТ могут обладать интен-
сивной флуоресценцией в видимом диапазоне [6, 7, 9—13], отличаются малым размером [6, 11, 14—17], 
биосовместимостью и низкой токсичностью [3, 5, 8, 12]. Одним из направлений использования ГКТ яв-
ляется визуализация биологических объектов. Примеры использования ГКТ в качестве флуорофоров 
для различных методов сверхразрешающей микроскопии показаны в [16, 18, 19]. 

В работе [20] исследованы флуоресцентные свойства ГКТ с целью оптимизации применения 
данного наноматериала для сверхразрешающей микроскопии. В частности, предполагалось исполь-
зование данного наноматериала в качестве флуорофора для метода сверхразрешающей визуализации 
оптических флуктуаций (SOFI, super-resolution optical fluctuation imaging [21]), где для повышения 
латерального разрешения рассчитываются кумулянты серии микроскопических изображений образца 
с введенными в него ГКТ. 

Проведены исследования некоторых особенностей флуоресценции ГКТ, образовавших агрегаты 
на подложке [20]. Такие образцы просты в приготовлении и в то же время позволяют регистрировать 
флуоресценцию на однофотонном уровне. Для агрегированных ГКТ исследована зависимость флуо-
ресценции от температуры и установлена стохастическая природа испускания, в частности, наличие 
переключений частиц между излучающими и неизлучающими состояниями (так называемых “мер-
цаний” [22]) и динамического гистерезиса в испускании. Для применения ГКТ данного типа в агре-
гированном состоянии весьма важно падение интенсивности флуоресценции со временем при воз-
действии непрерывным оптическим излучением. Во многих работах сообщается о высокой фотоста-
бильности ГКТ [9, 12, 13, 23—27] и лишь в некоторых упоминается их фотообесцвечивание [28]. По-
видимому, фотостабильность некоторого типа ГКТ зависит от метода синтеза и состава поверхност-
ных функциональных групп. Поскольку и для микроскопии в общем, и для метода SOFI в частности, 
одним из ключевых параметров является стационарность флуоресценции флуорофора, представляется 
необходимым подробное изучение динамики флуоресценции ГКТ и ее статистических особенностей. 

В данной работе изучается и сравнивается фотостабильность ГКТ, агрегированных как на крем-
ниевой подложке, так и в различном органическом окружении. Имея в виду биомикроскопические 
приложения, мы исследуем также изменение агрегации и фотолюминесцентных свойств ГКТ в кле-
точных мембранах, в частности мембранах эритроцитов, зафиксированных параформальдегидом 
и иммобилизованных на подложках. 

Эксперимент. Исследованы диспергированные в воде ГКТ с флуоресценцией в области 500—700 нм 
(CAS 7440-44-0, Sigma-Aldrich [29, 30]). Образцы агрегированных ГКТ изготовлены путем нанесения 
50 мкл их водной суспензии (концентрация 1 мг/мл) на чистую кремниевую подложку с последую-
щим высыханием суспензии в естественных условиях. Также получены образцы ГКТ в полимерных 
матрицах. Использованы следующие водорастворимые полимеры: поливиниловый спирт (Sigma-
Aldrich, 99 %, средняя молярная масса 94000 г/моль), поливинилсульфат (Sigma-Aldrich, 99 %, калие-
вая соль, 170000 г/моль) и поливинипирролидон (Sigma-Aldrich, 99 %, 10000 г/моль). Суспензию ГКТ 
добавляли к водным растворам полимеров (поливинилового спирта, поливинилсульфата и поливини-
пирролидона) и 50 мкл полученных смесей наносили на кремниевые подложки. Концентрации ГКТ 
в растворах полимеров 50 мкг/мл, поливинилового спирта и поливинилсульфата 0.5 мас.%, поливи-
нилпирролидона 10 мас.%. 

Мембраны (“тени”) эритроцитов получали путем осмотического гемолиза этих клеток крови 
здоровых доноров. Осаждение эритроцитов в гепаринизированной крови проводили путем добавле-
ния 7 % декстрана. После удаления лейкоплазмы осажденные эритроциты в количестве 500 мкл раз-
бавляли в 9 мл 0.15 моль/л NaCl, конечная концентрация эритроцитов 107 клеток/мл. Клетки дважды 
центрифугировали в течение 5 мин при 3000 об./мин и отмывали раствором NaCl. Затем проводили 
лизис эритроцитов путем добавления ледяной воды. Полученные “тени” эритроцитов четырежды от-
мывали раствором NaCl центрифугированием в течение 15 мин при 6000 об./мин с целью удаления 
гемоглобина. “Тени” эритроцитов инкубировали в фосфатно-солевом буфере (рН 7.4) с 50 мкг/мл 
ГКТ в течение 1 ч, отмывали центрифугированием и фиксировали 2%-ным раствором параформаль-
дегида в течение 15 мин. После отмывки суспензию “теней” эритроцитов концентрировали в 2 мл 
воды, наносили на чистую кремниевую подложку (три раза по 50 мкл) и сушили в темноте. 
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Флуоресцентные изображения образцов ГКТ получены с помощью микроскопа Nikon Eclipse  
Ti-U с объективом CFI Plan Fluor DLL 10×. Источником возбуждающего излучения служил светоди-
од с максимумом спектра испускания при 470 нм. Сигнал флуоресценции зарегистрирован с исполь-
зованием монохроматической камеры DS-Qi2 с КМОП-матрицей на 16 мегапикселей и набором 
спектральных фильтров BrightLine Pinkel. 

Однофотонная спектроскопия образцов ГКТ осуществлялась с помощью специально изготов-
ленной установки. В качестве источника возбуждающего излучения использован полупроводнико-
вый лазерный диод Thorlabs PL450B с максимумом спектра излучения в области 450 нм. Плотность 
мощности возбуждающего излучения на образце изменялась в диапазоне 4—135 Вт/см2. Излучение, 
испущенное образцом ГКТ, регистрировалось детектором одиночных фотонов (ID Quantique ID100-
MMF50) с частотой темновых отсчетов 32 Гц. Экспериментальная установка описана в [20]. Отсчеты 
с детектора регистрировались осциллографом TiePie HS5-540, затем обрабатывались с использовани-
ем пакета программ MATLAB. Период дискретизации временных сигналов с детектора 5 нс. 

Для статистического анализа проводили накопление выборки, содержащей 105 отсчетов с де-
тектора одиночных фотонов с длительностью 160 мс (о статистике фотоотсчетов электромагнитного 
поля и ее обработке см. [31]). Сигнал с детектора редуцировали до последовательности мгновенных 
импульсов и определяли времена ожидания t — интервалы между соседними отсчетами фотонов в 
выборке. Кумулянты распределения времен t: 

( )E t   ,            (1) 

  ( ) , 2,4
k

k E t E t k      ,          (2) 

где µ — среднее значение; µ2 — дисперсия; µ3 и µ4 — третий и четвертый центральные моменты;  
Е — математическое ожидание величины в скобках. 

Результаты и их обсуждение. Как показано в [20], интенсивность флуоресценции агрегирован-
ных ГКТ на подложке убывает с течением времени при воздействии непрерывным излучением. По-
скольку данный эффект, возможно, обусловлен агрегацией или является свойством отдельных ча-
стиц, в данной работе исследуется фотостабильность в различном микроокружении. ГКТ введены 
в матрицы поливинилпирролидона, поливинилового спирта и поливинилсульфата. Считается, что 
флуоресценция ГКТ данного типа обусловлена присутствием на их поверхности кислородсодержа-
щих функциональных групп, а не делокализацией электронов в пределах графенового ядра [30]. ГКТ 
содержат многочисленные карбоксильные и карбонильные группы, за счет чего возможно образова-
ние водородных связей. Вследствие этого выбранные полимеры могут взаимодействовать с ГКТ раз-
личным образом. Карбонильные группы поливинилпирролидона могут выступать в качестве акцеп-
торов водородных связей, а карбоксильные группы поливинилового спирта могут быть как донора-
ми, так и акцепторами водородных связей. Поливинилсульфат является полиэлектролитом и не мо-
жет формировать водородные связи с функциональными группами ГКТ. Можно ожидать, что введе-
ние ГКТ в полимерные матрицы затруднит их агрегацию и модифицирует поверхностные группы, в 
результате чего изменятся флуоресцентные свойства.  

На рис. 1 показано флуоресцентное изображение ГКТ в матрице поливинилпирролидона. Сте-
пень агрегации ГКТ в полимерных матрицах значительно меньше по сравнению с образцом ГКТ, 
нанесенных на подложку без добавления полимера [20]. Аликвота раствора полимера, содержащего 
ГКТ, нанесена на подложку. Изображение демонстрирует всю каплю после высыхания. Увеличение 
интенсивности флуоресценции на краю капли обусловлено большей толщиной слоя полимера. 

 

 

Рис. 1. Флуоресцентное изображение ГКТ в матрице поливинилпирролидона 
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ГКТ в полимерных матрицах, как и агрегированные ГКТ, демонстрируют уменьшение интен-
сивности флуоресценции со временем при воздействии непрерывным излучением (рис. 2). Поскольку 
исследуемые образцы ГКТ не обладают фотостабильностью, можно предположить, что фотообесцве-
чивание ГКТ является особенностью отдельных частиц, на которые слабо влияет микроокружение и 
состояние агрегации. Следует отметить, что фотообесцвечивание ГКТ является частично обратимым, 
однако для восстановления сигнала флуоресценции требуется достаточно длительный промежуток 
времени (не менее 1 ч) [20]. Представленные результаты согласуются с данными [32], где показано, 
что флуоресцентные свойства ГКТ являются преимущественно свойством отдельных частиц и слабо 
зависят от химического микроокружения. 

 

 

Рис. 2. Зависимости интенсивности флуоресценции от времени, зарегистрированные при воздействии 
непрерывным излучением  на ГКТ  в  матрице  поливинилсульфата  (1),  поливинилового  спирта  (2),  
поливинилпирролидона  (3),  а  также  агрегированных  на  подложке  ГКТ  (4);  плотность мощности  
возбуждающего  излучения   23 Вт/см2  для  образцов  ГКТ  в  полимерных  матрицах  и   135 Вт/см2  

для образца агрегированных ГКТ 
 

  
 

Рис. 3.  Типичное  экспериментальное  распределение  времен   ожидания  Δt  и  аппроксимирующая  
экспоненциальная  функция  для  ГКТ  в  матрице  поливинилпирролидона при плотности мощности  
возбуждающего  излучения  4 мВт/см2; приведены параметры аппроксимирующей функции; а — часть  
распределения для малых значений Δt  в линейном масштабе, б — полное  распределение в полуло-

гарифмическом масштабе; точки — эксперимент, кривая — аппроксимация 
 
Исследована статистика фотонов, испущенных ГКТ в различных микроокружениях. Установле-

но, что распределение времен ожидания отсчетов фотонов (t	в (1) и (2)) хорошо описывается экспо-
нентой для всех образцов. Типичное распределение для Δt показано на рис. 3. Таким образом, образ-
цы ГКТ демонстрируют пуассоновскую статистику излучения по крайней мере для времен регистра-
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ции, сопоставимых со средним временем ожидания. Такая статистика фотонного поля характерна для 
ансамбля независимых излучателей. 

Распределение времен ожидания (рис. 3) исследовано для выборки отсчетов фотонов длительно-
стью 160 мс. На данном временном масштабе можно пренебречь фотообесцвечиванием ГКТ (данная 
особенность обсуждается ниже, см. рис. 6). Изучена также эволюция среднего значения и кумулянтов 
более высоких порядков распределения Δt при воздействии непрерывным излучением. Образцы ГКТ, 
введенные в различные полимерные матрицы или образовавшие агрегаты на подложке, демонстри-
руют аналогичное поведение. На рис. 4 показана эволюция кумулянтов для образца ГКТ в матрице 
поливинилпирролидона. 

 

          

    
 

Рис. 4. Зависимости среднего значения (а), дисперсии (б), третьего (в) и четвертого (г) центральных 
моментов распределения времен ожидания Δt  от времени для образца  ГКТ  в матрице поливинил- 
пирролидона  при  воздействии  непрерывным  излучением  с  плотностью  мощности  4 Вт/см2 
 
Рассчитанные производные кумулянтов по времени демонстрируют относительно большие зна-
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Рис. 5. Зависимости нормированных производных по времени кумулянтов,  
показанных на рис. 4, от времени 

 

     

   
 

Рис. 6. Зависимости среднего значения (а), дисперсии (б), третьего (в) и четвертого (г) центральных 
моментов распределения времен ожидания  Δt  от времени для образца  ГКТ в матрице поливинил-
пирролидона   при  воздействии   непрерывным   излучением   с  плотностью   мощности   4 Вт/см2  

в пределах выборки длительностью 160 мс 
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Для исследуемых образцов ГКТ при плотности мощности 1.3 Вт/см2 линейный и более медлен-
ный рост кумулянтов начинается спустя ~5 мин после начала облучения. Для определения достаточ-
ной задержки между началом облучения образца и регистрацией отсчетов фотонов необходимо про-
водить тестовые измерения при конкретных условиях эксперимента. 

Исследованы также флуоресцентные свойства ГКТ, встроенных в мембраны эритроцитов. Ин-
тенсивность флуоресценции ГКТ в таком микроокружении снижается с течением времени под дей-
ствием непрерывного излучения (рис. 7). “Тени” эритроцитов обладают собственной флуоресценци-
ей, однако ее интенсивность невелика и изменяется медленно в сравнении с флуоресценцией ГКТ. 

 

 

Рис.  7.   Зависимости   интенсивности   флуоресценции,   зарегистрированные   при   воздействии  
непрерывным излучением на фиксированные “тени” эритроцитов после инкубирования с ГКТ (1)  
и на контрольный образец (2) от времени; плотность мощности возбуждающего излучения 70 Вт/см2 

 

         

      
 

Рис. 8. Зависимость среднего значения (а), дисперсии (б), третьего (в) и четвертого (г) центральных 
моментов распределения времен ожидания Δt от времени для фиксированных “теней” эритроцитов 
после  инкубирования  с  ГКТ  (1)  и  в контрольных  образцах  (2)  при  воздействии непрерывным  

излучением с плотностью мощности 70 Вт/см2 
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Кумулянты распределения величины t возрастают с течением времени при постепенном 
уменьшении скорости роста (рис. 8). Вкладом собственной флуоресценции “теней” эритроцитов в 
величины кумулянтов можно пренебречь в связи с ее низкой интенсивностью. 

Распределение величины t для испускания ГКТ в мембранах эритроцитов, а также для соб-
ственной флуоресценции эритроцитов является экспоненциальным (рис. 9). Пуассоновская статисти-
ка свидетельствует об отсутствии коллективных эффектов и переноса энергии между излучателями. 
Таким образом, поведение ГКТ в мембранах эритроцитов аналогично таковому в других микроокру-
жениях. 

 

        

     
 

Рис. 9.  Экспериментальные  распределения  времен  ожидания  Δt  и аппроксимирующие экспонен- 
циальные функции  для  фиксированных  “теней” эритроцитов  после  инкубирования  с  ГКТ  (а, б) 
и в контрольных образцах (в, г);  приведены  параметры  аппроксимирующих  функций;  плотность 
мощности возбуждающего излучения 70 Вт/см2; а, в — часть распределения для малых значений t  
в  линейном   масштабе,   б, г — полное   распределение   в  полулогарифмическом   масштабе;  

точки — эксперимент, кривая — аппроксимация 
 
Заключение. Методом однофотонной спектроскопии исследованы флуоресцентные свойства 

графеновых квантовых точек в полимерных матрицах, в агрегированном состоянии и мембранах 
эритроцитов в микросекундном временном диапазоне. Графеновые квантовые точки, распределен-
ные в полимерных матрицах и в агрегированном состоянии, демонстрируют аналогичное фотообес-
цвечивание и статистику излученного фотонного поля одного типа. Наблюдаемое ослабление сигна-
ла флуоресценции со временем при воздействии непрерывным излучением и характер статистики 
фотонов слабо зависят от микроокружения и состояния агрегации графеновых квантовых точек и яв-
ляются свойствами отдельных частиц, а не проявлением их коллективной динамики или взаимодей-
ствий со средой. 

На основании представленных экспериментальных данных можно сформулировать следующие 
рекомендации по применению данного типа графеновых квантовых точек в качестве флуорофора для 
SOFI. Поскольку такие графеновые квантовые точки обладают достаточно высоким квантовым вы-
ходом флуоресценции (17 % [30]), следует использовать умеренные плотности мощности возбужда-
ющего излучения для замедления фотообесцвечивания. Получение изображений с широким полем 
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зрения предпочтительно по сравнению со сканированием, поскольку позволяет уменьшить время ре-
гистрации. Если такие условия не могут быть соблюдены, регистрация данных может быть начата с 
некоторой задержкой (от нескольких секунд до нескольких минут в зависимости от условий экспе-
римента) после начала воздействия возбуждающего излучения, при этом линейный дрейф кумулян-
тов может быть компенсирован на этапе обработки данных. Таким образом, для использования гра-
феновых квантовых точек для SOFI и прочих методов сверхразрешающей микроскопии, требующих 
стационарности флуоресценции, необходим тщательный подбор условий эксперимента. 

Отсутствие фотостабильности является недостатком при использовании графеновых квантовых 
точек в качестве флуорофоров для SOFI. В то же время такое свойство графеновых квантовых точек 
данного типа является проявлением их химической лабильности, которая может считаться важным 
преимуществом для некоторых биомедицинских применений графеновых квантовых точек. В част-
ности, химическая лабильность графеновых квантовых точек способствует их быстрому метаболизму 
внутри клеток [28] и препятствует накоплению данного наноматериала внутри организма. 

Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундамен-
тальных исследований (договор № Ф22В-008). 
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