
Т. 90, № 2                     ЖУРНАЛ ПРИКЛАДНОЙ СПЕКТРОСКОПИИ                       МАРТ — АПРЕЛЬ 2023 

V. 90, N 2                           JOURNAL OF APPLIED SPECTROSCOPY                           MARCH — APRYL 2023 

 
 
 
ОПТИЧЕСКИЙ ОТКЛИК КОМПОЗИТНОЙ СИСТЕМЫ “МОНОСЛОЙ  
СФЕРИЧЕСКИХ ЧАСТИЦ В ПОГЛОЩАЮЩЕЙ МАТРИЦЕ”  
ПРИ ПАДЕНИИ ПЛОСКОЙ ВОЛНЫ ПО НОРМАЛИ 
 
Н. А. Лойко*, А. А. Мискевич, В. А. Лойко 

УДК 535.34;535.36 
https://doi.org/10.47612/0514-7506-2023-90-2-299-309 

Институт физики НАН Беларуси, Минск, Беларусь; e-mail: n.loiko@ifanbel.bas-net.by, 
miskevic@ifanbel.bas-net.by, loiko@ifanbel.bas-net.by   
 

(Поступила 3 февраля 2023) 
 

Получены уравнения для описания рассеяния и поглощения излучения освещаемым по нормали 
монослоем одинаковых сферических частиц, находящимся в однородной светопоглощающей среде 
(матрице). Они основаны на использовании квазикристаллического приближения, приближения 
среднего поля и мультипольного разложения полей и тензорной функции Грина по векторным сфе-
рическим волновым функциям. Представлены результаты численного анализа коэффициентов коге-
рентного пропускания и отражения, некогерентного рассеяния, поглощения композитных систем 
(монослоя наночастиц золота (Au) в фуллереновой (C60) матрице и монослоя наночастиц серебра 
(Ag) в матрице фталоцианина меди (CuPc)) в видимом диапазоне спектра при разных концентраци-
ях и размерах частиц. Проведено сравнение зависимостей длины волны максимума плазмонного ре-
зонанса поглощения от фактора заполнения частично упорядоченного монослоя, рассчитанных  
с учетом (в квазикристаллическом приближении) и без учета (в интерференционном приближении) 
многократного рассеяния волн. Результаты расчетов качественно согласуются с известными дан-
ными эксперимента по длинноволновому сдвигу полосы резонанса с ростом фактора заполнения мо-
нослоя. Полученные уравнения могут быть использованы при решении задач оптики тонких пленок, 
разработке фотонных и оптоэлектронных устройств, содержащих поглощающие матрицы.  

Ключевые слова: светопоглощающая среда, монослой сферических частиц, многократное рас-
сеяние волн, мультипольное разложение полей, поглощение излучения, метаповерхность. 

 
The equations are derived to describe scattering and absorption of light by a normally illuminated 

monolayer of identical spherical particles in a homogeneous light-absorbing medium (matrix). They are 
based on the quasicrystalline approximation, mean-field approximation, and multipole expansion of fields 
and tensor Green’s function in terms of vector spherical wave functions. The results are presented of numer-
ical analysis of the coefficients of coherent transmission and reflection, incoherent scattering, and absorp-
tion of composite systems (a monolayer of gold (Au) nanoparticles in fullerene (C60) matrix and a monolayer 
of silver (Ag) nanoparticles in copper phthalocyanine (CuPc) matrix) in visible spectrum at different concen-
trations and sizes of particles. The comparison is made of the dependences of the wavelength of the absorp-
tion plasmon resonance maximum on the filling factor of the partially ordered monolayer, calculated with 
(in the quasicrystalline approximation) and without (in the interference approximation) taking into account 
multiple scattering of waves. The calculation results are in qualitative agreement with the know experi-
mental data on the red-shift of the resonance with increasing in the monolayer filling factor. The derived 
equations can be used in solving problems of thin-film optics, developing photonic and optoelectronic devic-
es containing absorbing matrices.  

Keywords: light-absorbing medium, monolayer of spherical particles, multiple scattering of waves, mul-
tipole expansion of fields, absorption of light, metasurface. 
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Введение. Взаимодействие света с веществом издревле интересовало мыслителей и ученых. Его 
систематическое рассмотрение впервые сделано в “Книге оптики” Альхазена, написанной в XI в. на 
арабском языке и переведенной на латинский в XII в. Книга получила известность в Европе после ее 
печатного издания в XVI в. [1]. Этот фундаментальный труд дал толчок развитию физической оптики 
и привел к открытию законов, на базе которых построены современные устройства управления опти-
ческими волнами и потоками. Ключевыми моментами развития оптики последнего столетия являют-
ся рождение квантовой оптики, фотоники и создание лазеров. Эти направления и их многочисленные 
приложения [2—4] стали основополагающими в работе созданного в 1959 г. Института физики Ака-
демии наук Беларуси под руководством директора — Бориса Ивановича Степанова. Одно из направ-
лений, заложенное в работе [5], — оптика рассеивающих сред. Активное развитие этого направления 
в Институте позволило создать известную в мире школу по решению задач атмосферной оптики и 
космического зондирования Земли, гидрооптики, оптики биологических тканей и других сред, со-
ставной частью которых являются нано- и микрометровые неоднородности.  

В настоящее время большое внимание уделяется разработке теории взаимодействия оптического 
излучения с пространственно-организованными структурами частиц (элементов), размер которых 
намного меньше или сопоставим с длиной волны излучения, в связи с новыми возможностями их из-
готовления и их многочисленными применениями в решении задач современной оптики, фотоники, 
микроэлектроники, химии, медицины и других направлений. Исследования взаимодействия света с 
веществом на нано- и микроуровнях необходимы для развития современных и будущих технологий. 
Как правило, предполагается, что среда, в которой находятся частицы, не поглощает излучение [6—13].  

В последние годы нами разработан полуаналитический статистический метод [14—20] описания 
оптического отклика монослоя частиц, находящихся в непоглощающей окружающей среде. Он поз-
воляет рассматривать не только когерентную (прямо прошедшую и зеркально отраженную) [6, 11, 
14—16, 20], но и некогерентную [17—19] составляющую (угловое распределение) излучения, рассе-
янного освещаемым по нормали монослоем одинаковых сферических частиц с ближним и неидеаль-
ным дальним порядком в их расположении. В работах [21—25] мы расширили этот метод для описа-
ния оптического отклика монослоя, освещаемого под произвольным углом плоской волной с произ-
вольной поляризацией. Метод основан на идеях, изложенных в [6, 26]. Он учитывает многократное 
рассеяние волн в двумерном массиве частиц и применим к анализу оптических характеристик слоев  
с разным типом пространственного порядка в широком диапазоне факторов заполнения и параметров 
дифракции частиц.  

Для решения многих практических задач создания новых оптических элементов и устройств тре-
буется детальное понимание формирования оптического отклика пространственно-организованных 
структур частиц (светопоглощающих или непоглощающих), находящихся в светопоглощающей мат-
рице. Это важно, например, при разработке и создании солнечных элементов, светодиодов, химиче-
ских фотореакторов, фотодетекторов, других оптических и оптоэлектронных устройств. Такие струк-
туры обеспечивают большие возможности по управлению характеристиками композитных материа-
лов [9, 10, 27—32]. Сегодня исследования взаимодействия излучения с ансамблями частиц, внедрен-
ными в поглощающие среды, находятся в зачаточном состоянии. Количество публикаций по этому 
направлению в сравнении с их количеством по рассеянию света в непоглощающих средах ничтожно 
мало. Различные концепции и аспекты решения задачи описания излучения, однократно и много-
кратно рассеянного частицами в поглощающих средах, рассмотрены в [33—44].  

Разработанный нами статистический метод описания взаимодействия света с дисперсным веще-
ством развит для анализа оптических свойств композитной системы “монослой одинаковых сфериче-
ских частиц в поглощающей среде” при его освещении по нормали. Он основан на квазикристалли-
ческом приближении, приближении среднего поля и мультипольном разложении полей и тензорной 
функции Грина по векторным сферическим волновым функциям. Получены уравнения для описания 
коэффициентов когерентного пропускания и отражения, некогерентного рассеяния и поглощения. 
Результаты проведенных по ним расчетов находятся в качественном согласии с опубликованными 
теоретическими и экспериментальными данными других авторов. 

Основные уравнения. Рассмотрим монослой, состоящий из N одинаковых сферических частиц, 
центры которых находятся в плоскости монослоя (x,y) в точках, определяемых радиусами-векторами 
R1, R2, ..., RN относительно начала координат O, находящегося в центре произвольно выбранной ча-
стицы (рис. 1). Монослой расположен в неограниченной светопоглощающей среде и освещается по 
нормали (вдоль оси z) плоской электромагнитной волной с электрическим вектором E0 и единичным 
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вектором поляризации 0ˆ ˆ ˆx y   ε x y : 

0 0 0ˆ hik zE eE ε ,            (1) 

где kh = 2mh/ — комплексное волновое число, mh = nh + ih, nh и κh — показатели преломления и по-
глощения среды,  — длина волны падающего излучения в вакууме; Е0 — амплитуда падающей вол-
ны в плоскости монослоя (z = 0).  
 

 

Рис. 1. Схематическое изображение  освещаемого по нормали монослоя одинаковых однородных 
сферических    частиц    диаметром   D    в   однородной    светопоглощающей    среде   (матрице):  
a — вид сверху, б — вид сбоку; mh и mp

 — комплексные показатели преломления среды и частиц;  
Tc   и   Rc — коэффициенты   когерентного   пропускания   и   отражения   слоя   толщиной   L;  

Iinc — интенсивность некогерентно рассеянного излучения 
 

Поле E(r) в некоторой точке r является суммой поля падающей волны и полей волн, рассеянных 
данной конфигурацией ансамбля частиц (данным пространственным распределением частиц): 
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— поле, рассеянное в точку r частицей с центром в точке Rj; kp = 2mp/ — комплексное волновое 
число, mp = np + iκp, np и κp — показатели преломления и поглощения частицы; Vp и D — объем  
и диаметр частицы, 0 ≤ |r| ≤ D/2; E(Rj + r) — поле в точке Rj + r внутри j-й частицы (внутреннее по-

ле); G


 — тензорная (диадная) функция Грина: 
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I


 — единичный тензор.  
Рассмотрим двумерные (2D) структуры с однородным распределением частиц. В этом случае 

при падении волны по нормали усредненные внутренние поля одинаковы во всех частицах: 
E(Rj + r)j = E(r)1, где E(r)1 — поле внутри частицы, центр которой находится в начале коорди-
нат, усредненное по положениям остальных частиц (усредненное внутреннее поле). 

Используя уравнение (2), найдем усредненное по всем возможным конфигурациям ансамбля по-
ле E(r) вне частиц [17—19]: 

а                                                                                                    б 

mh

mh

mh
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2 2
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где 0 — средняя плотность числа частиц (концентрация).  
Для определения усредненного внутреннего поля E(r)1 используем квазикристаллическое при-

ближение (ККП) теории многократного рассеяния волн [6, 26], т. е. учитываем только двухчастичные 
корреляции в расположении частиц. В этом приближении усредненное поле в каждой частице при 
двух фиксированных частицах предполагается равным усредненному полю при одной фиксирован-
ной частице. В общем случае в ККП статистика распределения частиц описывается двухчастичной 
функцией распределения вероятности p(Ri, Rj). Рассматриваем азимутально усредненные системы,  
в которых корреляция в пространственном расположении частиц зависит только от расстояния 
между их центрами R = |Ri  Rj|, поэтому вместо p(Ri, Rj) можем использовать радиальную функцию 
распределения (РФР) g(R) [45, 46]. В результате получаем уравнение для E(r)1:  
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Здесь g(R) — РФР, характеризующая вероятность расположения центра частицы на расстоянии R от-
носительно центра частицы в начале координат, R = |R|. 

Рассмотрим усредненное поле E(r) в дальней зоне монослоя (|r  (R + r)| >> ). Предположим, 
что излучение, рассеянное в направлении r̂ , регистрируется приемником с площади монослоя S, ли-
нейные размеры которой малы по сравнению с расстоянием до точки наблюдения, но достаточно ве-
лики, чтобы статистические характеристики наблюдаемой площади ансамбля были такими же, как у 
всего монослоя: 

lim const 1
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  ,         (7) 

где r = |r|. При этих предположениях
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гаемые намного меньше единицы будем учитывать только в экспоненциальном члене функции Грина 
G( , )r R r


. При этом из членов, пропорциональных R или r, оставим только максимальные.  
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Если ˆ 0 r R , то      
21
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В обоих случаях интегрирование в уравнении (5) по объему частицы и ее положению в монослое 
разделяется. В результате получаем: 
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Здесь ˆ( )f r  — амплитудная функция рассеяния частицы монослоя в направлении r̂ : 
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В соответствии с выражением (6) E(r)1 и, следовательно, ˆ( )f r  учитывают вклад всех частиц 

монослоя в формирование внутреннего поля рассматриваемой частицы (многократное рассеяние 
волн в монослое).  

Функция h(r) учитывает различие в амплитудах полей, создаваемых частицами в точке r. Она не 
равна нулю, если ˆ 0 r R , что выполняется при ˆ ˆ r z : 
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В этих направлениях усредненные амплитуды волн, когерентно (прямо) прошедшей монослой 
Et(z) и когерентно (зеркально) отраженной им Er(z), принимают вид:  

| |
0 0 2

2
ˆ( ) ( ) ( ) hik

t
h

i
e

k


   zE z E z f z ,       (13) 

| |
0 2

2
ˆ( ) ( ) hik

r
h

i
e

k


   zE z f z .        (14) 

Некогерентная часть рассеянного излучения, возникающая в результате флуктуаций положений 
частиц, проявляется в интенсивности и определяется как разность между усредненной интенсивно-
стью полного поля I(r) = E(r)E*(r) и интенсивностью его когерентной компоненты 
Ic(r) = E(r)E*(r): Iinc(r) = I(r) – Ic(r). Выражение для Iinc(r) находится, как и в случае непоглощаю-
щей среды [17, 18], в приближении среднего поля: E(Rj + r)  E(Rj + r)j, т. е. пренебрегаем флукту-
ациями полей в частицах для конкретных конфигураций монослоя по сравнению со значениями этих 
полей, усредненных по возможным конфигурациям ансамбля при фиксации выбранной частицы.  
В результате интенсивность рассеянного излучения определяется выражением: 

4 4
* *0

2 22 2 2 22
ˆ ˆ ˆ ˆ( ) ( ) ( )S (sin ) ( ) ( ) S (sin )

(1 )

h hr r

inc
hh

S S
I e e

x rr k

 
   
  

     
 

r f r f r f r f r .  (15) 

Здесь  — фактор заполнения монослоя (отношение площади проекций всех частиц на плоскость мо-
нослоя к площади, где они распределены); x = Dnh/ — параметр дифракции частиц, D — диаметр 
частиц; βh = κh/nh; S — площадь монослоя, “видимая” приемником; S2(sin) — двумерный структур-
ный фактор. Как и в случае непоглощающей среды [17—19, 46], он описывает влияние пространст-
венного распределения частиц на угловую структуру рассеянного излучения: 

   2 0
0

S (sin ) 1 8 ( ) 1 J 2 sing u xu udu


      ,            (16) 

где  — полярный угол рассеяния; u = R/D — безразмерная переменная интегрирования, которая 
определяет расстояние в плоскости монослоя, выраженное в диаметрах D частиц; J0(z) — цилиндри-
ческая функция Бесселя нулевого порядка. Поток излучения в телесном угле dΩ через элементарную 
площадь сферы r2dΩ:  

2 *
22 2
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inc inc
h

S
dJ I r d d

x


     

 
r r f r f r .      (17) 

Для определения амплитудной функции рассеяния ˆ( )f r  используем метод разложения функций, 

входящих в уравнения (6), (11) по векторным сферическим волновым функциям (ВСВФ) [47—49]. 
Разложение поля падающей волны (1) для произвольного вектора поляризации 0ε̂  записывается на 

основе разложения по ВСВФ матричной функции I hik ze


: 

 (1) (1) (1) (1)
0 0 1 1 1 1

1

2 1
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x o l h e l h у е l h o l h
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

            
E r M r N r M r N r ,     (18) 

где индексы е и о обозначают четные и нечетные функции. 
Представим усредненное поле в частице подобным разложением с неизвестными коэффициен-

тами alM и alE: 

 (1) (1) (1) (1)
0 1 1 1 11

1
( ) ( ) ( ) ( ) ( ) .x lM o l h lE e l h у lM е l h lE o l h
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
            E r M r N r M r N r   (19) 

Для интегрирования (11) разложим матричную функцию   ˆˆ ˆI hike    r rr r


 по ВСВФ. Используя 

ортогональность векторных сферических гармоник, получаем: 

0
ˆˆ ˆ ˆ ˆ( ) [f ( ) f ( ) ]E   f r r θ r φ ,             (20) 

где                            (1) (1)
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( 1) x y lM lEl l
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(1) (1)

1

(2 1)
ˆf ( ) ( cos sin )(π ( ) τ ( ) )

( 1) y x l lE l lM
l

l
i d d

l l






           
r ,       (22) 

πl
(1)() = Pl

1(cosθ)/sinθ и τl
(1)() = dPl

1(cosθ)/dθ — угловые функции,  = cosθ; Pl
1(cosθ) — присоеди-

ненные функции Лежандра: 
2 /2

2(1 )
P ( ) ( 1)

2 !

m m l
m l
l l m l

х d
х х

l dх






  ; θ̂  и φ̂  — единичные векторы в направ-

лениях, определяемых полярным  и азимутальным  углами рассеяния. Коэффициенты разложения 
dlM и dlE, учитывающие многократное рассеяние волн, связаны с коэффициентами alm и alE, опреде-
ляющими усредненное внутреннее поле (19): 

dlM = blMalM, dlE = blEalE,            (23) 
где 
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 

.      (24) 

Здесь l = x(1 + ih)jl(x(1 + ih)), l = nx(1 + ip)jl(nx(1 + ip)) — функции Риккати—Бесселя, jl — сфе-

рическая функция Бесселя, индекс l обозначает порядок функций, n = np/nh, βp = κp/nр, βh = κh/nh, 
β = (1 + iβp)/(1 + iβh). 

При zr ˆˆ   выражения (20)—(22) упрощаются:  

 0 0
1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) [ ( ) ( ) ] ( 1) (2 1)( )
2

l
x y x y lM lE
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
           f z z x z y x y .   (25) 

Здесь fx и fy — компоненты векторной амплитудной функции рассеяния, описывающие компоненты 
рассеянного излучения, поляризованного вдоль осей x и y.  

Выделим слой среды толщиной L, содержащий монослой частиц (рис. 1). Определим коэффици-
енты когерентного пропускания Тс и отражения Rс этого слоя как отношение соответствующих ин-

тенсивностей 02 /2
0 ,ˆ( ) hk L

t rI e r  излучения, исходящего от его верхней и нижней границ, к интенсивности 

|Ei(z = –L/2)|2 поля, падающего на нижнюю границу этого слоя. Выражение для Ei(z = –L/2) имеет вид:   

Ei(z = –L/2) = E0e–ikhL/2.                                                          (26) 
В результате получаем: 

Tc(q) = Tc,0e–4xqh,   Rc(q) = Rc,0e–4xqh,                                                   (27) 
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q = L/D.  
Доля излучения, рассеянного в направлении r̂ (дифференциальный коэффициент некогерентного 

рассеяния) определяется как отношение потока излучения dJinc(ȓ) от частиц, находящихся на площади 
монослоя S, “видимой” приемником (17), к потоку излучения |Ei|2S, падающему на эту площадь: 
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.   (31) 

В отличие от когерентной составляющей рассеянного поля, существующей в направлениях вол-
новых векторов падающей и зеркально отраженной волн, интенсивность некогерентной составляю-

щей в общем случае отлична от нуля в любом направлении рассеяния. При ˆ ˆr z  выражение (31) 
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упрощается:   
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2
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Коэффициент некогерентного рассеяния Finc монослоя определяется как интеграл выражения 
(30) по всем направлениям рассеяния: 

2
2 [1 1/ cos ]

,0
0 0

ˆ( ) ( , ) sinhxqrd
inc incF d r d I e d

 
             .       (33) 

Коэффициент поглощения A(q) выделенного слоя толщиной L находится из закона сохранения 
энергии: 

A(q) = 1  (Tc(q) + Rc(q) + Finc(q)).         (34) 
Возможная неточность расчета коэффициентов Tc(q), Rc(q), Finc(q) и A(q) зависит от толщины вы-

деленного слоя. Учитывая результаты по распределению ближнего поля в окрестности отдельных 
наночастиц (Ag, Au, Al) в поглощающих матрицах [28, 38], полагаем, что полученные выражения мо-
гут быть использованы для расчета этих коэффициентов с хорошей точностью, когда толщина слоя и 
размер частиц удовлетворяют выражению L/2 ≳	(0.5—2)D.  

Коэффициенты dlM и dlE определяются из (6). Для этого используются разложения поля падаю-
щей волны (18) и усредненного внутреннего поля (19). Функции Грина, входящие в (6), тоже раскла-
дываются по ВСВФ [47, 48], определенным в точке r внутри частицы, центр которой находится 
в начале координат, и в точках R + r внутри частиц, чьи центры находятся в точках R. Последние 
выражаются с использованием теоремы сложения [50] также в виде рядов ВСВФ, но с одним значе-
нием R = 0. Последовательное интегрирование получаемых выражений, учитывающее ортогональ-
ность ВСВФ, приводит к системам алгебраических уравнений для коэффициентов dlM и dlE: 
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где коэффициенты All' и Bll' определяются из выражений: 
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Коэффициенты Ми clE и clM для поля, рассеянного изолированной частицей в поглощающей среде:  
ψ ψ ψ ψ
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       (39) 

где l = x(1 + ih)hl
(1)(x(1 + ih)) — функция Риккати-Бесселя; hl

(1) — функция Ханкеля первого рода, 
индекс l обозначает порядок функций.  

Результаты расчетов и их обсуждение. Обсудим результаты расчетов, полученных в рамках 
разработанного метода, для выделенного слоя поглощающей среды с толщиной L = D, содержащего 
монослой сферических частиц. Влияние границ слоя и его подложки не учитываем, рассматриваем 
только собственный оптический отклик системы “монослой сферических частиц в поглощающей 
среде”. Определяем оптические свойства частично упорядоченных монослоев, т. е. с ближним поряд-
ком в распределении частиц. РФР, моделирующие такие монослои, рассчитывались итерационным 
методом [46] в приближении Перкуса—Йевика [51]. Это приближение обеспечивает хорошую точ-
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ность расчета РФР в широком диапазоне факторов заполнения монослоя и может быть использовано 
для монослоев с  до 0.65. 

На рис. 2 показаны спектральные зависимости оптических характеристик (коэффициентов Tc, Rc, 
Finc и A), рассчитанных в рамках разработанного метода, для частично упорядоченного монослоя на-
ночастиц серебра в поглощающей матрице фталоцианина меди (CuPc). Видно, что с ростом  плаз-
монные резонансы в спектрах этих коэффициентов, возникающие в области ~0.45    0.52 мкм, 
смещаются в длинноволновую область, т. е. имеет место красное смещение полосы резонанса. Для 
коэффициентов Tc и Rc наблюдается монотонная зависимость минимума и максимума резонанса от . 
Результаты для когерентного пропускания, рассчитанные с учетом многократного рассеяния, имеют 
качественное согласие с экспериментальными данными [52] по красному смещению резонанса с ро-
стом фактора заполнения монослоя для системы полидисперсных наночастиц золота в свето-
поглощающей фуллереновой (C60) матрице. Для коэффициентов Finc и A имеют место немонотонные 
зависимости. При этом для Finc() и A() максимумы достигаются при  = 0.1 и  = 0.3.  

Результаты расчетов коэффициента поглощения в интерференционном приближении (ИП) пред-
ставлены на рис. 2, г для факторов заполнения  = 0.01, 0.1, 0.2, 0.3. Это приближение учитывает 
только интерференцию однократно рассеянных волн в дальней зоне монослоя. При расчете в ИП по-
лагаются равными нулю. На вставке рис. 2, г показаны зависимости длины волны max максимума ре-
зонанса поглощения от фактора заполнения монослоя, рассчитанные с учетом (ККП) и без учета 
(ИП) многократного рассеяния волн. Сравнение результатов расчетов показывает, что многократное 
суммы в системах уравнений (35) и (36), которые определяют вклад многократного рассеяния волн,  

 
 

            

     
 

Рис. 2. Спектральные зависимости коэффициентов Tc (а), Rc (б), Finc (в) и A (г) частично упорядочен-
ного монослоя наночастиц Ag диаметрами D = 10 нм в матрице  CuPc, рассчитанные в ККП (сплош-
ные линии); г — зависимости A(), рассчитанные в ИП (штриховые линии); в (вставка) — зависимо-
сти показателя преломления Ag [53] и CuPc [27]; г (вставка) — зависимости длин волны максимума 
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рассеяние оказывает сильное влияние на оптические свойства системы. Рассчитанная в ККП зависи-
мость длины волны max от фактора заполнения монослоя более чувствительна к изменению  в об-
ласти больших значений ( = 0.3—0.6) по сравнению с малыми и средними ( = 0.01—0.3). Спек-
тральное положение максимума резонанса, рассчитанное в ИП, практически не зависит от фактора 
заполнения, а зависимость A() принимает физически некорректные значения (A<0 или A>1) в обла-
сти резонанса для средних и больших  (см. штриховую линию в диапазоне ~0.47~0.52 мкм для 
 = 0.3 на рис. 2, г). По этой причине не приводим результаты расчетов в ИП для больших . 
На рис. 3 проиллюстрировано влияние диаметра наночастиц на поведение резонанса поглощения 
композитной системы. На рис. 3 (a—в) показаны спектральные зависимости коэффициента A частич-
но упорядоченного монослоя наночастиц Au с диаметрами D = 6, 20 и 30 нм в светопоглощающей 
фуллереновой (C60) матрице, рассчитанные в ККП при разных факторах заполнения. Зависимости 
max() представлены на рис. 3, г. Отметим, что в области ≳0.5 мкм, где мнимая часть показателя 
преломления C60 уменьшается, влияние многократного рассеяния возрастает. Результаты расчетов 
показывают, что с ростом диаметра частиц зависимость max() становится менее чувствительной к 
изменениям . При  = ~0.56—0.57 мкм для всех рассматриваемых диаметров частиц в спектрах име-
ется излом, из которого с увеличением концентрации частиц и/или диаметра рождается дополни 
тельный максимум. С ростом диаметра частиц основной максимум уменьшается, размывается и ис-
чезает при больших D и , система выходит из условий формирования плазмонного резонанса нано-
частицы. Трансформация резонансной кривой с ростом диаметра частиц обусловлена увеличением 
роли в оптическом отклике системы взаимодействия мультиполей более высоких порядков между 
большими частицами по сравнению с меньшими.  

 

       
 

 

Рис. 3. Спектральные зависимости  коэффициентов  A  частично упорядоченного  монослоя нано-
частиц Au с диаметром  D = 6 (а), 20 (б)  и 30 нм (в)  в фуллереновой (C60) матрице, рассчитанные  
в ККП  при разных ;  г — зависимости длин волн  max максимума  резонанса  поглощения  от ; 

 на вставке — спектральные зависимости показателей преломления Au [53] и C60 [54] 
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Заключение. Разработан метод описания оптических свойств освещаемого по нормали моно-
слоя однородных сферических частиц (поглощающих или непоглощающих) в однородной светопо-
глощающей среде. Он основан на квазикристаллическом приближении, приближении среднего поля 
и разложении электромагнитных полей и тензорной функции Грина по векторным сферическим вол-
новым функциям. Такие разложения позволяют применять метод для исследования монослоев в ши-
роком интервале значений факторов заполнения и с практически любыми параметрами дифракции 
частиц. Ограничения могут быть обусловлены численной реализацией алгоритмов расчета. Точность 
результатов зависит от числа учитываемых коэффициентов разложения. Для бóльших параметров 
дифракции частиц должно быть учтено бóльшее число этих коэффициентов.  

Проведено качественное сравнение результатов, полученных в рамках разработанного метода,  
с известными экспериментальными данными о поведении полосы плазмонного резонанса для систем, 
состоящих из монослоев наночастиц благородных металлов в поглощающих матрицах. Показано, что 
для описания экспериментально наблюдаемого при увеличении коэффициента заполнения монослоя 
красного смещения полосы необходимо учитывать многократное рассеяние волн. Зависимость длины 
волны max максимума резонансной полосы поглощения от фактора заполнения  более чувствительна 
к его изменению в области больших значений ( = 0.3—0.6) по сравнению с областью малых и сред-
них ( = 0.01—0.3), что отражает возрастающий вклад многократного рассеяния в оптический отклик 
системы с увеличением концентрации плазмонных частиц. С ростом диаметра наночастиц зависи-
мость max() становится менее чувствительной к изменениям . Полученные результаты могут быть 
использованы для разработки тонкопленочных оптических элементов, электрооптических устройств, 
химических фотореакторов и других устройств на основе монослоев частиц в поглощающих средах.  

Работа выполнена при частичной финансовой поддержке Белорусского республиканского фонда 
фундаментальных исследований (проект № Ф23КИ-020). 
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