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Посредством моделирования подтверждена поляризационная селективность двойной ДНК-
подобной спирали относительно волн с левой и правой циркулярной поляризацией при резонансе, ха-
рактерном для периодической структуры. В качестве примера рассмотрены спирали различной 
длины, состоящие из двух с половиной и двадцати с половиной витков, при этом длина волны пада-
ющего поля приблизительно равна длине витка спирали. Эффект состоит в кардинально различной 
способности двойной ДНК-подобной спирали отражать волны с правой или левой циркулярной поля-
ризацией при рассматриваемом резонансе. Преобладающую интенсивность имеет отраженная 
волна с таким направлением циркулярной поляризации, при котором электрический вектор закручен 
в пространстве в противоположном направлении относительно двойной спирали. На основе двой-
ной ДНК-подобной спирали может быть создан поляризатор электромагнитных волн, преобразую-
щий падающую линейно поляризованную волну в отраженную волну с циркулярной поляризацией. 
Рассчитаны электромагнитные силы взаимодействия между спиральными нитями при трех состо-
яниях поляризации падающей волны, чем также подтверждается поляризационная селективность 
двойной ДНК-подобной спирали как элемента метаматериалов и как объекта с большими возмож-
ностями использования в оптике. 

Ключевые слова: ДНК-подобная спираль, поляризация, поляризационная селективность, мета-
материал, метаповерхность. 
 

The polarization selectivity of a double DNA-like helix with respect to waves with left and right circular 
polarization at a resonance characteristic of the periodic structure is confirmed by modeling. As an exam-
ple, helices of various lengths consisting of two and a half and twenty and a half turns are considered, while 
the wavelength of the incident field is approximately equal to the length of the helix turn. The effect consists 
in a radically different ability of a double DNA-like helix to reflect waves with right or left circular polariza-
tion at the resonance under consideration. The predominant intensity is a reflected wave with such a direc-
tion of circular polarization, in which the electric vector is twisted in space in the opposite direction relative 
to the double helix. Consequently, on the basis of a double DNA-like helix, an electromagnetic wave polariz-
er can be created that converts an incident linearly polarized wave into a reflected wave with circular polar-
ization. The electromagnetic forces of interaction between helix strands at three states of polarization of the 
incident wave are calculated, which also confirms the polarization selectivity of a double DNA-like helix as 
an element of metamaterials and as an object with great possibilities of use in optics.  
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Введение. Современная оптика не только исследует природные кристаллы, продолжая традиции 
классической науки, но и одновременно проектирует свойства новых типов искусственных сред. 
Среди искусственных структур важное место занимают метаматериалы (ММ), название которых обу-
словлено их особыми свойствами, экзотическими для природных веществ. Термин “мета” в переводе 
с греческого означает “вне”, что отражает экстраординарные свойства ММ и их невхождение в круг 
естественных объектов. К необычным свойствам ММ относятся отрицательные значения диэлектри-
ческой и магнитной проницаемостей, проявляющиеся одновременно, отрицательный показатель пре-
ломления, сильные киральные свойства и др. Поскольку речь идет о материале, для характеристики 
его строения по аналогии с кристаллами можно использовать термин “мета-атомы”. Это микрорезо-
наторы с желательными и проектируемыми свойствами в оптическом, терагерцовом и микроволно-
вом диапазонах. В отличие от фотонных кристаллов элементы ММ расположены достаточно плотно 
в пространстве, что позволяет рассматривать их в некотором приближении как сплошные среды.  
В последние годы особое значение приобрели предельно тонкие ММ, или метаповерхности, состоя-
щие только из одного слоя искусственных частиц (мета-атомов). Этого слоя микрорезонаторов до-
статочно для получения проектируемых свойств, что повышает эффективность метаповерхностей без 
снижения их функциональности [1, 2].  

Теоретическое обоснование. Управление поляризацией света является одной из классических 
задач оптики, которая приобрела новое звучание после создания лазеров. Например, в книге под ре-
дакцией академика АН БССР Б. И. Степанова и доктора физико-математических наук А. А. Богуша [3] 
одна из глав посвящена поляризации излучения, генерируемого растворами сложных молекул (авто-
ры В. А. Пилипович, А. А. Ковалев). Метаматериалы, а в последние годы и метаповерхности создают 
новые возможности управления электромагнитными волнами различных частотных диапазонов, 
включая преобразование поляризации [4—10].  

Со времени открытия структуры молекулы ДНК Дж. Уотсоном и Ф. Криком [11] объектом инте-
реса исследователей являются механизмы хранения и передачи генетической информации этой моле-
кулой [12]. Однако возможности применения молекулы ДНК не исчерпываются генетическим аспек-
том. В работах [13—18] показано, что двойная ДНК-подобная спираль в силу особенных электромаг-
нитных свойств имеет хорошие возможности применения в качестве элемента ММ и метаповерхно-
стей. В частности, при соответствующем масштабировании двойная ДНК-подобная спираль может 
играть роль поляризатора электромагнитных волн различных частотных диапазонов, преобразуя па-
дающую линейно поляризованную волну в отраженную волну с циркулярной поляризацией. В насто-
ящей работе посредством моделирования на очередном этапе подтверждается поляризационная се-
лективность двойной ДНК-подобной спирали относительно волн с левой и правой циркулярной по-
ляризацией при резонансе, характерном для периодической структуры.  

При теоретическом исследовании поляризационной селективности двойной ДНК-подобной спи-
рали используется универсальный подход, основанный на уравнениях Максвелла и потенциалах 
электромагнитного поля. Такой метод позволяет рассматривать ДНК-подобные спирали в любом 
диапазоне электромагнитных волн при условии взаимно согласованного масштабирования размеров 
спирали и резонансной длины волны.  

На рис. 1 схематически изображена двойная ДНК-подобная спираль в поле падающей линейно-
поляризованной электромагнитной волны с волновым вектором k и вектором напряженности элек-
трического поля E, распространяющаяся навстречу оси Z. Спираль имеет радиус r, шаг h, угол подъ-
ема  и взаимное смещение Xs двух нитей вдоль их общей оси X. Участки спирали с максимальной 
плотностью индуцированных электрических зарядов обозначены dq, dq1 и токов — Idl, I1dl1. Направ-
ление токов в двух спиральных нитях зависит от способа возбуждения двойной спирали. Для воз-
буждаемой моды колебаний, когда длина волны приблизительно равна периоду спирали, электриче-
ские токи в двух нитях проходят в одном направлении относительно оси спирали. Сила dF, действу-
ющая на элемент второй нити, направлена вдоль радиуса двойной спирали и свидетельствует о вза-
имном отталкивании двух нитей. Отраженная волна с левоциркулярной поляризацией характеризует-
ся волновым вектором kr и вектором напряженности электрического поля Er и распространяется 
вдоль оси Y. 

Важной особенностью ДНК-подобных спиралей, приводящей к их поляризационной селективно-
сти, является сбалансированность, или оптимальность таких спиралей в плане сравнения их диэлек-
трических и магнитных свойств. Это свойство означает, что при рассматриваемом резонансе, харак-
терном для периодической структуры, в каждой половине витка ДНК-подобной спирали под дей-
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ствием падающей волны одновременно возникают электрический дипольный момент p и магнитный 
момент m, удовлетворяющие соотношению  

p = m/c,                                                                          (1) 
где c — скорость света в вакууме. Эти индуцированные моменты являются одинаково значимыми,  
т. е. вносят равный по абсолютной величине вклад в отраженную волну. Фаза излучаемых полей от-
личается на /2 для полей, создаваемых электрическим дипольным моментом и магнитным момен-
том половины витка двойной спирали. Это свойство баланса диэлектрических и магнитных моментов 
отдельной ДНК-подобной спирали является перспективным и приводит к преимуществу ДНК-
подобных спиралей при создании ММ и метаповерхностей. Указанная сбалансированность диэлек-
трических и магнитных моментов спиральных ДНК-подобных микрорезонаторов может привести, 
например, к равенству диэлектрической и магнитной проницаемостей ММ или метаповерхности 
в целом. Если при создании ММ используются в равной концентрации ДНК-подобные спирали 
с правосторонним и левосторонним закручиванием, то в спроектированном образце хиральные свой-
ства являются скомпенсированными. Выполнение равенства  =  означает, что такой ММ характе-
ризуется волновым сопротивлением, равным импедансу свободного пространства, что приводит 
к отсутствию волны, отраженной от его поверхности. Это свойство подавления отраженной волны 
от ММ, рассматриваемого в качестве сплошной среды, аналогично эффекту Керкера для частиц 
с равными  и . Указанный эффект описан в теории рассеяния Ми и проявляется отсутствием волны, 
отраженной частицей назад [19].   

 

 

Рис. 1. Двойная ДНК-подобная спираль в поле падающей линейно поляризованной  
электромагнитной волны  

 
Введем угол подъема спирали  как угол, образованный касательной к спиральной линии и 

плоскостью, ортогональной оси спирали (рис. 1). Расчеты показывают, что угол подъема является 
универсальной характеристикой электромагнитных свойств спирали, поскольку именно его значение 
фигурирует в формулах для электромагнитных сил, а не радиус r и шаг спирали h в отдельности. Это 
свойство универсальности угла подъема спирали упрощает изучение спиралей, которые проявляют 
резонансные свойства в различных диапазонах длин волн, включая нанометровый диапазон. В этом 
случае спирали, имеющие разные радиусы и периоды (шаги), но одновременно характеризующиеся 
одинаковым углом подъема, схожи не только в геометрическом, но и в электродинамическом смыс-
ле. Это облегчает изучение и применение спиралей, в том числе ДНК-подобных, в устройствах, рабо-
тающих в различных частотных диапазонах электромагнитного поля.   

Угол подъема спирали ДНК не измеряется непосредственно в эксперименте, однако может быть 
рассчитан на основе экспериментальных данных для радиуса и шага спирали. Например, в работе [11] 
угол подъема exp = 28.4. В других публикациях угол подъема спирали ДНК 22—32. Теоретический 
подход, согласно трем независимым методам классической электродинамики, дает оптимальное зна-
чение opt = 24.5, при котором проявляются сбалансированность и поляризационная селективность 
двойной спирали. Это значение получено в [13—18] тремя способами: в рамках теории дипольного 
излучения, согласно энергетическому подходу и в соответствии со спиральной моделью молекул  
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кирального вещества [20]. Такая повторяемость результатов указывает на обоснованный характер 
значения угла подъема спирали opt.  

Нами рассматривается ДНК-подобная спираль при резонансе, характерном для периодической 
структуры, когда длина волны электромагнитного поля приблизительно равна периоду спирали P:  

res  P,                                                  (2) 

где 2 2(2 )P r h   . Спираль активируется циркулярно поляризованной электромагнитной волной, 

падающей ортогонально ее оси (рис. 1). Существуют два разных определения знака (направления 
волны) с циркулярной (круговой) поляризацией. Согласно обычно используемому в радиофизике 
определению, волна имеет правую круговую поляризацию, если вектор E вращается по часовой 
стрелке с течением времени для наблюдателя, смотрящего вслед волне. В оптике и физической хи-
мии принято другое определение: волна имеет правую циркулярную поляризацию, если вектор E об-
разует правую спираль в пространстве. Преимуществом второго определения является его независи-
мость от позиции наблюдателя. Используем второе определение знака волны с циркулярной поляри-
зацией, более распространенное в оптике.  

Напряженность электрического поля право- (+) и левоциркулярно (–) поляризованных волн, рас-
пространяющихся в вакууме вдоль оси OZ, можно записать в виде 

 0 0
0 exp ( ) ,

2

i
E E i kz t   

x y
           (3) 

где E0 — амплитуда волны; x0, y0 — единичные векторы, направленные вдоль осей OX и OY;  

i — мнимая единица; коэффициент 2  введен для нормировки вектора циркулярной поляризации;  
k = ω/с — волновое число; ω — циклическая частота.  

В работах [13—18, 21] показано, что двойные ДНК-подобные спирали обладают избирательны-
ми (селективными) свойствами для право- и левоциркулярно поляризованных электромагнитных 
волн, если выполняется условие резонансного взаимодействия (2). В этом случае двойная ДНК-
подобная спираль с правым направлением закручивания сильно взаимодействует с левоциркулярно 
поляризованной волной. При этом она практически не взаимодействует с волной, имеющей противо-
положную (правую) циркулярную поляризацию. Таким образом, по отношению к волне с правоцир-
кулярной поляризацией спираль можно считать “прозрачной”. Что касается излучаемой или отра-
женной волны, то двойные ДНК-подобные спирали при рассматриваемом резонансе могут создавать 
такие волны только с левоциркулярной поляризацией.  

Таким образом, как показано в [13], ключевыми моментами для эффекта поляризационной се-
лективности являются определенный угол подъема спирали, близкий к opt = 24.5, условие резо-
нансного взаимодействия (2) и двухнитевая форма спирали, которая приводит к более высокой сим-
метрии свойств при вращениях вокруг оси спирали. Важным, но не обязательным условием для 
наблюдения эффекта поляризационной селективности является электропроводность спиралей. Эф-
фект более выражен для тока проводимости, однако он может проявляться и для тока поляризации.   

Моделирование двойной ДНК-подобной спирали, состоящей из двух с половиной витков,  
в микроволновом диапазоне. Относительно короткие (2.5 витка) ДНК-подобные спирали представ-
ляют интерес в первую очередь как элементы ММ и метаповерхностей. Однако результаты модели-
рования существенно не изменяются для различного числа витков.  

Угол наклона спирали  при условии резонанса (2) — универсальная характеристика электро-
магнитных свойств двойной ДНК-подобной спирали. Это позволяет масштабировать спираль с углом 
подъема exp = 28.4, характерным для реальной спирали ДНК, для моделирования ее электромагнит-
ных свойств в миллиметровом диапазоне длин волн электромагнитного поля. При наличии электро-
проводности спирали и резонанса (2), когда длина волны электромагнитного поля приблизительно 
равна периоду спирали, моделируемая спираль подобна двойной спирали ДНК не только в геометри-
ческом, но и в электродинамическом смысле. 

Представлены результаты моделирования проводящей двойной ДНК-подобной спирали, состо-
ящей из 2.5 витков и имеющей параметры r = 1 мм, h = 3.4 мм, P = 7.14 мм, xs = 0.5 мм и угол подъ-
ема exp = 28.4. Частично используются результаты [21], представленные в более компактной форме. 
Исследуемая спираль находится в поле падающей электромагнитной волны (3), которая попеременно 
имеет левую или правую циркулярную поляризацию. Волновой вектор падающей волны направлен 
ортогонально оси двойной спирали, т. е. рассматривается случай нормального падения. Длина волны 
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падающего электромагнитного поля удовлетворяет условию резонанса (2). Следовательно, частота 
падающей волны близка к res  42 ГГц. 

Согласно расчетам, когда на спираль падает волна с левоциркулярной поляризацией, длина вол-
ны которой удовлетворяет условию (2), в спиральных нитях возникают электрические токи, прохо-
дящие в одном направлении относительно оси спирали. Такое распределение токов и зарядов схема-
тически представлено на рис. 1. В альтернативном случае, если на спираль падает волна с правоцир-
кулярной поляризацией, электрические токи примерно в два-три раза слабее, чем токи в первом слу-
чае. Кроме того, во втором случае для правоциркулярно поляризованной падающей волны электри-
ческие токи, возбуждаемые в двух нитях, проходят в противоположных направлениях относительно 
оси спирали. Поля, создаваемые взаимно противоположными токами, практически полностью ком-
пенсируются. Следовательно, двойная ДНК-подобная спираль, рассматриваемая как единое целое, 
как система двух спиральных нитей, сильно взаимодействует с волной, имеющей левоциркулярную 
поляризацию, и практически не взаимодействует с волной с правоциркулярной поляризацией. 

Кардинально различное возбуждение токов в двойной ДНК-подобной спирали под действием 
падающих волн с лево- и правоциркулярной поляризацией приводит к существенно различным свой-
ствам волны, отраженной двойной спиралью. На рис. 2 показаны интенсивность и эллиптичность от-
раженной волны в зависимости от частоты, если двойная спираль находится в поле падающих волн  
с лево- или правоциркулярной поляризацией. Вблизи резонансной частоты res  42 ГГц интенсив-
ность отраженной волны значительно преобладает в случае падения волны с левоциркулярной поля-
ризацией. При этом эллиптичность отраженной волны принимает значения, близкие к единице. Это 
указывает на сильную отраженную волну с левоциркулярной поляризацией, такой же, как у падаю-
щей волны.  

 

 

Рис. 2.  Частотная зависимость  интенсивности  I (а)  и  эллиптичности   (б) отраженной  волны  
для двойной ДНК-подобной спирали в случаях падения волн с лево- (1) и правоциркулярной (2)  

поляризацией 
 

В другом случае, когда двойная спираль находится в поле падающей волны с правоциркулярной 
поляризацией, имеет место слабое взаимодействие между волной и спиралью. Отраженная волна  
в диапазоне частот 35—50 ГГц в 25—80 раз слабее по интенсивности, чем при падении волны  
с левоциркулярной поляризацией. Эллиптичность отраженной волны также может быть близка  
к единице вблизи резонансной частоты, что подтверждает циркулярную поляризацию отраженной 
волны, такую же, как у падающей волны. Однако это свойство не имеет существенного значения из-
за очень низкой интенсивности отраженной волны.  

Особый интерес вызывает сравнение отраженных волн для двойной и одинарной (однонитевой) 
спирали с углом подъема (28.4). Как показано в [21], резонансный характер отражения волны с ле-
воциркулярной поляризацией исчезает для однонитевой спирали. Интенсивность отраженной волны 
для одинарной спирали в диапазоне 35—50 ГГц в 3—5 раз меньше, чем для двойной спирали. При 
этом отраженная волна для однонитевой спирали имеет эллиптическую поляризацию. Если одинар-
ная спираль находится в поле падающей волны с правоциркулярной поляризацией, интенсивность 
отраженной волны в рассматриваемом диапазоне частот остается очень низкой, примерно такой же, 
как для двойной спирали. При этом отраженная волна для одинарной спирали имеет эллиптическую 
поляризацию в этом диапазоне частот. Указанное исчезновение эффекта поляризационной селектив-

35                    40                    45                    50           35                   40                    45                    50  f, ГГц 

1 
 
 
2 

6
 

5
 

4
 

3
 

2
 

1
 

0

2.0

1.6

1.2

0.8

0.4

0

I, 10–5                                            а                                                                                    б   

2 
 
 
 
 
1 



СЕМЧЕНКО И. В. и др. 
 

334 

ности в случае однонитевой спирали можно объяснить более низким порядком симметрии такой 
спирали по сравнению с двухнитевой спиралью.  

Моделирование более длинной двойной ДНК-подобной спирали, состоящей из 20.5 витков. 
Проведено моделирование для более длинной двойной ДНК-подобной спирали, содержащей 20.5 
витков. Остальные параметры спирали такие же, как в случае 2.5 витков. Такие ДНК-подобные спи-
рали с большей длиной по сравнению с рассмотренными выше представляют интерес не только как 
элементы ММ и метаповерхностей, но и как модели реальных молекул ДНК. Рассмотрим не только 
поляризационную селективность двойной ДНК-подобной спирали, но и равновесие такой спирали.  
С этой целью рассчитаем силы взаимодействия нитей в различных областях спирали при падении 
волн с различными поляризациями — линейной, лево- и правоциркулярной. Результаты моделирова-
ния сил взаимодействия существенно не изменяются для другого количества витков спирали. 

Рассмотрим центр двойной спирали. Поскольку двойная спираль состоит из нечетного числа по-
лувитков (содержит 41 полувиток), в ее центре расположен максимум плотности электрических то-
ков, проходящих в двух нитях. Следовательно, центральная область двойной спирали интересна  
в плане рассмотрения магнитного взаимодействия двух нитей, т. е. взаимодействия токов в этих нитях.  

 

 

Рис. 3.  Силы  радиального  отталкивания,  действующие  на  нити  спирали  в  ее  центре  (в области 
с максимальной плотностью электрических токов)  при падении волн с различными поляризациями: 
1-я нить, правая поляризация (1); 2-я нить, правая поляризация (2); 1-я нить, линейная поляризация (3); 
2-я нить, линейная поляризация (4); 1-я нить, левая поляризация (5); 2-я нить, левая поляризация (6) 

 
На рис. 3 показана частотная зависимость радиальных компонент сил, действующих на единич-

ные элементы двух нитей спирали в ее центре при падении волн с различной поляризацией. Знаки 
сил с учетом выбора системы координат свидетельствуют о взаимном отталкивании двух нитей.  
Резонансная частота составляет 40.65 ГГц, т. е. меньше по сравнению со спиралью, состоящей из 
2.5 витков, для которой res  42 ГГц. Такое снижение резонансной частоты можно объяснить более 
значительным замедлением электромагнитных волн в длинной ДНК-подобной спирали. Имеет место 
резонансное взаимное отталкивание двух спиральных нитей, наиболее выраженное при падении на 
спираль левоциркулярно поляризованной волны. В этом случае радиальные силы имеют наибольшую 
величину. Если спираль находится в поле волны с линейной или правоциркулярной поляризацией,  
то резонанс проявляется слабее, силы отталкивания уменьшаются в 2.5—5 раз. 

Интересной особенностью является взаимное отталкивание токов, проходящих в двух спираль-
ных проводниках в одном направлении относительно оси двойной спирали. Из классической элек-
тродинамики известно, что параллельные токи с одинаковым направлением взаимно притягиваются. 
Это свойство справедливо для прямолинейных токов. Наши расчеты показывают, что для токов, про-
ходящих в спиральных проводниках с общей осью, возможно как взаимное притяжение, так и оттал-
кивание. Направление радиальных сил зависит от угла подъема двойной спирали [22]. Если угол 
подъема спирали 38, в том числе значения 28.4 и 24.5, характерные для ДНК-подобных спиралей, 
имеет место взаимное отталкивание токов. Такое отталкивание одинаково направленных спиральных 
токов показано ранее в [22] для полуволнового резонанса, при котором длина волны электромагнит-
ного поля приблизительно равна полной длине одной нити двойной ДНК-подобной спирали. Сейчас 
такое взаимное отталкивание одинаково направленных спиральных токов в двойной ДНК-подобной 

40.2          40.4             40.6               40.8              41.0      f, ГГц 

1 
 
5 
3 
 
42 

6 

30

20

10

0

–10

–20

–30

–40

–50

Сила, фН 

 



ПОЛЯРИЗАЦИОННАЯ СЕЛЕКТИВНОСТЬ ДВОЙНОЙ ДНК-ПОДОБНОЙ СПИРАЛИ 
 

335

спирали подтверждено в условиях другого, более высокочастотного резонанса. Такой резонанс ха-
рактерен для длинных периодических структур и проявляется, когда длина волны электромагнитного 
поля приблизительно равна длине витка двойной ДНК-подобной спирали. 

При резонансе, рассматриваемом в данной работе, в двойной ДНК-подобной спирали чередуют-
ся области максимальных плотностей электрического тока и заряда. Для случая взаимодействия за-
рядов в двух спиральных нитях рассмотрим область ниже центра спирали на четверть витка. В этой 
области плотность электрического заряда максимальная. При возбуждаемой моде колебаний, когда 
токи в двух нитях проходят в одном направлении относительно оси двойной спирали, заряды в этих 
нитях имеют одинаковые знаки в точках, лежащих симметрично относительно оси спирали. Таким 
образом, область двойной спирали ниже ее центра на четверть витка важна для рассмотрения элек-
трического взаимодействия двух нитей, т. е. взаимодействия зарядов в этих нитях.   

На рис. 4 показаны радиальные компоненты сил, действующих на единичные элементы двух ни-
тей спирали, в области ниже ее центра на четверть витка при падении волн с различными поляриза-
циями в зависимости от частоты волны. Знаки сил с учетом выбранной системы координат подтвер-
ждают взаимное отталкивание двух нитей. Как и для центральной области спирали, из графиков сле-
дует резонансное взаимное отталкивание двух спиральных нитей, сильнее проявляющееся при паде-
нии на спираль волны с левоциркулярной поляризацией. Для такой волны радиальные силы имеют 
наибольшую величину. Если на спираль падают волны с линейной или правоциркулярной поляриза-
цией, то резонансные силы отталкивания уменьшаются в 5—10 раз.  
 

 
 

Рис. 4. Силы радиального отталкивания, действующие на нити спирали ниже ее центра  
на  четверть  витка  (в  области  с  максимальной  плотностью  электрических  зарядов)  
при  падении  волн  с различными  поляризациями: 1-я  нить,  правая  поляризация  (1);  
2-я нить, правая поляризация (2); 1-я нить, линейная поляризация (3); 2-я нить, линейная  

поляризация (4); 1-я нить, левая поляризация (5); 2-я нить, левая поляризация (6) 
 

Таким образом, моделирование сил взаимодействия нитей в двойной ДНК-подобной спирали 
подтверждает поляризационную селективность такой спирали и существенно более сильную под-
верженность спирали действию волны с левоциркулярной поляризацией.  

Рассмотренный эффект поляризационной селективности по отношению к волнам с левой и пра-
вой циркулярной поляризацией может проявляться в полной мере именно для двойной ДНК-
подобной спирали. Этот эффект связан с прозрачностью двойной ДНК-подобной спирали по отно-
шению к волне с циркулярной поляризацией определенного знака, если длина волны электромагнит-
ного поля приблизительно равна длине витка спирали. Одновременно спираль сильно взаимодей-
ствует с волной, имеющей циркулярную поляризацию другого знака. Для этой сильно влияющей 
волны электрический вектор закручен в пространстве в противоположном направлении относительно 
самой спирали. Следовательно, двойная ДНК-подобная спираль может быть использована в качестве 
преобразователя поляризации из линейной в циркулярную при отражении волны. Эффект подтвер-
ждается не только исследованием волн, отраженных спиралью, но и моделированием сил взаимодей-
ствия спиральных нитей под действием волн с различными поляризациями.  
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Эффект поляризационной селективности может быть достигнут в различных частотных диапазо-
нах электромагнитного поля путем масштабирования спирали с сохранением ее угла подъема. Мас-
штабированием спиралей с учетом электродинамического подобия с помощью доступных техноло-
гий можно получать метаматериалы и метаповерхности, резонансные для различных частот, в том 
числе для микроволн, терагерцовых частот и оптического диапазона. ДНК-подобные спирали для 
микроволнового диапазона изготавливались путем механического закручивания проволоки, затем 
они помещались в пластину пенопласта, который играл роль радиопрозрачной подложки. Если такие 
спирали соединялись в трехмерные структуры, необходимая прочность достигалась с помощью кар-
тонных цилиндров, на которые были намотаны спирали [13—18]. ДНК-подобные спирали, имеющие 
резонансные свойства в терагерцовом диапазоне, могут быть изготовлены в рамках импринт-
нанолитографии с помощью уникального метода трехмерного наноструктурирования, разработанно-
го под руководством академика РАН В. Я. Принца и известного как принц-технология. В [23, 24] из-
ложены результаты исследования метаматериала для терагерцового диапазона на основе парных од-
новитковых спиралей с правосторонним и левосторонним закручиванием. Использование самих мо-
лекул ДНК при их металлизации позволяет повысить резонансную частоту метаматериалов и мета-
поверхностей вплоть до глубокого (экстремального) УФ-диапазона. Электропроводность реальной 
молекулы ДНК в настоящее время еще изучается, а современные исследования показывают, что мо-
лекула ДНК близка по своим свойствам к нелинейному полупроводнику. В то же время электропро-
водность ДНК-подобных спиралей может быть увеличена путем металлизации, что расширяет воз-
можности их использования, в том числе в нанометровом диапазоне длин волн. Интерес именно к 
ДНК-подобным спиралям, занимающим важное место среди других возможных микрорезонаторов 
для метаматериалов и метаповерхностей, обусловлен также развитием природоподобных технологий 
и междисциплинарных исследований. Кроме того, молекулы ДНК обладают способностью к само-
сборке и упорядочению в двумерных и трехмерных структурах [25]. В связи с этим метаматериалы и 
метаповерхности на основе ДНК-подобных спиралей в силу сбалансированности их диэлектрических 
и магнитных свойств могут служить хорошим инструментом управления интенсивностью, фазой, по-
ляризацией и направлением распространения электромагнитных волн различных диапазонов. 

Заключение. Проведено моделирование двойных ДНК-подобных спиралей различной длины, 
состоящих из двух с половиной и двадцати с половиной витков, при этом длина волны воздействую-
щего электромагнитного поля приблизительно равна длине витка спирали. Рассчитаны интенсив-
ность и эллиптичность отраженной волны в случае падения на двойную ДНК-подобную спираль 
волн с лево- и правоциркулярной поляризацией. Вычислены силы радиального отталкивания, дей-
ствующие на нити спирали при падении волн с различной поляризацией: линейной, лево- и право-
циркулярной. При моделировании сил рассмотрены две области двойной спирали, в которых макси-
мальную плотность имеют либо электрические токи, либо электрические заряды. Подтверждена по-
ляризационная селективность двойной ДНК-подобной спирали относительно волн с лево- и право-
циркулярной поляризацией при рассматриваемом резонансе, характерном для периодической струк-
туры. Двойная ДНК-подобная спираль наиболее сильно взаимодействует с левоциркулярно поляри-
зованной волной, для которой электрический вектор закручен в пространстве в противоположном 
направлении относительно спирали. Исследуемая поляризационная селективность спирали проявля-
ется как при отражении волн, так и при взаимодействии спиральных нитей. Следовательно, на основе 
двойных ДНК-подобных спиралей при их масштабировании могут быть созданы поляризаторы элек-
тромагнитных волн для различных частотных диапазонов электромагнитного поля. В более широком 
плане двойные ДНК-подобные спирали с учетом сбалансированности их диэлектрических и магнит-
ных свойств имеют хорошие перспективы использования в оптике, в том числе как элементы метама-
териалов и метаповерхностей. 

Работа выполнена в рамках ГПНИ “Конвергенция-2025” (подпрограмма “Междисциплинарные 
исследования и новые зарождающиеся технологии”) и частично в рамках проектов Белорусского 
республиканского фонда фундаментальных исследований Ф22КИТГ-021 и Ф23КИ-027.  
 
[1] V. S. Asadchy, A. Díaz-Rubio, S. A. Tretyakov. Nanophotonics, 7, N 6 (2018) 1069—1094,  
doi: 10.1515/nanoph-2017-0132 
[2] V. S. Asadchy, M. Albooyeh, S. N. Tcvetkova, A. Díaz-Rubio, Y. Ra’di, S. A. Tretyakov. Phys. 
Rev. B, 94 (2018) 075142 



ПОЛЯРИЗАЦИОННАЯ СЕЛЕКТИВНОСТЬ ДВОЙНОЙ ДНК-ПОДОБНОЙ СПИРАЛИ 
 

337

[3] Проблемы современной оптики и спектроскопии, под ред. акад. АН БССР Б. И. Степанова и д-ра 
физ.-мат. наук А. А. Богуша, Минск, Наука и техника (1980) 173—186 
[4] Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, A. Zhang. J. Appl. Phys., 117 (2015) 
044501, doi: 10.1063/1.4906220 
[5]  C. Wu, H. Li, X. Yu, F. Li, H. Chen, C. T. Chan. Phys. Rev. Lett., 107 (2011) 177401,  
doi: 10.1103/PhysRevLett.107.177401   
[6] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden,  
M. Wegener. Science, 325, N 5947 (2009) 1513—1515, doi: 10.1126/science.1177031   
[7] J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, M. Wegener. Adv. Opt. Mater., 3, N 10 
(2015) 1411—1417, doi: 10.1002/adom.201500194 
[8] S. J. Li, Y. B. Li, H. Li, Z. X. Wang, C. Zhang, Z. X. Guo, R. Q. Li, X. Y. Cao, Q. Cheng,  
T. J. Cui. Ann. Phys., 532, N 5 (2020) 2000020, doi: 10.1002/andp.202000020 
[9] Z. Y. Li, S. J. Li, B. W. Han, G. S. Huang, Z. X. Guo, X. Y. Cao. Adv. Theory Simul., 4, N 8 (2021) 
2100117, doi: 10.1002/adts.202100117 
[10]  B. Han, S. Li, Z. Li, G. Huang, J. Tian, X.u Cao. Opt. Express, 29, N 13 (2021) 19643—19654,  
doi: 10.1364/OE.425787 
[11]  J. D. Watson, F. H. C. Crick. Nature, 171 (1953) 737—738, doi: 10.1038/171737a0 
[12]  J. D. Watson, T. A. Baker, S. P. Bell, A. A. F. Gann, M. Levine, R. M. Losick. Molecular Biology 
of the Gene, Pearson, London, UK (2013) 77—105 
[13]  И. В. Семченко, С. А. Хахомов, А. П. Балмаков. Радиотехника и электроника, 52, № 9 (2007) 
996—1001   
[14]  И. В. Семченко, С. А. Хахомов, А. П. Балмаков. Биофизика, 55, № 2 (2010) 227—232   
[15]  И. В. Семченко, С. А. Хахомов, А. П. Балмаков. Кристаллография, 55, № 6 (2010) 979—984 
[16]  I. V. Semchenko, S. A. Khakhomov, A. P. Balmakov. Telecommun. Radio Eng., 70, N 20 (2011) 
1871—1882, doi: 10.1615/TelecomRadEng.v70.i20.70  
[17]  S. A. Khakhomov, I. V. Semchenko, A. P. Balmakou, M. Nagatsu. Proc. 6th Int. Congress on Ad-
vanced Electromagnetic Materials in Microwaves and Optics — Metamaterials-2012, St.-Petersburg (2012) 
309—311 
[18]  И. В. Семченко, С. А. Хахомов. Электромагнитные волны в метаматериалах и спиральных 
структурах, Минск, Беларуская навука (2019) 219—245 
[19]  M. Kerker, D. S. Wang, C. L. Giles. J. Opt. Soc. Am., 73 (1983) 765—767  
[20]  A. Serdyukov, I. Semchenko, S. Tretyakov, A. Sihvola. Electromagnetics of Bi—Anisortropic Mate-
rials. Theory and Applications: Electrocomponent Science Monographs, Amsterdam, Gordon and Breach 
Science Publishers (2001) 245—249  
[21]  I. V. Semchenko, I. S. Mikhalka, S. A. Khakhomov, A. L. Samofalov, A. P. Balmakou. Front. 
Nanotechnol., 4 (2022) 794213, doi: 0.3389/fnano.2022.794213 
[22]  I. V. Semchenko, I. S. Mikhalka, I. A. Faniayeu, S. A. Khakhomov, A. P. Balmakou,  
S. A. Tretyakov. Photonics, 7, N 4 (2020) 83, doi: 10.3390/photonics7040083 
[23]  И. В. Семченко, С. А. Хахомов, В. С. Асадчий, Е. В. Наумова, В. Я. Принц, С. В. Голод,  
А. Г. Милехин, А. М. Гончаренко, Г. В. Синицын. Кристаллография, 59, № 4 (2014) 544—550 
[24]  I. V. Semchenko, S. A. Khakhomov, V. S. Asadchy, S. V. Golod, E. V. Naumova, V. Y. Prinz,  
A. M. Goncharenko, G. V. Sinitsyn, A.V. Lyakhnovich, V. L. Malevich. J. Appl. Phys., 121, N 1 (2017) 
015108 
[25]  N. C. Seeman. Ann. Rev. Biochem., 79 (2010) 65—87 
 


