
Т. 90, № 2                     ЖУРНАЛ ПРИКЛАДНОЙ СПЕКТРОСКОПИИ                       МАРТ — АПРЕЛЬ 2023 

V. 90, N 2                           JOURNAL OF APPLIED SPECTROSCOPY                           MARCH — APRYL 2023 

 
 
 
EFFECT OF STACKING 2D LEAD CHLORIDE PEROVSKITES INTO VERTICAL  
HETEROSTRUCTURES ON PHOTOLUMINESCENCE INTENSITY** 
 
D. R. Graupner, D. S. Kilin* 
 
Department of Chemistry and Biochemistry, North Dakota State University,  
Fargo, North Dakota, USA; e-mail: dmitri.kilin@ndsu.edu 
 

Two-dimensional organic-inorganic hybrid lead halide perovskites are of interest for photovoltaic and 
light emitting devices due to their relative stability when compared to bulk lead halide perovskites and fa-
vorable properties that can be tuned. Tuning of the material can be performed by adjusting halide composi-
tion or by taking advantage of confinement effects. Here we use density functional theory and excited state 
dynamics treated by reduced density matrix method to examine the effects that varying the thickness of the 
perovskite layer has on the ground state and excited state photo-physical properties of the materials, further 
we explore the effects of a vertical heterostructure of perovskite layers. Nonadiabatic couplings were com-
puted based on the on-the-fly approach along a molecular dynamic trajectory at ambient temperatures. 
Density matrix-based equation of motion for electronic degrees of freedom is used to calculate the dynamics 
of electronic degrees of freedom. We find that the vertical stacking of two-dimensional perovskites into het-
erostructures shows an increase in photoluminescence intensity by two orders of magnitude when compared 
to the individual two-dimensional perovskites.   
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С использованием теории функционала плотности и динамики возбужденного состояния, обра-
ботанного методом приведенной матрицы плотности, изучено влияние изменения толщины слоя 
перовскита на фотофизические свойства 2D-перовскитов на основе галогенидов свинца в основном 
и возбужденном состояниях, далее исследованы эффекты вертикальной гетероструктуры слоев пе-
ровскита. Неадиабатические взаимодействия рассчитаны на основе подхода on-the-fly по траекто-
рии молекулярной динамики при температуре окружающей среды. Уравнение движения электрон-
ных степеней свободы на основе матрицы плотности используется для расчета динамики элек-
тронных степеней свободы. Обнаружено, что вертикальная укладка двумерных перовскитов в ге-
тероструктуры приводит к увеличению интенсивности фотолюминесценции на два порядка по 
сравнению с отдельными двумерными перовскитами.  

Ключевые слова: фотолюминесценция, гетероструктура, двумерные перовскиты. 
 
Introduction. Full inorganic CsPbX3 (X = Cl, Br, I) bulk lead halide perovskites (LHPs) have become 

popular candidates for next generation opto-electronic devices due to their high quantum yields, high color 
purity, tunable emission over the visible spectrum, and low cost [1, 2]. However, these materials show poor 
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stability when exposed to moisture or photoirradiation [3—5]. This has led to the examination of two-
dimensional inorganic-organic hybrid perovskites which offer increased stability [6] and higher tunability of 
physical properties [7, 8]. The first room-temperature perovskite light-emitting diodes (LEDs) were reported 
in 2014 [9] and have shown impressive progress with two-dimensional (2D) perovskite LEDs achieving 
20.2% external quantum efficiency (EQE) in 2020 [10]. While there has been an increase in EQE for perov-
skite LEDs, there is still a need to generate high efficiency perovskite LEDs for pure colors to meet com-
mercial viability [11, 12]. 

2D halide perovskites are defined by a stoichiometric formula AnAn–1MnX3n+1, A — monovalent or di-
valent cation; n = 2 or 1; A = Cs+, methylammonium (MA), formadamidinium (FA); M = Pb2+, Sn2+, etc.;  
X = Cl–, Br–, I–), and are classified based on the thickness of the inorganic layer as indicated in the stochio-
metric formula (n = 1, 2, 3, etc.) and the stacking orientation of the inorganic layers ((100), (110), (111) with 
respect the ideal cubic perovskite) [13]. The layered structures of 2D perovskites can be divided into differ-
ent categories; Dion–Jacobson (DJ) phase [14, 15], Ruddlesden–Popper (RP) phase [16], Aurivilius phase 
[17], and alternating cation in the interlayer space (ACI) [18]. The relative stacking of the layers results in 
the differences between these categories. The DJ perovskites show the ability to stack with no displacement 
due to the divalent interlayer spacers. 2D perovskites structures possess natural quantum-well structures, that 
induce both dielectric and quantum confinement effects [19]. The strong confinements lead to large exciton 
binding energies [20]. Further, it is observed that 2D perovskites often form in a mixed-phase structures ra-
ther than a single phase structures due to the similar formation energies of the different thickness 2D perov-
skites [21]. The mixed-phase 2D perovskites result in heterostructures that offer the possibilities of manipu-
lation of the recombination, transport, and generation of charge carriers due to the change in band gap ener-
gies at the heterojunction [22]. 

Here we report the effects that combining 2D DJ LHPs into a vertical heterostructure provide for the 
photoluminescence (PL) of the materials. The combination of the different size layers is hoped to create an 
insulating effect that will increase the photoluminescence quantum yield (PLQY) of the thicker layer in-
volved in the heterostructure. Examination of the ground state electronic properties of various 2D DJ LHPs 
by density functional theory (DFT) is performed to serve as a basis for the vertical heterostructure. To char-
acterize the effect of the heterostructure on PL properties, we compute excited-state dissipative dynamics by 
computing the nonadiabatic couplings (NACs) between nuclear and electronic degrees of freedom from adi-
abatic molecular dynamics trajectories. Nonradiative relaxation rates are computed from the NACs using the 
reduced density matrix formalism within Redfield theory. PLQY is then computed from the nonradiative re-
laxation rates and radiative relaxation rates, computed from Einstein coefficients. 

Methods. From the bulk CsPbCl3 crystal structure, 22n unit cells carved out, giving three Cs/Cl ter-
minated surfaces and three Pb/Cl terminated surfaces providing a composition of Cs4nPb4nCl12n. Four Cs at-
oms are removed from one face of the perovskite structure and replaced with butyl diammonium (BdA) mol-
ecules. Four Cl atoms are then added on the opposite end of the BdA molecules in line with the octahedral 
Pb/Cl structures from the initial crystal structure. Overall, this gives a structure of BdA4Cs4(n–1)Pb4nBr12n+4. 
The model has a simulation cell size of 1010(6+5.5n) Å3 (Fig. 1). 

DFT with the generalized gradient approximation (GGA) Perdew–Burke–Ernzerhof (PBE) functional [23] 
in a plane-wave basis set along with projector augmented-wave (PAW) pseudopotentials [24, 25] in Vienna 
ab initio Simulation Package (VASP) [26] software was used to calculate the ground-state electronic struc-
ture of our atomistic model. Subsequent single point calculations were performed using noncollinear spin 
DFT including the spin-orbit coupling (SOC) interaction and used to compute observables for the systems. 
All calculations were performed at the Г point. The model is periodic. 

Noncollinear spin DFT [27, 28] is used as the electronic basis, and we include the SOC interaction due 
to the large angular momentum of conduction band Pb2+ 6p orbitals. A self-consistent noncollinear spin DFT 
uses four densities   r  and rests on the Kohn-Sham (KS) equation: 

  2 eff

, ,
( ) ( )  ( )i i i

i
v    

  
           r r r ,        (1) 

where  eff ( )v     r  is the 22 matrix operator of effective potential and  and  are orthogonal spin indices. 

In accordance with the self-consistent theorem KS, the 22 effective potential is a functional of the electron-
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Solutions of Eq. (1) produce spinor KS orbitals 

(SKSOs), which are two component wavefunctions composed of a superposition of  and  spin compo-
nents: 
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Within the noncollinear spin DFT framework, relativistic effects can be incorporated using second-
order scalar relativistic corrections: 

rel SR SOCH H H  ,           (3) 
where HSR the scalar relativistic term and HSOC is the SOC term. The HSR term describes relativistic kinetic 
energy corrections and HSOC describes energy shifts of spin occupations. Up to the second order, HSOC is rep-
resented as 

KS
sphereSOC

2 2

1

4
H

r rm c


 


L S


,         (4) 

where L is the angular momentum operator and S is composed of Pauli spin matrices. 
 

 

Fig. 1. Atomistic models of lead chloride organic-inorganic hybrid perovskite.  Two models contain a single 
layer of perovskite where thickness of the perovskite layer is (a) n = 1 and (b) n = 4. The third model is a (c) 
vertical heterostructure that contains both a n = 1 and n = 4 perovskite layer. White, cyan, blue, brown, green, 

and purple spheres represent hydrogen, carbon, nitrogen, lead, chlorine, and cesium atoms, respectively. 
 

For each model, we computed the electronic density of states DOS: 

 SKSO
SKSO FDOS  i

i
       ,           (5) 

where SKSO
i  is the band eigenenergy and F is the Fermi level  SKSO, SKSO,

F  2HOMO LUMO
i i    . We use 

the independent orbital approximation (IOA) in which excited states are described as a pair of orbitals, as 
opposed to a superposition of orbitals commonly used in TDDFT or Bethe–Saltpeter approaches. Optical 
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transitions between SKSO i and j can be found through transition dipole matrix elements, which can be used 
to compute oscillator strengths: 

 * * j
ij i i

j

e d
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where ij represents the transition frequency between SKSO i and j. The transition frequency ij is related to 
the transition energy Eij by hij = Eij. With known oscillator strengths, an absorption spectrum can be 
computed through: 

  SKSO eq eq)( ij ij ii jj
i j

f


           .         (8) 

To dynamically couple electronic and nuclear degrees of freedom, we used adiabatic molecular dynam-
ics (MD). This provides kinetic energy of nuclei to break orthogonality of electronic states. The nuclear de-
grees of freedom are treated in the classical path approximation (CPA) with the nuclei following the classical 
path trajectories. The initial velocities of nuclei are scaled to keep a constant temperature with forces acting 
on the nuclei depending on the: 
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 R F ,              (10) 

where RI represents ionic coordinates; MI mass of the Ith nuclei; kB is the Boltzmann constant; T is tempera-
ture; and   ˆI F  is the force acting on the ions which we specify is a functional of the electronic density.  

The Redfield quantum master equation [29, 30] in the density matrix formalism is used to describe the 
time evolution of electronic degrees of freedom that are weakly coupled to a thermal bath. Typical imple-
mentation of Redfield approach assumes the Markov approximation, where the model is immersed into a 
heat bath so that the bath temperature is constant as the bath is infinitely larger than the model of explicit in-
terest.  

 
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where F is the many-electron Fock matrix, which includes exchange and correlation, and  is the density ma-
trix. The first term is the Liouville von Neumann equation describing the unitary time evolution of a closed 
system, while the second term describes electronic energy dissipation due to weak coupling to a thermal 
bath. The dissipative transitions are parameterized from NACs computed ‘on-the-fly’ in the basis of SKSO 
orbitals 
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Due to the nuclear kinetic energy of nuclei, the orthogonality relation is broken and provides a ‘mixing’ 
of SKSOs. NACs are converted into rates of transitions by taking the Fourier transform of the autocorrela-
tion function  
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which provides components for the Redfield tensor: 

Γ Γ Γ Γijkl ljik kijl jl immk ik jmmlm mR           .          (14) 

The Redfield tensor controls the dissipative dynamics of the density matrix: 

diss

ij
ijlm lmlm

d
R

dt

 
  

 
 .           (15) 

From the Redfield tensor Rijkl we can approximate a nonradiative recombination rate knr from Redfield 
matrix elements 

nr . HO LUk R             (16) 

Along the excited-state trajectory we can compute time-resolved observables such as changes in charge 
carrier occupations:  

 ( , ) ( , )( , ) ( )a b a b
ii iin t t       , ( , ) ( , )Δ ( , ) ( , ) ( , )a b a b eqn t n t n t     ,    (17) 

and average charge carrier energy 
Δ ( ) ( ) ( )e ii ii LUt t t    , Δ ( ) ( ) ( )h ii ii HOt t t    .      (18) 

To get the rates of charge carrier relaxation to band edges, we convert the energy expectation value 
from Eq. (18) into dimensionless energy Eq. (19). We fit Eq. (19) to an exponential decay, assuming a single 
exponential decay, and solve for the rate constant ke Eq. (20). 
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( )e h e h e hk E t dt
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Time-resolved emission in the excited state can be found based on the presence of inverse occupations 
along the excited-state trajectory and the intensity of oscillator strength between states i and j: 

    ,  ( ) ( )ij ij jj ii
j i

E t f t t


         .                  (21) 

An emission spectrum can be generated by integrating the time-resolved emission along the trajectory: 
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Rates of radiative recombination kr can be found from Einstein coefficients for spontaneous emission [31]: 
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where fHO–LU is the oscillator strength, HO-LU  represents the transition frequency for the HO–LU transition 

where i = HO and j = LU, gi is the degeneracy of the ith electronic state, and the rest of the variables repre-
sent the fundamental constants. From the radiative recombination rate kr and knr we compute a PLQY: 

r

r nr

PLQY
k

k k



.             (24) 

Results and discussion. In Figs. 2a,b we examine the ground state density of states (DOS) for the three 
models studied here. Peaks are labeled with numbers (prime numbers) that increase as they move away from 
the bandgap. The electronic structure of the n = 1 and n = 4 single layer models serve as a basis for the ex-
amination of the electronic structure of the heterostructure model for properties inherent to the single layer 
models. It is observed that the heterostructure model shows a similar pattern of peaks compared to the n = 4 
single layer model only approximately 0.2 eV higher in energy. Due to the use of noncollinear spin approach 
with spin-orbit coupling we see a narrowing of the bandgap. Figure 2c shows the projected density of states 
(PDOS) for the heterostructure model. We note that the first band in both the conduction and valence band is 
localized entirely on the n = 4 layer of the model, which we attribute to the n = 4 region showing less quan-
tum-confinement resulting in lower energy. It is not until the first sub-band that we see a contribution from 
the n = 1 layer of the model. The organic layer is seen to provide minimal contribution to the electronic 
structure over the region that we have studied. Computed absorption spectra, shown in Fig. 2d, are labeled 
with the transitions that contribute to the peaks based on the numerical labeling of the pair of peaks in the 
DOS. It is observed that the transitions that contribute to the peak pattern for both the n = 4 single layer and 
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the heterostructure are the same with the energy for the transitions in the heterostructure model being about 
0.4 eV greater than the corresponding transition in the n = 4 single layer model.  

NACs between SKSOs i and j computed using Eq. (12), are used to determine nonradiative relaxation 
dynamics of the photoexcited states. The Redfield tensors, Riijj depend on the NACs and are illustrated in 
Fig. 3 for the n = 1 single layer, n = 4 single layer, and heterostructure models. The Redfield tensors repre-
sent the rates of state-to-state transitions in units of ps–1. These rates are used to compute nonradiative re-
combination rates knr Eq. (16). Note that only off diagonal tensor elements are nonzero while all diagonal el-
ements are zero. For Fig. 3a–c it is observed that there are alternating high intensity transitions near the main 
diagonal and numerous low intensity transitions away from the main diagonal. The Riijj value for the HO–LU 
transition is of particular interest due to its use for calculating the PLQY of the models. The alternating high 
intensity transitions are between near-degenerate states, which result from the inclusion of spin-orbit cou-
pling into the calculations.  

 

 
 

Fig. 2. (a) Conduction band and (b) valence band density of states for ground state n = 1 single layer, n = 4 
single layer,  and  heterostructure models.  Arrows  are  used  as labels  for the peaks  in the band structure.  
Valence  band  peaks  are  labeled  using  natural  numbers,  larger numbers are deeper in the valence band.  
Conduction  band  peaks  are  labeled by prime-natural numbers, larger numbers  are deeper in the valence 
band. (c) Projected density of states for the heterostructure model.  Inset shows a closer view of the PDOS.  
(d) Computed  absorption  spectra,  Eq. (8),  for n = 1 single layer,  n = 4  single layer,  and heterostructure  
models. Arrows show  the transition  for  the  absorption  contributed  by  transitions  from  a pair of peaks  

A→A in valence and conduction band. 
 

 

Fig. 3. Redfield tensor for (a) n = 1 single layer, (b) n = 4 single layer, and (c) heterostructure models.  
The Riijj axis represents  the  nonradiative  state to state transition  rates. The alternating high intensity  

transitions near the main diagonal are between near-degenerate states; i and j are orbital indexes. 
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Figure 4 show hot-carrier cooling along the excited-state trajectory for n = 1 single layer, n = 4 single 
layer, and heterostructure models from a nonequilibrium state to the first excited state. The initial conditions 
for the n = 1 and n = 4 single layer models represent the highest oscillator strength excitation that does not 
involve one of the near-degenerate principal band gap orbitals. The initial condition for the heterostructure 
model represents the highest oscillator strength transition that occurs on the n = 1 layer in the model. The  
energy axis is in reference to the Fermi level of the model with the time axis in log scale normalized to 1 ps. 
The green color indicates background reference charge density, blue indicates the average occupation of 
charge density distribution in the valence band, and yellow indicates the average occupation of charge densi-
ty distribution in the conduction band. Horizontal dotted/solid lines represent the energy expectation values 
of charge carriers Eq. (19). The vertical dashed lines labeled with h and e Eq. (20), represent time of relaxa-
tion from HO–x to HO and LU+y to LU, respectively. For the single layer models, it is observed that there is 
a long lived, compared to the ke/h, population in a higher excited state than the first excited state.  This is at-
tributed to a mismatch between electronic transition energy and available normal modes.  

 

 
Fig. 4. Nonradiative relaxation for the (a) n = 1 single  layer, (b) n = 4 single layer, and (c) heterostructure 
models.  The  yellow  line  represents  the  charge  density  of  the  electron,  while the blue line represents  
the charge density of the hole. The vertical dashed lines labeled with h and e represent time of relaxation  
from  HO–x  and LU+y, respectively.  The horizontal  solid and dashed lines show the energy expectation  
value  for  the hole and  electron,  respectively.  The  initial  conditions for the n = 1 and n = 4 single layer  
models represent  the highest oscillator  strength  excitation that does not involve one of the near-degene- 
rate principal band gap orbitals. The initial condition for the heterostructure model represents the highest  
oscillator strength transition that occurs on the n = 1 layer in the model. All cases show both the blue and 
yellow line  starting  at a greater  distance  from  each  other  and  moving  closer  to each other. h and e  
or the single layer models occur after the energy expectation values approach the band gap energies due  

to relatively long-lived excited states. 
 
A competing mechanism for nonradiative dissipation is radiative relaxation in the form of photons. Fig-

ures 5a,b show the time-resolved (Eq. (21)) and time-integrated (Eq. (22)) emission for the n = 1 single layer 
model along the excited state trajectory. Figures 5c–f show the same plots for the n = 4 single layer and het-
erostructure models, respectively. The blue background color corresponds to no photoluminescence (PL) at  
a given time and transition energy, while the natural colors from blue to yellow correspond to the intensity of 
the PL. It is observed that there is an initial emission event at the initial excitation before cooling to the 
bandgap. Once the hot-carriers cool to the bandgap we see emission arising from the HO–LU transitions. 
Figures 5b,d,f show the time-integrated intensity for the transitions along the trajectory. The n = 4 model 
shows a higher relative intensity of the intra-band emissions when compared the HO–LU transition, which is 
attributed to the long-lived excited state for this model.  It is seen that the emission at the  
HO–LU transition is the most intense transition for all the models.  However, we observe that the intensity of 
the HO–LU transition for the heterostructure model is 2 orders of magnitude greater than the HO–LU transi-
tion for the n = 1 single layer model and 3 orders of magnitude greater than for the n = 4 single layer model.  

To determine the efficiency of PL for the single layer and heterostructure models, we compute PLQY 
(Eq. (24)) from kr and knr. The Einstein coefficient for spontaneous emission in terms of oscillator strength is 
used to calculate kr (Eq. (23)) and the corresponding Redfield tensor element RHO-LU is used for knr  
(Eq. (16)). Table 1 shows the kr, knr, and PLQY for the models presented here. The PLQY noted in the  
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Table 1 is calculated as an average value of the PLQY calculated for all the HO–LU degenerate transitions.  
It is observed that the heterostructure models shows a higher PLQY than the single layer models.  

 
TABLE 1. Oscillator Strength fij (Eq. (7), Radiative Recombination Rate kr (Eq. (23)), Nonradiative  

Recombination rate knr (Eq. (16)), Resultant PLQYs for Each Model Studied (Eq. (24)) 
 

Model fij kr,1/fs knr,1/fs PLQY 
n = 1 single layer 0.32 2.0010–6 1.8610–6 0.3326 
n = 4 single layer 0.07 2.6410–6 2.8110–6 0.3355 
Heterostructure 0.60 3.2210–6 1.2110–6 0.6667 

 

 
 

Figure 5. Radiative relaxation along  the excited-state electronic dynamics trajectory with (a, c, e) showing 
time-resolved emission and (b, d, f) showing  time-integrated radiative  emission for the (a, b) n = 1 single 
layer, (c, d) n=4 single layer, and (e, f) heterostructure models. The initial conditions for this figu-re corre-
spond to those in Fig. 4. The blue background corresponds  to no PL at a given time and transition energy. 
Natural colors  from blue to yellow correspond  to intensity of the time-resolved PL. For each model, it is  
observed  that  the  HO–LU  transition  is  the  most  intense.  We  observed  that  the  HO–LU  transition  
for  the heterostructure  shows  two  orders  of  magnitude  greater  intensity  than  the  n = 1  single layer  

and three order of magnitude greater intensity than the n = 4 single layer. 
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Lifetimes characterizing charge carrier dissipative electronic dynamics trajectories for the hole and elec-
tron; h and e (Eq. (20)) represent time of relaxation from HO–x to HO and LU+y to LU, respectively  
(Fig. 6). It is observed that for the hole and the electron in the heterostructure we see a linear relationship be-
tween dissipation energy and charge carrier lifetime. This linear relationship is in agreement with the energy 
gap law; however, this relationship only holds true for dissipation energy above 0.5 eV for the n = 4 single 
layer model and 1.0 eV for the n = 1 single layer model.  

 

 
 

Fig. 6.  Lifetimes  characterizing  charge  carrier  dissipative  electronic  dynamics  trajectories  
for the (a)  hole and  (b)  electron,  inset shows high dissipation energy region  for the electron.  

It is observed that for the hole and the electron in the heterostructure we see a linear relationship  
between dissipation energy  and charge carrier lifetime.  This linear relationship is in agreement  
with the energy  gap law.  This relationship only holds  true for dissipation energy above 0.5 eV  

for the n = 4 single layer model and 1.0 eV for the n = 1 single layer model. 
 
The intensities of the emission at the HO–LU transitions are greater than the intensities for any other 

transition for their respective model due to the increased lifetime of emission for the HO–LU transition. The 
increased intensity of the HO–LU transition for the heterostructure model compared to the single layer mod-
els is attributed to the increased relative size of the spacer region of the structure. In the n = 4 single layer 
model the perovskite layers are separated by a single butyl diammonium space. Although this organic carbon 
chain is an insulator, its short length may allow some level of hybridization between separate n = 4 layers. In 
the heterostructure model, each n = 4 layer of perovskite is separated by two butyl diammonium spacers and 
a n = 1 perovskite layer, all of a higher gap than the n = 4 perovskite layer. This is more than double the sep-
aration between the n = 4 perovskite layers making them more isolated. This isolation prevents hybridization 
of the electron and hole beyond the border of the slab and hypothetically confines the electron and hole in 
the same spatial region. This activity of the spacers is expected to increase the transition dipole, and by ex-
tension the oscillator strength. This is analogous to the passivation of semiconductor nanocrystals with or-
ganic ligands of extended length.  

The intensity of the emission for the HO–5–LU+6 transition for the heterostructure model shows the 
second highest intensity for this structure and has an energy comparable to the HO–LU transition energy for 
the n = 1 single layer model. This indicates the potential for dual emission with energies that correspond to 
both the n = 1 and n = 4 single layer models. This would be an indication that these models may not follow 
Kasha’s rule [32]. This duel emission is in agreement to the multiple emission found experimentally [33]. 

Table 1 shows the oscillator strength, non-radiative and radiative rates of relaxation, and photolumines-
cence quantum yield for the three models of interest. The oscillator strength shown here is for the HO–LU 
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transition but the radiative and nonradiative rates of relaxation and PLQY shown factor in all four transitions 
between the near-degenerate HO–LU states. Due to this, we see a larger radiative recombination rate and 
PLQY for the n = 4 single layer model than would be expected looking just at the oscillator strength reported 
in Table 1. The combination of the near-degenerate transitions also affects the relative difference in PLQY of 
the models when compared to their PL intensity. The larger PLQY for the heterostructure is due to the con-
sistent nature of the radiative recombination rate across these four transitions, in addition to have a smaller 
nonradiative recombination rate, compared to the single layer models. The single layer models by compari-
son show two transitions where the radiative rate of relaxation is an order of magnitude lower than for the 
heterostructure model. 

Conclusions. Here we use density functional theory and nonadiabatic excited-state dynamics calcula-
tions to explore the photo-physical properties of single layer and vertical heterostructures of two-
dimensional hybrid lead chloride perovskites. We observed an increase in intensity of the photoluminescence 
for the vertical heterostructure 2D lead halide perovskites attributed to the increase in effective insulation be-
tween the perovskite layers. Radiative dynamics show that for the single layer models there is a smaller rela-
tive intensity of emission when compared to the vertical heterostructure model. The smaller intensity in the 
single layer models is attributed to the smaller relative size of the space between layers allowing for a greater 
overlap of orbitals/bands/ between layers. In the heterostructure model, this space between the larger n = 4 
perovskite layers in adjacent periodic cells is made up of two organic layers and a smaller n = 1 layer of per-
ovskite, all of which have a larger gap than the n = 4 perovskite layers. This increased separation prevents 
the overlap across multiple layers and confines the electron and hole in the same spatial region. 

It is also seen for the heterostructure model that there is a radiative emission around the same energy as 
the n = 1 single layer model, though lower in intensity than the HO–LU transition emission. This indicates 
that it may be possible to observe effects from the individual layers of the heterostructure model separately 
and that these models may not follow Kasha’s rule. 

This has the potential to lead to an improvement in the efficiency of perovskite light emitting diodes. 
However, two important areas for continued research are the evaluation of polarons in the perovskites and 
the inclusion of momentum dispersion in the calculations. 

Acknowledgements. D.G. Thanks NSF CHE-2004197 for support. D.K. acknowledges the support of 
the National Science Foundation under Grant CHE-1944921. Authors thank the DOE BES NERSC facility 
for computational resources, allocation award “Computational Modeling of Photo-catalysis and Photo-
induced Charge Transfer Dynamics on Surfaces”, supported by the Office of Science of the DOE under Con-
tract DE-AC02-05CH11231. Authors also thank Aaron Forde, Yulun Han, Landon Johnson, Steven Westra, 
and Amirhadi Alesadi for collective discussion and editing. D.K. thanks David Micha, Oleg Prezhdo, Sergei 
Tretiak, Svetlana Kilina, Andrei Kryjevski for inspiring discussions. 
 
REFERENCES 
 
1. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, 
M. V. Kovalenko, Nano Lett., 15, No. 6, 3692 (2015), doi: 10.1021/nl5048779. 
2. B. R. Sutherland, E. H. Sargent, Nat. Photonics, 10, No. 5, 295 (2016), doi: 10.1038/nphoton.2016.62. 
3. X. Chen, H. Zhou, H. Wang, Front. Chem., 9 (2021), doi: 10.3389/fchem.2021.715157. 
4. E.-B. Kim, M. S. Akhtar, H.-S. Shin, S. Ameen, M. K. Nazeeruddin, J. Photochem. Photobiol., C 48, 
100405 (2021), doi: 10.1016/j.jphotochemrev.2021.100405. 
5. C. Ma, C. Leng, Y. Ji, X. Wei, K. Sun, L. Tang, J. Yang, W. Luo, C. Li, Y. Deng, S. Feng, J. Shen, S. Lu, 
C. Du, H. Shi, Nanoscale, 8, No. 43, 18309 (2016), doi: 10.1039/C6NR04741F. 
6. F. Arabpour Roghabadi, M. Alidaei, S. M. Mousavi, T. Ashjari, A. S. Tehrani, V. Ahmadi,  
S. M. Sadrameli, J. Mater. Chem. A, 7, No. 11, 5898 (2019), doi:10.1039/C8TA10444A. 
7. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, Energy Environ. Sci., 
7, No. 3, 982 (2014), doi:10.1039/C3EE43822H. 
8. T. M. Koh, V. Shanmugam, J. Schlipf, L. Oesinghaus, P. Muller-Buschbaum, N. Ramakrishnan,  
V. Swamy, N. Mathews, P. P. Boix, S. G. Mhaisalkar, Adv. Mater., 28, No. 19, 3653 (2016),  
doi: 10.1002/adma.201506141. 
9. Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala,  
L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotechnol., 9, No. 9, 
687 (2014), doi: 10.1038/nnano.2014.149. 

348-10



АННОТАЦИИ АНГЛОЯЗЫЧНЫХ СТАТЕЙ 
 

358 

10. Y. Miao, L. Cheng, W. Zou, L. Gu, J. Zhang, Q. Guo, Q. Peng, M. Xu, Y. He, S. Zhang, Y. Cao, R. Li, 
N. Wang, W. Huang, J. Wang, Light: Sci. Appl., 9, No. 1, 89 (2020), doi: 10.1038/s41377-020-0328-6. 
11. L. Zhang, C. Sun, T. He, Y. Jiang, J. Wei, Y. Huang, M. Yuan, Light: Sci. Appl., 10, No. 1, 61 (2021),  
doi: 10.1038/s41377-021-00501-0. 
12. C. Zhao, D. Zhang, C. Qin, CCS Chem., 2, No. 4, 859 (2020), doi: 10.31635/ccschem.020.202000216. 
13. L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan, J. Even, M. R. Wasielewski, C. C. Stoumpos,  
M. G. Kanatzidis, J. Am. Chem. Soc., 140, No. 10, 3775 (2018), doi: 10.1021/jacs.8b00542. 
14. M. Dion, M. Ganne, M. Tournoux, Mater. Res. Bull., 16, No. 11, 1429 (1981), doi: 10.1016/0025-
5408(81)90063-5. 
15. A. J. Jacobson, J. W. Johnson, J. T. Lewandowski, Inorg. Chem., 24, No. 23, 3727 (1985),  
doi: 10.1021/ic00217a006. 
16. C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp,  
M. G. Kanatzidis, Chem. Mater., 28, No. 8, 2852 (2016), doi: 10.1021/acs.chemmater.6b00847. 
17. K. R. Kendall, C. Navas, J. K. Thomas, H.-C. zur Loye, Chem. Mater., 8, No. 3, 642 (1996),  
doi: 10.1021/cm9503083. 
18. C. M. M. Soe, C. C. Stoumpos, M. Kepenekian, B. Traoré, H. Tsai, W. Nie, B. Wang, C. Katan,  
R. Seshadri, A. D. Mohite, J. Even, T. J. Marks, M. G. Kanatzidis, J. Am. Chem. Soc., 139, No. 45, 16297 
(2017), doi: 10.1021/jacs.7b09096. 
19. K. Wang, J. Y. Park, Akriti, L. Dou, EcoMat, 3, No. 3, e12104 (2021), doi: 10.1002/eom2.12104. 
20. J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian,  
F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet,  
J. Even, A. D. Mohite, Nat. Commun., 9, No. 1, 2254 (2018), doi: 10.1038/s41467-018-04659-x. 
21. L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, S. Hoogland, A. Buin, A. R. Kirmani,  
K. Zhao, A. Amassian, D. H. Kim, E. H. Sargent, J. Am. Chem. Soc., 138, No. 8, 2649 (2016),  
doi: 10.1021/jacs.5b11740. 
22. C. P. Clark, J. E. Mann, J. S. Bangsund, W.-J. Hsu, E. S. Aydil, R. J. Holmes, ACS Energy Lett., 5, No. 
11, 3443 (2020), doi: 10.1021/acsenergylett.0c01609. 
23. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 78, No. 7, 1396 (1997),  
doi: 10.1103/PhysRevLett.78.1396. 
24. G. Kresse, D. Joubert, Phys. Rev. B, 59, No. 3, 1758 (1999), doi: 10.1103/PhysRevB.59.1758. 
25. P. E. Blöchl, Phys. Rev. B, 50, No. 24, 17953 (1994), doi: 10.1103/PhysRevB.50.17953. 
26. G. Kresse, J. Furthmüller, Comput. Mater. Sci., 6, No. 1, 15 (1996), doi: 10.1016/0927-0256(96)00008-0. 
27. J. Kubler, K. H. Hock, J. Sticht, A. R. Williams, J. Phys. F: Met. Phys., 18, No. 3, 469 (1988),  
doi: 10.1088/0305-4608/18/3/018. 
28. U. V. Barth, L. Hedin, J. Phys. C: Solid State Phys., 5, No. 13, 1629 (1972), doi: 10.1088/0022-
3719/5/13/012. 
29. A. G. Redfield, IBM J. Res. Dev. 1, No. 1, 19 (1957), doi: 10.1147/rd.11.0019. 
30. J. M. Jean, R. A. Friesner, G. R. Fleming, J. Chem. Phys., 96, No. 8, 5827 (1992),  
doi: 10.1063/1.462858. 
31. A. Einstein, Phys. Z., 18, 121 (1917).  
32. M. Kasha, Discuss. Faraday Soc., 9, 14 (1950), doi: 10.1039/DF9500900014. 
33. Y. Fu, W. Zheng, X. Wang, M. P. Hautzinger, D. Pan, L. Dang, J. C. Wright, A. Pan, S. Jin, J. Am. 
Chem. Soc., 140, No. 46, 15675 (2018), doi: 10.1021/jacs.8b07843. 
 
 
 

348-11 


