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RAMAN SPECTRUM CLASSIFICATION OF CINNABAR AND CINNABAR-CLAM WHITE
BASED ON DATA AUGMENTATION AND CONVOLUTIONAL NEURAL NETWORK"
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Mineral pigments are commonly used in cultural relics, which makes the analysis of mineral pigments
helpful in such research. It is complicated and time-consuming work to establish the data set of mineral
pigment Raman spectra, so it is necessary to study the method of data augmentation. In this paper, two
methods of augmenting Raman spectra data are explored — translation transformation, adding noise; ex-
panding the size of the data set from 20 to 320 — then a convolutional neural network model is proposed and
trained with the expanded data set. Experimental results showed that the accuracy of the model can reach
100% when the SNR of the test set is not less than 40 dB.
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Hccnedosanvl memoowl ayemenmayuy OaHHbIX CHEKMpPO8 KOMOUHAYUOHHO20 PACCESAHUS MUHEPANbHBIX
RUSMEHMOo8 — MpAHCIAYUOHHOe npeobpazosanue U 00basieHue wyma, yseruyusarowue pasmep Habopa
Oannvix om 20 0o 320. Ilpednosicena mooenv c8epmouHOll HEUPOHHOU cemu U NPOBEPEHA HA PACULUPEHHOM
Habope Oannvix. lloxazano, umo mounocmv modeiau modxcem oocmuecams 100 % npu omuowenuu cue-
Han/uiym He meree 40 06 ona mecmosoeo nabopa.

Knrwouesvle cnosa: cnekmp KoOMOUHAYUOHHO20 PACCESHUS C8eMd, CGEPMOYHASL HEUPOHHAS Cemby, aye-
Menmayus. OGHHBIX, MUHEPATbHBLI NUSMEHM.

Introduction. Mineral pigments are commonly used dyes in ancient times. The analysis of mineral
pigments can be used as the basis for cultural relic identification, so it is necessary to develop a nondestruc-
tive method for mineral pigment detection. Nondestructive testing techniques commonly used at present in-
clude infrared spectroscopy [1—4], Raman spectroscopy [5—8], X-ray [9], etc. These technologies are widely
used in chemical detection, medicine, and biology. Herein, the determination of mineral pigments by Raman
spectroscopy was carried out.

Raman spectroscopy is a detection technology based on the Raman effect, which is a kind of scattering
spectrum that detects substance composition by analyzing molecular vibration and rotation information.
Many scholars use Raman spectroscopy to analyze pigments [10, 11]. Daniel Cosano et al. detected the pig-
ments in the Annunciation Sculptural Group via Raman spectroscopy [12]. The artificial analysis of Raman

** Full text is published in JAS V. 90, No. 2 (http://springer.com/journal/10812) and in electronic version of ZhPS
V. 90, No. 2 (http://www.elibrary.ru/title_about.asp?id=7318; sales@elibrary.ru).
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spectroscopy is used, which requires the operator to consult a lot of data and have a certain amount of expe-
rience. The deep learning algorithm can solve this problem well.

As a branch of deep learning algorithms, convolutional neural network (CNN) is widely used in medi-
cine [13—15], natural language processing [16, 17], image recognition [18, 19], and other fields. Kele Xu et
al. proposed a multi-channel CNN model to solve the problem of audio scene classification [20], whereas
Toshiaki Hirasawa et al. used the CNN model to detect gastric cancer in endoscopic images [21]. However,
as a model based on data, insufficient data has always been one of the key problems that many scholars need
to solve when using this model. Insufficient data may cause overfitting; therefore, it is necessary to extend
the data set.

In this paper, a CNN model was proposed to classify the Raman spectra of the cinnabar and cinnabar-
clam white mixture. Only 10 spectra of each sample were collected as training and validation sets. Data
augmentation was carried out on the spectral data set by translation transformation and noise addition. The
model obtained has good antinoise ability. When the signal-to-noise ratio (SNR) of the test set is no less than
40 dB, the accuracy can reach 100%.

Experimental. Cinnabar and cinnabar-clam white mixture were used to make samples. The mass ratio
of cinnabar and clam white was 1:1. Because the sample belongs to the color material, the ordinary Raman
spectrometer will burn the sample under the power mode of 500 mW, and thus cannot measure the spectrum.
Therefore, the portable Raman spectrometer based on Digital Mirror Device and Lissajous pattern modula-
tion was used in this experiment to collect Raman spectrum [22]. The specific parameters of the spectrome-
ter were as follows: the laser wavelength was 785+0.02 nm; the resolution is 811 cm™'; the laser power is
set to 500 mW; the spectral range is 200-1800 cm™'. In all, 60 spectra were collected for each sample, 120
spectra were collected in total, and each spectrum was 801*1 dimensional data. Figure 1 shows the collected
spectral data, in which the characteristic peak of clam white is difficult to be identified, posing a challenge to
the classification of the model.
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Fig. 1. Raman spectra of cinnabar and cinnabar-clam white mixture.

Deep learning is a model with strong data dependence. The size of the data set directly affects the per-
formance of the model, whereby too little data leads to overfitting of the model (poor ability to classify un-
known data). Common data augmentation methods include random scale, random crop, horizontal/vertical
flip, color jittering, noise, etc. However, most of these methods are for image data, thus it is unreasonable to
apply methods such as horizontal/vertical flips to spectral data.

In this experiment, to verify the performance of the data augmentation method, only 10 (20 in total) da-
ta were extracted from each type of spectrum as the original data of the training set and validation set, and
the training set and validation set were expanded to 320 data by translation transformation and the noise
method [23, 24]. To study the antinoise capability of the model, White Gaussian Noise was added to the test
set so that the SNR of the test set was 1070 dB. Table 1 shows the processing method and size of the final
training set, validation set, and test set:
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TABLE 1. Processing Methods and Size of the Training Set, Validation Set, and Test Set

Data set Translatiop White Gaussian Noise Size
transformation (SNR, dB)
Training set 4 50-70+ non-Noise 240
Validation set 4 50-70+ non-Noise 80
Test set x 10—70+ non-Noise 800

Raman spectra under the influence of instrument error and measurement environment could lead to
Raman offset. Therefore, translation transformation cannot solely expand the spectrum data sets, it must also
be compatible with the offset to some extent. The experiments on each of the Raman spectra are at random
deleted first and tail, a total of three data points, to achieve the translation of the spectrum transform. Then,
the data set is expanded to be four times as large as the original dataset (80 in total).

Raman spectrum inevitably contains noise, and noise reduction has been the focus of many scholars,
but there is no method to perfectly eliminate the noise at present. For the deep learning model, adding noise
to the training data can improve the antinoise interference ability of the model and enhance its robustness.
White Gaussian noise was added to the data after translation transformation, so that the SNR of data was 50,
60, and 70 dB, and the data set was expanded 4 times (320 in total). The ratio of the training set and valida-
tion set was 3:1.

Results and discussion. A portable Raman spectrometer has the advantages of convenient use and fast
detection speed, but it is more susceptible to the influence of ambient light [25]. The CNN model has been
applied in spectral analysis by many scholars [26-28]. This paper proposes a CNN model that can accurately
classify the spectra collected by a portable Raman spectrometer. The CNN model proposed in this paper
consists of four convolutional layers, four pooling layers, one flattened layer, two fully connected layers, and
one output layer. Figure 2 shows the structure of this model. Among them, due to the shared parameters of
the convolution kernel, the convolutional layer has translation invariance and is compatible with Raman off-
set. The calculation formula for the convolutional layer is as follows:

Y= kb)) (1)

where x/! is the ith input feature graph of the n-1th layer, * is the one-dimensional convolution operation,
;" is the jth output feature graph of the nth layer, k; is the convolution kernel used for the n-1th layer, and

nth layer operations, ;" is the bias of the jth feature graph of the n-h layer and f'is the activation function.
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Fig. 2. Structure diagram of CNN model.
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The pooling layer adopts the max pooling layer with a step size of 3 to reduce the length of data. The
combination of multiple convolutional layers and pooling layers can extract the important features of Raman
spectra. Flatten layer can flatten the data into the shape of a one-dimensional vector, which is convenient to
input into the fully connected layer for classification. Each fully connected layer has 512 neurons; the num-
ber of neurons in a fully connected layer was determined by a large number of experiments and tests. To avoid
overfitting, the dropout technology is applied to each fully connected layer. The dropout rate is set to 0.5.

y=f(Wx+b), )
Wi e W,

w=| ., 3)
w, w.

where W is the parameter matrix; x, y and b are the input vector, output vector, and bias vector, respectively;
n is the number of neurons; and m is the length of the input vector. Rectified Linear Unit (ReLU) activation
function was used to delinearize each convolutional layer and the fully connected layer, and the Sigmoid ac-
tivation function was used to obtain the predicted probabilities for the output layer. Root Mean Square Prop
(RMSProp) is used as the optimizer and binary cross-entropy of the loss function.

Raman spectrum is affected by an instrument error, ambient light, and other factors, which will produce
noise and baseline drift; therefore, it is necessary to preprocess the spectral data before training the model.
Common preprocessing steps are smoothing, baseline removal, and normalization. In this experiment, the
Savitzky—Golay algorithm was used to reduce spectral noise. The Adaptive iteratively reweighted Penalized
Least Squares (Air_PLS) algorithm was used to remove the baseline of the spectrum (where lambda, the pa-
rameter that controls baseline smoothness, takes the value 15), and then the spectrum is normalized to make
it easy to compare features of different orders of magnitude. After several simulation experiments, the hy-
perparameters of the model are determined as batch size: 100 and learning rate: 0.0001. Table 2 summarizes
the specific parameters of the proposed CNN model and Fig. 3 shows the loss curve of the training model. It
is found that the model has no overfitting phenomenon.
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Fig. 3. Loss curve of the model.

TABLE 2. Output Shapes, Filter Size, and Stride at Each Layer of the Proposed CNN Model

Output | Filter . Output | Filter .

Layers Type shape size Stride | Layers Type shape | size Stride
1 Convolution | 790*2 9 7 Convolution | 25*%16 3 1
Max-pooling | 263*2 8 Max-pooling 8*16 3 3

9 Flatten 128 - -
10 Fully connected | 512 - -
11 Fully connected | 512 - -
12 Output 1 - —

Convolution | 257*4
Max-pooling | 86*4
Convolution | 82*8
Max-pooling | 27*8
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Currently, commonly used model evaluation indicators include precision, sensitivity, specificity, accu-
racy, and F1Score. The calculation formula for these indicators is as follows:

Precision = P , 4)
TP+ FP
Sensitivity = Recall = _TP , (5)
TP+ FN
TN
Specificity = ——, 6
P y TN+ FP ©
TP+ TN
Accuracy =—, 7
Y P+N ™
* 1 *
F Score = 2 * Precision* Recall , (8)

Precision+ Recall

where TP is the number of positive samples correctly classified, FP is the number of positive samples incor-
rectly classified, FN is the number of negative samples incorrectly classified, TN is the number of negative
samples correctly classified, P is the number of positive samples, and N is the number of negative samples.
In this study, cinnabar and cinnabar-clam white mixture were designated as positive and negative samples,
respectively. The test set was divided into eight pieces according to the SNR. (Note, to ensure the reliability
of test results, the test set is not translated.) The test set without noise was used to evaluate the model. Preci-
sion, sensitivity, specificity, accuracy, and F1Score were all 100%, which shows that the model can correctly
classify the two mineral pigments.

We tested the performance of the model using the test set with an SNR of 10-70 dB and found that the
model performed well in a test set with an SNR of 40-70 dB, with precision, sensitivity, specificity, accura-
cy, and an F1Score reaching 100%. In a 30 dB SNR data set, its precision, sensitivity, specificity, accuracy,
and F1Scores were 58, 100, 70.42, 79, and 73.42%, respectively. Twenty-one cinnabar spectra were misclas-
sified. The model lost the ability of cinnabar classification in the SNR of 10-20 dB — precision, sensitivity,
specificity, accuracy, and F1Score were 0, 0, 50, 50, and 0, respectively, and all cinnabars were misclassi-
fied.

Raman spectrum analysis showed that the characteristic peak of clam white was very small and could
not be identified by the naked eye in the Raman spectrum with an SNR of 10-20 dB. According to the ex-
perimental results, it is speculated that the model is classified by analyzing whether there are peaks in the
position of clam white characteristic peaks. The model mistook the noise in the cinnabar spectrum as the
characteristic peak of clam white, so cinnabar was wrongly classified as cinnabar-clam white. Nevertheless,
the model has demonstrated excellent performance.

Conclusions. The main research content of this paper is divided into two parts: 1) Two spectral data
augmentation methods are explored, and in addition, a CNN model was proposed. A small amount of data
(20 spectra) could be used to train the model. The precision, sensitivity, specificity, accuracy, and F1Score of
the model could reach 100%. 2) The anti-noise capability of the model is investigated. The results show that
the precision, sensitivity, specificity, accuracy, and F1Score of the model reach 100% when the SNR of the
Raman spectrum is not less than 40 dB. Although the model loses the classification ability of cinnabar when
the spectral SNR is less than 30 dB, the manual method of spectral analysis has become invalid at this time.

In this paper, a feasible solution is proposed using a small amount of Raman spectra for deep learning
models, which has important application value in those cases where it is difficult to collect spectral data. Alt-
hough the Raman spectrum is used as the data for the experiment, due to the similarity of the spectral data
structures, the method proposed in this paper is expected to be applied to other spectra, providing a theoreti-
cal basis for the related research of automatic spectroscopy analysis in the future.
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