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The traditional way of measuring blood glucose causes pain and inconvenience to patients. Near-
infrared spectroscopy is a promising noninvasive alternative. However, the prediction accuracy of the cur-
rently used quantitative blood glucose model for near-infrared spectroscopy decreases when a patient’s
physiological state changes. Therefore, we propose an improved sparrow search algorithm (ISSA) to opti-
mize the initial weights and thresholds of extreme learning machines (ELM) in this paper. We used a tent
chaotic map to improve the diversity of the SSA population. We also adopted reverse learning to initialize
the population and expand the population search range, which further improved the search performance of
the SSA. The predicted results of the ISSA-ELM model were more accurate and generalizable than those of
the SSA-ELM model. Clarke error grid analysis showed that the proportion of predicted samples falling into
the A region was 90%, and the proportion falling into the B area was 10%, which is in accordance with clin-
ical requirements. Therefore, this model has strong potential for application in non-invasive detection of
human blood glucose.

Keywords: near-infrared spectroscopy, blood glucose detection, chaotic mapping, sparrow search al-
gorithm, extreme learning machine.
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s neunsazuenoz2o onpedenenus yposHs 2N0K03bL 8 KPOGU YeN08eKd NPEONodCEH YCOBEPUIEHCBOBAH-
Hulil anzopumm noucka (ISSA) ¢ yenvro onmumuzayuu HAUAILHBIX 8ECO8 U NOPO20E MAWMUH IKCMPEMATLHOLO0
obyuenus (ELM). Kapma nanamounozo xaoca ucnoiv308ana 0s yayduiernus paznooopasus SSA, obpammuoe
obyuenue — 0Nl UHUYUATU3AYUY RONYTAYUU U PACUWUPEHUS OUANA30HA NOUCKA NONYIAYUU, YO NOGbIUUAET
npouzeooumenvrocms SSA. Pesynvmamul modenu ISSA-ELM aenaromces 6onee mounvimu u 0600uarouumu
no cpaeneruio ¢ mooenvto SSA-ELM. Ananuz cemxu owubox Knapxa noxazvieaem, umo 0011 npeockasa-
HbIX 00pasyos, nonadaowux 6 ooracmov A, cocmasasiem 90 %, 6 obnacme B — 10 %, umo coomseemcmeyem
KAUHUYECKUM MPEOOBAHUAM.

Kntouesvie cnosa: cnekmpockonus 8 OaudicHemM UHPPAKpACHOM Ouanaszone, onpeoeneHie YPoeHsl 2oKo-
3bl 8 KPOBU, XA0MUYECKOe KAPMUpoganue, aieopumm noUCKd, MawiuHa ¢ IKCMpemMaibHbiM 00yeHuem.

** Full text is published in JAS V. 90, No. 3 (http://springer.com/journal/10812) and in electronic version of ZhPS
V. 90, No. 3 (http://www.elibrary.ru/title_about.asp?id=7318; sales@elibrary.ru).
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Introduction. Diabetes is a metabolic disorder caused by genetics, immune dysfunction and other fac-
tors. When patients are in a state of hyperglycemia for a long time, serious complications can occur, such as
retinopathy, cardiovascular disease and nephropathy. According to the International Diabetes Federation,
approximately 537 million adults worldwide were expected to suffer from diabetes in 2021, with the inci-
dence increasing year by year [1]. Currently, diabetes cannot be cured and requires lifelong management
through control of blood glucose, which is achieved by insulin injection and other means. The composition
of human blood is complex and blood glucose concentration is relatively low. Moreover, prediction becomes
difficult when a person’s physiological state changes. Therefore, it is important to obtain accurate blood glu-
cose information quickly and, ideally, noninvasively [2, 3].

The theoretical basis of infrared spectroscopy is described by the Beer—Lambert law [4, 5]. The near-
infrared spectral region covers the sum frequency and double frequency absorption regions of hydrogen-
containing groups, such as hydroxyl (O—H) and methyl (C—H) groups of glucose, which can be used to quan-
tify the glucose concentration [6]. Non-invasive detection of blood glucose can be realized using chemomet-
ric analysis technology to establish a mathematical model of spectral data and the blood glucose concentra-
tion [7]. The Sandia National Laboratory of the United States and the University of New Mexico School of
Medicine [8] cooperated in a series of blood glucose detection studies using near-infrared spectroscopy. This
demonstrated the potential of NIR spectroscopy in the field of non-invasive blood glucose detection for the
first time. Carlos and Benhard [9] noted that the absorption of water at the near-infrared wavelengths of
1212-1850 and 2120-2380 nm is low, but the measurement signal has high energy. Li and Huang [10] great-
ly improved the prediction accuracy by establishing a quantitative model of human blood glucose by per-
forming net signal preprocessing on near-infrared spectral data combined with radial basis partial least
squares regression.

Extreme learning machines (ELM) is a single hidden layer feedforward neural network proposed by
Huang et al. [11]. ELM has better robustness and higher convergence speed than a traditional neural net-
work. However, because the input weights and hidden layer thresholds of ELM are randomly selected, the
stability and robustness of the model need to be further improved. On this basis, we established an improved
sparrow search algorithm (ISSA) to optimize the ELM (hereafter, the ISSA-ELM model). This model
achieved fast and continuous non-invasive blood glucose detection within the clinically allowable error
range.

Experiment. The spectrometer was a NIRquest256-2.5 near-infrared miniature spectrometer produced
by Ocean Optics (USA). The effective wavelength range was 850-2500 nm, the spectral resolution was
9.5 nm, the integration time was 28 ms, the spectrum scanning time was 20, and the smoothness was 5-point.
The light source (HL-2000-HP) and optical fiber (R400-7-VIS-NIR Y-type) were supplied by Ocean Optics.
A Verio Flex blood glucose meter (Onetouch Medical Co., USA) was used, which had a detection range of
1.1-33.3 mmol/L.

The subjects were two healthy volunteers, referred to as volunteer A and volunteer B. To verify the
generalization performance of the model, three data-acquisition experiments were performed on different
days for each volunteer. The volunteers fasted for 12 h before the experiment and ingested 300 mL of 0.25 g/mL
aqueous glucose solution during the experiment. The fingertip spectral data of the volunteers were collected
with the spectrometer, and the blood glucose concentration was measured with the glucose meter. The col-
lection interval was 5—7 min. Measurements were stopped on the first day when the volunteers’ blood glu-
cose concentrations returned to those of their fasting state. On days 2 and 3, Measurements were stopped
when the volunteers’ blood glucose concentrations reached those of their peak state. We note that volunteers
should remain calm and not undertake strenuous exercise when collecting data. Volunteer A received 18, 10,
and 10 samples on days 1, 2 and 3, respectively, during which their blood glucose concentration varied from
5.4 to 11.1 mmol/L. Volunteer B received 15, 7, and 7 samples on days 1, 2, and 3, respectively, during
which their blood glucose concentration ranged from 5.2 to 9.7 mmol/L.

The spectral data were first preprocessed using multivariate scattering correction to eliminate the spec-
tral differences caused by different scattering levels. This enhanced the correlation between the spectrum and
the substance to be measured [12].

As mentioned previously, we used an ISSA to optimize the initial weights and thresholds of the ELM [13].
By introducing tent mapping, the randomness and ergodicity of chaotic sequences could be used to improve
the diversity of the population. The inverse solution generated by the reverse-learning strategy was used to
expand the search range of the population and improve the search performance of the algorithm. The overall
modeling steps are as follows:
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Step 1. The parameters are initialized, such as the population size, maximum number of iterations, pro-
ducer ratio (PD), the ratio of those who perceive danger to those who do not (SD), and safety threshold (ST).

Step 2. The upper and lower boundaries of the optimization variables are determined. Tent mapping and
the reverse-learning strategy are then used to generate the initial sparrow population [14]. The tent-mapping
formula is as follows:

2X,,0<X, <05,
k+l = (h

2(1-X,),05< X, <1.

The tent-mapping equation generates NN solutions X; (i = 1, 2, ..., N) as the initial population, and the reverse
solutions, X;', are generated for each initial solution:

)(i* = Xmin + Xmax — Xi (2)
where Xmin and Xmax represent the minimum and maximum values of the initial solution, respectively. Final-
ly, the initial solution and the reverse solution are merged, and N individuals with better fitness are selected
to form the initial population [15].

Step 3. The adaptive value is calculated for each sparrow. The optimal fitness value and the worst fit-
ness value are determined, and their positions are recorded.

Step 4. From the sparrows with the best fitness values, some are selected as producers to update their
positions. The producer can search for food in a wide range of places. The location of the producer is updat-
ed as described below during each iteration:

X, -exp(-———),R, < ST
a-ter,, 3)

X!, +0 LR, 2 ST

where 7 is the number of iterations, X;; is the position information of the ith sparrow population in the jth di-
mension, ¢ is a random number (ac(0,1)), itermax is the maximum number of iterations, Q is a normal distri-
bution random number (Qe<[0,1]), L shows a matrix of 1xd for which each element inside is 1, R; is the
alarm value (R>€[0,1]), and ST is the safety threshold (S7€[0.5,1]). When R, < ST, there are no predators in
the foraging environment, and the producer can conduct extensive search operations. If R, > ST, some spar-
rows in the population have discovered predators, an early warning is issued to other sparrows in the popula-
tion, and all sparrows need to fly to a safe area for foraging.

Step 5. During the foraging process, other sparrows named scroungers monitor the producer. When the
producer finds better food, the scrounger will compete with the producer. If successful, the scrounger will
get the producer’s food; otherwise, they will continue to track and monitor producer. The location of the
scrounger is updated as described below during each iteration:

L |oew| (i —xi D[P > N2,

Y= (4)
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where Xworst 18 the global worst position. Xp is the optimal position occupied by the producer, 4 is a 1xd ma-
trix of 1 or —1 randomly assigned to each element, and A* = A7(447)"'. When i > N/2, the i scrounger with
poor fitness has not obtained food and needs to go to other areas to find food.

Step 6. Some sparrows are selected from the population as alerters whose positions are randomly gener-
ated. The mathematical model can be expressed as follows:

Xl[)cst +B‘Xi[,j _Xt[)cst ’f;' >fg’
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where Xpest is the global best position; f3 is the step-size adjustment coefficient of a randomly generated nor-
mal distribution with mean of 0 and a variance of 1; & is a uniform random number in the range of [0,1], in-
dicating the sparrow movement direction; f, and f,, are the global optimal and worst fitness values;
fi is the fitness value of the present sparrow; and ¢ is the minimum constant to prevent the denominator from
being 0. When f; > f;, the sparrow is at the edge of the population and can be easily attacked by natural ene-
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mies; when f; = f;, the sparrow in the center of the population is informed of the danger of being attacked by
enemies and needs to move closer to the other sparrows [16].

Step 7. Determine whether the maximum number of iterations is reached. If so, the iteration is stopped
and the training parameters are saved. The optimal results, Xpest and fg, are input into the ELM. The output
weights are calculated, and the complete model is established.

Results and discussion. The spectra taken for each volunteer on days 1 and 2 were used as the calibra-
tion set to establish the ISSA-ELM model, and the spectra taken on day 3 were used as the test set to evalu-
ate the accuracy of the model. For volunteer A, 28 spectra were use in the calibration set and 10 were used in
the test set. For volunteer B, 22 spectra were used in the calibration set and 7 were used in the test set. The
predicted results based on the calibration set and test set are shown in Figs. 1, and Table 1.

Figures 1 show that the ISSA-ELM method accurately predicted results for both calibration and test
sets. For volunteer A (Fig. 1A), the relative errors (except for sample 8) were all less than 20%, while for
volunteer B (Fig. 1B), the relative errors (except for sample 7) were all less than 20%. There was a strong
correlation between the blood glucose concentration and the spectral data.

Compared with the SSA-ELM model, the root mean square error of prediction (RMSEP) values of the
ISSA-ELM model for volunteers A and B was reduced by 0.41 and 0.5 mmol/L, respectively. The correlation
coefficient (R) increased by 0.18 and 0.07, respectively. The residual predictive deviations (RPDs) [17, 18]
of the ISSA-ELM prediction model for volunteers A and B were both greater than 1.4, which were 0.5 and
0.51 better than those of the SSA-ELM prediction model.

To further verify the effectiveness of the ISSA-ELM model, the Clarke Error Network [19] was used to
evaluate the experimental results, which are shown in Fig. 2 and Table 2
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Fig. 1. Predicted results from the ISSA-ELM model for volunteers A and B:
Reference and predicted values for relative error the calibration (a, a"), reference
and predicted values for the test (b, b"), and relative error of the test (c, c').

TABLE 1. Performance Comparison of the Two Models

Volunteer Model Calibration set Test set
RMSECV R RPD RMSEP R RPD
A SSA-ELM 0.82 0.88 | 2.1 1.54 0.72 1.37
ISSA-ELM 0.68 092 | 2.6 1.13 0.90 1.87
B SSA-ELM 0.85 0.83 1.6 1.42 0.77 1.42
ISSA-ELM 0.62 0.89 | 2.3 0.92 0.84 1.91
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Fig. 2. Clarke results for volunteer A and B: SSA-ELM model (a, a’),
and ISSA-ELM model (b, b’).

TABLE 2. Clarke Error Grid Analysis for the Two Models

Volunteer Model Clarke error grid analysis, %
A B C D E
A SSA-ELM 70 30 0 0 0
ISSA-ELM 90 10 0 0 0
B SSA-ELM 80 20 0 0 0
ISSA-ELM 90 10 0 0 0

Clarke’s error grid analysis of the ISSA-ELM model for volunteers A and B showed that 90% of the
samples fell in area 4 and 10% fell in area B, indicating that the model had good reliability. Thus, the ISSA
not only improved the population diversity and search range, but also it had a stronger search ability than
SSA. Moreover, the ISSA-ELM model solved the complex nonlinear relationship between the spectral data
and blood glucose concentration and avoided falling into a local optimum.

For the calibration set, which was composed of data from the first and second days of the experiment,
the RMSECYV of the ISSA-ELM was less than 0.7 mmol/L, indicating good prediction accuracy. When the
data from the first and second days were used for modeling, and the third day’s data were used as the test set,
the physiological state of the volunteers (such as body temperature), parameters of the spectrometer (for ex-
ample, owing to instability of the light source) and measurement conditions (such as ambient temperature
and humidity) would have changed, which made the prediction more difficult. The RMSEP values for both
volunteers were less than 1.2 mmol/L. Thus, the ISSA-ELM model has good adaptability and robustness,
making it suitable for more complex application scenarios of blood glucose detection.



AHHOTALIUU AHTJIOS3BIYHBIX CTATEN 522-6

Conclusions. We proposed an improvement of the sparrow search algorithm by introducing chaotic
mapping and reverse learning to initialize its population. This algorithm was used to optimize an extreme
learning machine thereby establishing an ISSA-ELM prediction model. We used the model to predict the
concentrations of blood glucose in two volunteers. The RMSEP values were 1.13 and 0.92 mmol/L, respec-
tively, which verified the effectiveness and robustness of the model, and its potential for application in non-
invasive blood glucose detection methods in humans.
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