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INTERPLAY BETWEEN SELF-FOCUSING AND SELF-COMPRESSION OF ELLIPTICAL
¢-GAUSSIAN LASER PULSE INTERACTING WITH AXIALLY INHOMOGENEOUS PLASMA™
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A theoretical investigation of spatiotemporal dynamics of an intense laser pulse with a q-Gaussian spa-
tial irradiance profile interacting with collisionless plasma has been presented. In particular, the dynamics
of pulse width and beam widths of the laser pulse have been investigated in detail. Using variational theory,
nonlinear partial differential equation governing the evolution of the pulse envelope has been reduced to
a set of coupled ordinary differential equations for the pulse width and beam widths of the laser pulse. The
differential equations thus obtained have been solved numerically to envision the interplay between self-
focusing and self-compression of the laser pulse.
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Teopemuuecku uzyyena nPOCMPanCmMEeHHO-8PEMEHHAs. OUHAMUKA UHMEHCUBHO20 JIA3ePHO20 UMNYIbCA
C q-2aycco8biM NPOCMPAHCMBEHHBIM NPOQUIEM UZLYYEHUs NPU 63AUMOOCUCIEUL ¢ OECCMONKHOBUMENbHOT
RAA3ZMOU, 8 YACMHOCIU OUHAMUKA WUPUHBL UMNYIbCA U WUPUHBL TyYa aAazepHo2o umnyavcd. C ucnonw3osa-
HUeM 6APUAYUOHHOU MeopUll HeUHEUHOe YPASHEHIUEe 8 YACMHbIX NPOU3B00HBIX, ONpedeisiouee I60I0YUI0
ozubarowel UMnYIbLea, C6e0eHO K HADOPY CBA3AHHBIX 0ObIKHOBEHHBIX OUGhhepeHyuaibHblX ypasueHul OJis
WUPUHBL UMPYTIBCA U WUPUHBL VYA 1A3EPHO20 umnynsca. Jupgepenyuanvivie ypasnenus peulervl YUcieH-
HO OJ151 nPeOCMABIeHUs. 83AUMOCES3U MENCOY CAMOPOKYCUPOBKOU U CAMOCHCATNUECM JLA3ePHO20 UMNYIBCA.

Knrwuesvle cnosa: ouggepenyuanvrioe ypaghenue 6 HACMHLIX NPOU3BOOHBIX, NA3EPHBIL UMNYIbC,
g-eayccuan.

Introduction. Lasers have become an essential part of our life. They are ubiquitous in consumer tech-
nology, from CD players to supermarket checkout scanners [1]. The everyday presence of lasers does not
mean that they are meant only for pedestrian tasks. Already they are providing the preferred solution to
an impressive variety of real-world problems, and in the future, they will continue to enhance the quality of
life and will contribute wealth to the world economy.

The vital organs of any laser system are optical amplification and feedback. In the late 1960s the rock
musician, Jimi Hendrix, amazed audiences by placing his Stratocaster guitar in front of an amplifier to in-
voke a wail of sustained acoustic feedback. Earlier in the same decade, T. H. Maiman [2] of Hughes Re-
search Laboratories did something similar with light. He demonstrated that an excited ruby rod placed in
a cavity formed by two parallel mirrors can produce an intense beam of laser light. By bouncing light back

** Full text is published in JAS V. 90, No. 3 (http://springer.com/journal/10812) and in electronic version of ZhPS
V. 90, No. 3 (http://www.elibrary.ru/title_about.asp?id=7318; sales@elibrary.ru).
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and forth, the cavity provides optical feedback. One of the mirrors is partially reflecting and thus allows a
portion of the light to escape to form the familiar laser beam. Many different light wavelengths can fit into
the space between the mirrors, the only condition being that they must have an integral number of oscilla-
tions in the space between these mirrors. Each such electromagnetic wave is called a longitudinal mode of
the cavity. These modes are the optical equivalent of the harmonic notes on each string of Hendrix’s guitar.
A well-controlled laser system operating in continuous wave mode emits a constant beam of light of a color
corresponding to the frequency of one of these modes. However, a short laser pulse must contain a large
range of frequencies, as mandated by Heisenberg’s uncertainty principle [3, 4]. The frequency (or wave-
length) content of a pulse is inversely proportional to the pulse width. To generate an ultrashort pulse, these
many thousands of modes must be locked together in a phase [5]. When each mode is summed up with all
the other modes, the sinusoidal electromagnetic waves add up to yield a short pulse in time, with a duration
roughly equal to the inverse of the frequency range of the modes that are amplified in the cavity. As an anal-
ogy, imagine a row of bells of different tones, swinging in a bell tower. If the bells swing randomly, the re-
sult will be a steady cacophony. In contrast, if they swing in synchrony at regular intervals, they will produce
a sequence of loud, equally spaced chords. Similarly, in mode-locked operation, all the light within the la-
ser’s optical cavity is confined to a discrete ultrashort pulse that bounces back and forth in the laser cavity,
with a small amount of light leaking out through one mirror on each round trip. The laser thus emits a peri-
odic sequence of ultrashort pulses through its partially transmissive mirror. In a physical sense, the term ul-
trashort characterizes a number of processes with evolution time scales that are smaller than the relaxation
time for the medium. These pulses are brief enough that they can be used to take snapshots of phenomena
occurring on molecular time scales, i.e., in the short time intervals during which molecules and electrons
move and interact. Just as closely spaced flash photographs can be used to capture the nuances of a golfer’s
swing or a diver’s entry into the pool; thus, scientists can use ultrashort pulses of light to capture in detail the
consequences of the vibrational motion of the nuclei in a molecule or the flight of an electron during the
brief moment before it scatters from the lattice of a semiconductor crystal.

When focused on a tiny spot, such laser pulses ablate many materials [6, 7]. This makes ultrashort puls-
es an efficient tool for micromachining, drilling, cutting, and welding. Precision can exceed the beam focus
if the pulse intensity is set so carefully that the temperature of the material only at the brightest central part
of the beam rises above the ablation threshold. The ultra-fast laser pulses ensure smooth and precise features
by delivering energy to the target at the focus so rapidly that heat does not get enough time to diffuse into the
surrounding unirradiated areas. This limits collateral damage and allows repeatable micron-sized cuts [8].
This feature of ultrashort laser pulses may prove practical in the decommissioning of weapons. The lasers
can slice safely through high explosives and can vaporize the material at the cutting point without detonating
the adjoining material. In the emerging surgical application, this means little if any burning and tearing of
neighboring tissue. Unlike other laser surgery, which typically cauterizes an incision, cuts made with an ul-
trafast laser will bleed. The pulsed beam can also be focused beneath the skin, allowing for some types of in-
cisionless surgery without damage to intervening tissue [9, 10]. In addition, cuts on the dimensions of mi-
crons may result in new capabilities for surgically repairing nerve damage.

The key to ultra-high-intensity laser pulses is a technique called chirped pulse amplification (CPA) [11, 12].
“Chirping” a signal or a wave means stretching it in time. In CPA, the first step is to produce a short pulse
with an oscillator and stretch it, usually 1 to many times as long. This operation decreases the intensity of the
pulse by the same amount. Standard laser amplification techniques can now be applied to this pulse. Finally,
a sturdy device, such as a pair of diffraction gratings in a vacuum, recompresses the pulse to its original du-
ration — increasing its power to several times beyond the amplifier’s limit. However, it is easier said than
done. The same is true with CPA-perfecting, which is not as straightforward as it sounds. The devices used
to stretch/compress laser pulses generally do not do so in an exactly linear fashion. If the characteristics of
the chirper are same to that of the compressor then the result gets spoiled. Further, the finite bandwidth
of the active medium and the thermal damage threshold of the conventional gratings limit the peak intensity
achievable by CPA. As soon as the intensity reaches ¥, any medium becomes prone to ionization-induced
damage. Thus, in this regime the conventional optical elements are inappropriate. In contrast, being already
ionized, plasmas are susceptible to ionization-induced damage and therefore possess infinite immunity
to field-induced damage. When a laser pulse with a non-uniform spatial amplitude structure propagates
through plasma, the ponderomotive force originating as a result of the intensity gradient over its cross-
section results in the evacuation of plasma electrons from high-intensity regions of the irradiated regions
of plasma to the low-intensity regions. The resulting redistribution of electron density makes the index of re-



AHHOTALIMU AHTJIOSI3bIYHBIX CTATEMN 527-3

fraction of plasma intensity dependent. This intensity dependence of the index of refraction of plasma is re-
sponsible for the self-focusing and self-phase modulation (SPM) of the laser pulse. In the case of SPM,
the intensity dependence of the index of refraction leads to a frequency chirp and consequently compresses
the pulse to ultrashort duration [13—16]. In a physical sense, the term ultrashort characterizes a number
of processes with evolution time scales that are shorter than the relaxation time for the medium.

Most laser pulses have a Gaussian irradiance profile, although it can be beneficial to use a non-Gaussian
laser pulse in certain applications. Gaussian laser profiles have several disadvantages, such as the low-
intensity portions on either side of the usable central region of the beam, known as “wings.” These wings
typically contain energy that is wasted because it is at a lower intensity than the threshold required for the
given application, whether it is materials processing, laser surgery, laser-driven fusion or another application
where an intensity above a given value is needed. In this regard a new class of laser pulses, known as
g-Gaussian laser pulses, have attracted significant interest among researchers [17, 18]. These laser pulses are
characterized by the expanded wings [19] of the irradiance profile and thus their wings contain a significant
amount of energy. For the same spot size as that of an otherwise identical Gaussian laser pulse, the
g-Gaussian laser pulses possess larger root mean square beam width and thus undergo less diffraction diver-
gence. This makes g-Gaussian laser pulses superior to Gaussian laser pulses for the applications where dif-
fraction divergence is a serious nuisance. Because no experimental or theoretical investigation on the self-
compression of elliptical g-Gaussian laser pulses in collisionless plasmas has been reported to date, this gave
us a strong motivation to investigate the same. Thus, this paper is aimed at presenting the first theoretical in-
vestigation of the self-compression of elliptical g-Gaussian laser pulse in collisionless plasmas with axial
density ramp.

Evolution of pulse envelope. Consider the propagation of a laser pulse with an electric field vector:

E(r,1)=4,(x, y,z,t)eil(koszo 1) e,
through a plasma whose equilibrium electron density is an increasing function of distance of propagation and
is modeled as:
no(2) = noe®,
where (ko, o) are the vacuum wave number and angular frequency of the laser beam respectively, no is the
electron density at z=0, and the constant d is associated with the rate of increase of electron density with
distance and hence is termed the slope of the density ramp. Owing to the amplitude gradient over the cross

section of the laser beam the plasma electrons experience a ponderomotive force given by:
2
V(445

e
Here, e, m are the electronic charge and mass. As this ponderomotive force is proportional to the negative of
the intensity gradient of the laser beam, it causes the evacuation of electrons from high-intensity regions of
the illuminated portion of plasma. These migrated electrons accumulate in the low-intensity regions of the il-
luminated portion of plasma. The modified electron density of the plasma is given by:

2
e
n=ny(z)exp| ——————4,4; |, 1
o(2) p{ — AOAO} (1)
where T is the temperature of the plasma and K is the Boltzmann constant. This modified electron density
in turn alters the dielectric properties (described by the function € = 1 — (4ne’n)/(mwe?)) of plasma as:

Fp=-
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where cofno = n, is the unperturbed plasma frequency, i.e., the plasma frequency in the absence of a la-
ser beam.

Thus, the ponderomotive force on the plasma electrons produced by the laser pulse makes the index of
refraction of plasma intensity dependent, which in turn, owing to the spatial dependence of the amplitude
structure of the laser beam, resembles that of graded index fiber. Separating the dielectric function of plasma
into linear g and nonlinear ¢ parts as:

e=go+0( 44 ), 3)
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we get
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The propagation of a laser pulse through a nonlinear medium characterized by nonlinear dielectric func-
tion ¢p(4odo’) is governed by wave equation:

(04y 104 1 d’ky | 4y k. N
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Introducing the conventional transformation to the moving frame of the laser pulse via (z,f) > (z,T =t — z/vg),
we get:

aAo —g O’ Ao ko
i 20 Vi + zk o —0-0( Ay ) 4. (©6)

In the present investigation we have used a seml-analytlcal techmque known as the variational method
[20, 21] to obtain the solution to Eq. (6). This method converts the problem of solving a partial differential
equation to that of solving a set of coupled ordinary differential equations. These ordinary differential equa-
tions govern the evolution of the various parameters of interest. In the case of self-focusing and self-
compression of the laser pulse the parameters of interest are the beam widths and pulse width of the laser
beam. The essence of method consists in finding solutions to this class of functions 4o(r,c), where the set of
parameters ¢ = (fi(z), f,(z), g(z)) depends on the evolution variable and is determined based on the solutions
of the corresponding system of ordinary differential equations. According to this method, Eq. (6) is a varia-
tional problem for the action principle based on Lagrangian density:

cg@%_@%qu%z_f_ﬁf 4044 )d (4,47 +

In the present investigation we have considered the trial function of the form:

—q/2 2
T U | S (e=zve)
AO ()C, Y, Z,t) = f;(fyg {1 + q [aZf;? + bzfyz J} exl{ 2‘[3g2 . (8)

Here, Eyo is the axial amplitude of the field of the laser beam and a, b are the widths of the laser beam in
x, y directions respectively. 1o is the pulse width and v is the group velocity of the laser pulse. The phenom-
enological parameter ¢ is related to the deviation of the amplitude structure from the ideal Gaussian profile
and is termed deviation parameter. The value of deviation parameter ¢ varies from laser to laser and can be
obtained by fitting into the experimental data for a given laser system. fs, f,, and g are the currently undeter-
mined, real functions of only the longitudinal coordinate z. Upon multiplication with a and b respectively,
f+ and f, give the instantaneous beam widths of the laser pulse in x and y directions respectively and upon
multiplication with 1o, the function g gives the instantaneous pulse width of the laser pulse. Thus, f; and f,
are termed dimensionless beam width parameters and g is called pulse width parameter.

Substituting the trial function given by Eq. (8) in Lagrangian density and integrating over the entire

cross section of the laser beam we get the reduced Lagrangian as L = [[£d*rdx. The corresponding Euler—
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Equations (10)—(12) are the nonhnearly coupled differential equations governing the evolution of beam
widths and pulse width of the elliptical g-Gaussian laser pulse during its journey through the plasma. The
first terms on the right-hand sides of these equations correspond to the linear propagation of the laser pulse,
i.e., its propagation through the vacuum or through the media whose index of refraction is independent of the
intensity of the laser pulse. The second terms on the right-hand side (RHS) of these equations correspond to
the nonlinear response of the medium. It can be seen that although in linear media the beam widths along the
two transverse directions and pulse width of the laser pulse evolve independently, in the case of plasma due
to the laser-induced optical nonlinearity, they become coupled to each other, i.e., in nonlinear media tem-
poral characteristics of the laser pulse affect its spatial characteristics and vice versa.

Results and discussion. In the present investigation the fourth-order Runge—Kutta method has been
used to solve Egs. (10)—~(12) numerically for the following set of laser-plasma parameters: a = 10um,

wo=1.78x10"rad/s, BE}, =3, (ooioaz)/cz =6, 10=10"s,d'=0.025, and g = (3,4, ) and a/b=(1,1.1,1.2).

In solving Egs. (10)—(12) it has been assumed that at the plane of incidence, the laser pulse has plane
wavefront. Mathematically, this condition means that at £ = 0:
foy=g=1,
dfxy/dE = dgldg = 0.
Figure 1 illustrates the evolution of pulse width and beam widths of the laser pulse with longitudinal distance
through the plasma. It is can be seen that the pulse width g of the laser pulse decreases monotonically
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Fig. 1. Evolution of pulse width g (a) and beam widths f; (b) and f, (c) with distance of propagation
for different values of deviation parameter ¢ = (3, 4, «) and at fixed values of ellipticity a/b = 1.1.
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with a distance of propagation showing step-like behavior, whereas the beam widths f,, along both the trans-
verse directions show oscillatory behavior. Each step of the pulse width is positioned at the location of the
minimum beam width. The monotonic decrease in pulse width is due to the nonlinear dependence of the in-
dex of refraction of plasma on the intensity of the laser pulse. The resulting nonlinear dependence of the axi-
al phase velocity induces a frequency chirp. From the Fourier transform of the pulse envelope from the time
domain to the frequency domain, it can be seen that a pulse of finite duration contains a spread of frequencies
(Fig. 2). This fact can be verified from the energy-time uncertainty, i.e., AvAt = const. In order to keep the
product AvAz =const, a pulse with duration contains a spread of multiple frequencies. Thus, a finite pulse can
be represented by a jumble of multiple frequencies. As plasma has anomalous dispersion properties, the higher
frequencies (back of the pulse), move faster than the lower frequencies (front of the pulse). As a result, the
pulse becomes compressed with a distance of propagation (Fig. 3). The step-like behavior of the pulse corre-
sponding to a minimum beam width is due to the fact that the ponderomotive nonlinearity couples the beam
width of the pulse with its pulse width. As the focal regions of the laser pulse are the regions of highest in-
tensity, the maximum anomalous dispersion of the laser pulse occurs there. Hence, the pulse experiences
maximum compression at its focal regions. This gives the pulse width a step-like behavior. From Fig. 1a it
seems that the pulse width of the laser pulse may decrease down to zero. This is one of the limitations of the
proposed model. In actuality, as the pulse width decreases below the intensity threshold of other instabilities
such as stimulated Raman and Brillouin scattering, the pulse will not become compressed further and will

become saturated.
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Fig. 3. Pulse compression in plasma.
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The oscillatory behavior of the beam widths can be explained by analyzing the role and origin of vari-
ous terms contained in the evolution equations for the beam widths, i.e., Egs. (10) and (11). The first terms
on the RHS of these equations are the spatial dispersive terms that model the spreading of the laser pulse in
transverse x and y directions as a consequence of the diffraction divergence. Hence, these terms are termed
as diffraction terms. The second terms on the RHS of these equations that have complex dependence on
beam widths f, originate as a consequence of ponderomotive force exerted by the laser pulse on plasma
electrons. These terms model the nonlinear refraction of the laser pulse and the nonlinear coupling of the
beam widths along transverse directions. As a result of the laser-induced optical nonlinearity of the plasma,
the resulting nonlinear refraction of the laser pulse tends to counter balance the effect of diffraction along
both the transverse directions. Thus, during the propagation of laser pulse through the plasma, a competition
starts between the two phenomena of diffraction and nonlinear refraction. Whether the beam widths of the
laser pulse will converge or diverge is decided by the winning phenomenon. Thus, there exists a critical val-
ue of intensity (that can be obtained by balancing the two terms on the RHS of Eqgs. (10) and (11)) above
which the pulse converges along both the transverse directions and otherwise it will diverge spatially. In the
present investigation we have kept the initial intensity of the laser pulse greater than the critical intensity.
That is the reason why the beam widths of the laser pulse along both the transverse directions converge ini-
tially. As the laser pulse shrinks spatially, its intensity increases. When the intensity of the laser pulse be-
comes too high, the illuminated portion of the plasma is almost evacuated from the electrons. Hence, the
pulse now propagates as if it is propagating through a vacuum. As a laser pulse propagating through a vacu-
um undergoes diffraction, the beam width of a laser pulse propagating through plasma, after attaining a pos-
sible minimum value, bounces back toward its original value. As the widths of the laser pulse along both the
transverse directions start expanding, the competition between diffraction broadening and nonlinear refrac-
tion starts again. Now, this competition lasts until £;, obtain their maximum possible values. These processes
continue to repeat themselves and thus give oscillatory behavior to the beam widths of the laser pulse along
the two transverse directions.

Further, it can be seen that after every focal spot the maximum, as well as the minimum of the beam
width, shifts downward, i.e., the next focal spot of the pulse is more intense than the previous one. This is the
actual motivation behind taking the density profile of the plasma in the shape of a ramp. As the equilibrium
electron density of the plasma is a monotonically increasing function of distance, the plasma index of refrac-
tion continues to decrease with the penetration of the laser pulse into the plasma. Consequently, the self-
focusing effect is enhanced and the maximum, as well as a minimum of the beam width, continues to shift
downward after every focal spot. Another factor contributing to the enhancement of self-focusing of the laser
pulse is self-compression of the laser pulse. As the laser pulse is compressed with the distance of propaga-
tion, its peak intensity increases. This in turn leads to the enhancement of its self-focusing.

The plots in Fig. 1 also indicate that with an increase in the value of deviation parameter ¢, the extent of
self-focusing along both the transverse directions is reduced. This is because for a laser pulse with a larger
value of ¢, most of the pulse energy is concentrated in a narrow region around the beam axis. Hence, these
laser pulses receive a small contribution from the off-axial rays toward the nonlinear refraction. As the phe-
nomenon of self-focusing is a homeostasis of nonlinear refraction of the laser pulse due to the optical non-
linearity of the medium, an increase in the value of deviation parameter ¢q reduces the extent of self-focusing
of the laser pulse. Thus, compared with ¢g-Gaussian laser pulses, ideal Gaussian pulses possess minimum fo-
cusing character.

It can also be seen that instead of their reduced focusing, laser pulses with higher values of deviation pa-
rameter ¢g possess faster focusing along both the transverse directions. This is due to the faster focusing char-
acter of the rays closer to the axis of the laser pulse. Being away from the axis of the pulse, off-axial rays
take long to self-focus. As there are more off-axial rays in laser pulses with lower values of deviation param-
eter g, these laser pulses possess a slower focusing character.

The first plot in Fig. 1 indicates that with an increase in deviation parameter ¢, the extent of self-
compression of the laser pulse is reduced. This is because, owing to the optical nonlinearity of plasma, the
pulse width is coupled with the beam width. Thus, there is a one-to-one correspondence between the extent
of self-focusing and self-compression. As with an increase in deviation parameter, the extent of self-focusing
decreases, and there is a corresponding reduction in self-compression of the laser pulse.

Figure 4 illustrates the effect of the ellipticity of the laser pulse along the direction of the laser pulse on
its self-compression and self-focusing. It can be seen that with an increase in the pulse ellipticity along the
direction, there is a reduction in the extent of self-focusing of the laser pulse along the direction. This is be-
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cause, at a fixed value of a, an increase in the ellipticity of the laser pulse (i.e., a/b) indicates the reduction in
the initial beam width of the laser pulse along the y direction. Hence, an increase in the ellipticity of the laser
pulse along the y direction makes the diffraction effect stronger along the y direction. This results in the re-
duced focusing of the laser pulse along the y direction.
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Fig. 4. Evolution of pulse width g (a) and beam widths f; (b) and £, (c) with distance of propagation
for different values of ellipticity a/b=(1, 1.1, 1.2), and at fixed values of deviation parameter g = 3.

It can also be seen that initially, the increase in the ellipticity of the laser pulse does not produce any
significant effect on its self-focusing along the x direction. However, as the pulse penetrates deeper into the
plasma the focus along the x direction also decreases. This is because, as the pulse penetrates deeper and
deeper into the plasma, the nonlinear coupling between the two beam widths becomes stronger and stronger.

The first plot in Fig. 4 indicates that with an increase in the ellipticity of the laser pulse, the extent of its
self-compression decreases. This is because, owing to the optical nonlinearity of the plasma, the pulse width
of the laser pulse is coupled with its beam width. As with the increase in ellipticity, the overall extent of self-
focusing of the laser pulse decreases, which in turn leads to a reduction in the extent of self-compression.

Conclusions. Self-compression of elliptical g-Gaussian laser pulses propagating through axially inho-
mogeneous plasmas has been investigated. The effect of self-focusing of the laser pulse on self-compression
has been incorporated. From the results of the present investigation, it can be concluded that there is a one-
to-one correspondence between the extent of self-focusing and self-compression of the laser pulse. As the
spatial amplitude structure of the laser pulse converges toward the ideal Gaussian distribution, the extent of
self-compression of the laser pulse decreases.

There are certain limitations of the proposed model. As the intensity of the laser pulse increases owing
to the combined effects of self-focusing and self-compression, other parametric instabilities such as stimulat-
ed Raman and Brillouin scattering, filamentation of the pulse, etc., will come into the picture. The effect of
these nonlinear phenomena has not been incorporated into the proposed model, as it would increase the
mathematical complexity of the model.
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The results of the present investigation may serve as a guide for the experimentalists working in the area
of laser—plasma interactions.
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