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APPLICATION OF HYPERSPECTRAL IMAGING TO IDENTIFY PINE SEED VARIETIES™
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Seed variety purity is the main indicator of seed quality, which affects crop yield and product quality.
In the present study, a new method for the identification of pine nut varieties based on hyperspectral imaging
and convolutional neural networks LeNet-5 was established so as to avoid the hybridization of different va-
rieties of pine nuts, improve the identification efficiency and reduce the cost of identification. Images of 128
wavelengths in the 370—1042 nm range were acquired by hyperspectral imaging. The spectrum and image of
each seed were obtained by means of black-and-white correction and region segmentation of the original
image. Twenty characteristic wavelengths were extracted from the first three principal components (PCs)
of principal component analysis (PCA). A support vector machine (SVM) spectral recognition model based
on full wavelengths and characteristic wavelengths was established. For different species of pine seeds, the
classification accuracies of the prediction set in the aforementioned datasets were 97.7 and 93.1%, respec-
tively. The seed images of 20 characteristic wavelengths were input into LeNet-5 to improve the network
structure and the number of convolution channels. The improved LeNet-5 performed better with over 99%
accuracy. Such results show that the convolutional neural network is of considerable significance for fast
and nondestructive identification of pine seed varieties.

Keywords: pine seed, variety identification, hyperspectral imaging, support vector machine model,
principal component analysis, convolutional neural networks.
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Paspabomarn memoo uoenmupuxayuu copmos Kedposvix 0Opexos Ha OCHOGe 2UNEPCNEeKMPATbHOU U3V a-
auzayuu u ceepmounoll Hetpounou cemu LeNet-5 ¢ yenvio uzbescams 2ubpuouzayuu pasHvlx copmos Keo-
POBbIX 0pexos, nosvicums dhgekmusHocmes uoeHmupurayuu u cHU3UMb ee cmoumocmo. Hzobpadicenus
128 onun eonn 6 Ouanazone 370—1042 HM noayueHvl ¢ NOMOWDBIO 2UNEPCNEKMPATLHOU BU3YATUZAYUL.
Cnexmp u uszobpasicenue Kaxncoo2o cemeHu noayyeHsvl ¢ NOMOWbIO YePHO-DeN0ll KOPPEKYUU U cecMeHmayuu
obnacmu ucxooHoeo uzobpaicenus. /leaoyams XapaKxmepucmuieckux OIuH 01H NOJYYEHbl U3 NePEblX mpex
2NIABHBIX KOMHOHEHM NPU AHATU3e MEeMOOOM 21a8HbIX KomMnoHenm. Co30ana Mooelb CHeKmpaibHO20 PAcno-
3HABAHUS HA OCHOBE MAUIUHBI ONOPHLIX 6EKMOPO8 0N HAOOPO8 8cex ONUM BONH U XAPAKMEPUCTNUYECKUX
Onun 60H. [[nsi pazuvlx 6U008 ceMsii COCHbL MOYHOCMb KIACCUDUKAYULU 8 YKAZAHHBIX HAOOPAX OAHHBIX CO-
cmasuna 97.7 u 93.1 %. Hcxoonvle usobpascenus 20 xapaxkmepHolx OnuH 80aH 66edeHvl 6 LeNet-5 Ons
VAYUUIeHUs CMPYKMypol cemu u kananos ceepmxu. Tounocms ynyuuennozo LeNet-5 <99 %.

Knrwouesnvle cnosa: cemena cocnvl, uoeHmupurayusi copmos, 2unepcneKmpaibHds GU3yatu3ayus, mMo-
0elb MAWUHBL ONOPHBIX BEKMOPOS, MEMOO 2AABHbIX KOMNOHEHM, C8EPMOYHASL HEUPOHHAS Cemb.

** Full text is published in JAS V. 90, No. 4 (http://springer.com/journal/10812) and in electronic version of ZhPS
V. 90, No. 4 (http://www.elibrary.ru/title_about.asp?id=7318; sales@elibrary.ru).
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Introduction. Among the existing gymnosperms, Pinaceae is the group with the most species, the wid-
est distribution, and the largest forest area and wood stock. There is a wealth of information on phylogeny
involving anatomy [1], wood, cells [2, 3], phytochemistry [4] and biochemistry [5], with different species of
pines having different properties and uses [6]. Surveys have shown that P. thunbergii Parlatore has wind re-
sistance and is highly adaptable to harsh weather, being mainly used for green viewing. The branches of
P. massoniana Lamb. are rich in turpentine and can be utilized as fuelwood. The ancient Egyptians added
cedar oil to cosmetics for beauty purposes and as an insect repellent. P. tabuliformis Carriere is an environ-
mentally friendly tree species with a strong adsorption capacity for PM2.5 (airborne particulate matter (PM)
less than 2.5 pm in diameter). Swamp pine has strong adaptability and has been extensively adopted in con-
struction, fiberboard, paper and other industries. Widely used in vitality detection [7-9], disease detection [10],
and internal component detection [11], hyperspectral imaging technology is a fusion of spectroscopy tech-
nology and image technology, which can simultaneously acquire the spatial information of the measured ob-
ject and the spectral information of each pixel in the image. Compared with traditional technology, hyper-
spectral imaging technology will promote rapid, accurate and convenient nondestructive seed identification
methods. With the inevitable trend of agricultural automation and intensification, such technology will be of
considerable significance in seed purity identification.

At present, there are numerous existing studies on the detection and identification of seed varieties [12, 13].
In terms of accurately evaluating seed quality grades, the purity identification of seed varieties is the main
basis for such evaluation [14, 15]. The traditional methods of seed recognition primarily include grain shape
identification, seedling identification, field planting identification, electrophoretic analysis of biochemical
indicators, molecular marker detection, and others [16]. Although such testing methods are accurate and in-
tuitive, a variety of deficiencies remain, such as damage to seeds, long identification time and strong de-
pendence on personnel [17, 18]. The current seed industry development requires a fast and efficient method
for seed variety testing, which is of considerable significance for seed variety identification and classifica-
tion. Convolutional neural networks (CNNs) are one of the most popular methods for image classification
[19, 20]. In a large number of studies, convolutional neural networks have been adopted for detection and
prediction of hyperspectral images. With regard to crops such as corn [18, 21], soybeans [22—24], and others,
CCNs also have a wide range of uses.

The purpose of the present study was to investigate the feasibility of hyperspectral imaging for identify-
ing different pine seed species. The details are as follows: qualitative analysis of different pine seed varieties
by PCA,; establishing the SVM recognition model based on full wavelengths and characteristic wavelengths,
and comparing the advantages and disadvantages; comparing the results from the improved Lenet-6 network
after inputting the image data obtained from the 20 characteristic wavelengths selected based on PCA.

Materials and methods. Five pine seeds with similar appearance and different primary uses were se-
lected, namely P. thunbergii Parlatore, P. massoniana Lamb., Cedrus deodara, P. elliottii, and P. tabulifor-
mis Carriere. After purchasing samples in the market, 600 seeds of uniform size were randomly selected
from each variety as data collection samples, totaling 3000 pine seeds.

The hyperspectral data acquisition systems used in the present study included hyperspectral imagers, in-
dustrial cameras, light sources, mobile platforms, and computers. The hyperspectral imager SOC 710-VP
manufactured by Polytec (Germany) was used to obtain reflected light from the seeds. Two halogen lamps
were fixed on both sides of the acquisition platform to provide stable, continuous illumination. The specific
parameters of the equipment are described in Table 1. Sixty seeds were placed at equal intervals on the black
cardboard each time. After shooting was completed, data were stored in the computer, and the aforemen-
tioned process was regarded as the data collection process. Seed collection for each variety required 10 repli-
cates.

Owing to the uneven distribution of light intensity of the light source, a dark current exists in the sensor,
the light intensity is weak, and the obtained hyperspectral image has large noise. As such, black and white
correction is required:

= M , (1)
W -B
where [ is the corrected spectral data; /o is the spectral data before correction; B is the black reference value
which is obtained by completely shading the lens; W is the white reference value (the maximum reflectance),
which is obtained from a standard tetrafluoroethylene whiteboard with a reflectivity of close to 100%.
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TABLE 1. Technical Specifications

Hyperspectral imaging Spectral Spectral Spectral Dynamic

spectrometer model range channels resolution range

SOC710-VP 400-1000 nm 128 4.69 nm 12/16-Bit
Schneider focal length F/# range Max.. rec. working
Lens model sensor size distance range
Xenoplan 2.8/50 50 mm F/2.8 F/32 24mm 131 mm ... o

Halogen lamp model power maximum voltage | wavelength range | wavelength accuracy

SLS CL-150 150 W 250 V 350-2000 nm +0.1 nm

The steps of image region segmentation in the study were as follows:

1. Obtain the image threshold by means of the Otsu maximum inter-class variance method [25].

2. Enter a threshold to convert the grayscale image to a binary image.

3. Use morphological operations to denoise to obtain connected regions.

4. Draw the binary image after the opening operation.

5. Extract the region of interest (ROI) of a single seed after drawing the binary image.

Standard normal variable transformation (SNV) is a common spectral preprocessing method that is
widely used by researchers [26—28] and is primarily adopted to eliminate the effects of solid particle size,
surface scattering, and optical path variation on the NIR diffuse reflectance spectrum [29]. The spectral SNV

is calculated as follows:
_ Ul —\2
xSNV=(x—x)/\/Z(xk—x) /(m—l). 2)
k=1

Principal component analysis (PCA) is one of the most widely used data dimensionality reduction algo-
rithms, and allows for the original features with strong correlations to be mapped to a new set of features [30].
The mapped feature variables are linear combinations of the original matrices, and the variables are linearly
uncorrelated. The amount of spectral data obtained by the hyperspectral imaging system is considerably
large, and contains a large amount of redundant information, which indirectly affects the accuracy of model
identification. Therefore, PCA needs to be used to extract characteristic wavelengths, thereby reducing the
amount of input data and improving the performance of the model [31].

Support vector machine (SVM) [32] is a generalized linear classifier that performs binary classification
of data in a supervised learning fashion that can simply represent complex nonlinear patterns [33]. The basic
concept involves solving the separating hyperplane that correctly divides the training dataset and has the
largest geometric separation. Through such division of the hyperplane, the generalization ability to unseen
samples is not only the strongest, but will also have the least impact on the sample when locally perturbed,
thus the most robust classification results will be produced. The key to SVM is the kernel function. The low-
dimensional space vector set is usually difficult to divide, and the function of the high-dimensional space can
be obtained by selecting the appropriate kernel function [34]. Gaussian radial basis kernel function [35] was the
kernel function used in the present study. SVM is described as a quadratic optimization problem [36]:

(1 N
E?EE(E”W"z 2 al) , 3)

where w is the optimal solution; b is the bias parameter; ¢ > 0 is the penalty parameter of the error term; and
& is the slack variable that is related to prediction errors in SVM.

LeNet is one of the most representative experimental systems in early convolutional neural networks.
Lecun et al. [37] first recognized handwritten characters according to LeNet-5, and the artificial neurons re-
spond to a surrounding area of a portion of the coverage, performing well for large image processing [38].
LeNet-5 primarily has two convolutional layers, two pooling layers, and three fully connected layers. In the
present study, network improvements were made on LeNet-5.

In the present study, the quality of the model was evaluated in terms of the number of parameters, accu-
racy and loss function. Accuracy is a commonly used indicator for evaluating the quality of classification
models, representing the ratio of the number of samples correctly classified by the classification model to the
total number of samples for a given test set. Accuracy presents the model’s overall predictions and can be
calculated as follows:
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TP+TN 4)
TP+TN+FP+FN
where TP is true positive; TN is true negative; FP is false positive; and FN is false negative.

Results and discussion. Hyperspectral analysis of pine seeds. In the obtained hyperspectral images,
each seed needs to be segmented to obtain a single seed, which is convenient for subsequent calculation of
the spectral reflectance of a single seed. The spectrum curve of each seed was calculated from ROI, and the
average spectra of the five types of seeds were drawn (Fig. 1a). According to Fig. 1b, the spectral curves of
different kinds of pine seeds exhibited similar trends and had peaks and valleys at the same position. Such
findings show that the characteristics were similar. Compared with other categories, P. massoniana Lamb.
had the highest reflectivity. However, the spectra of different varieties of seeds differed only in reflectivity.
Consequently, there were difficulties in subjectively discriminating seed types based on spectral curves.

Accuracy =

a
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Fig. 1. Hyperspectral analysis of pine seeds: (a) Image segmentation and spectral extraction process;

(b) Average spectrum of different species of pine seeds (the green curve represents P. massoniana Lamb.;

the red curve represents P. thunbergii Parlatore; the black curve represents P. tabuliformis Carriere,
the pink curve represents P. elliottii; the blue curve represents C. deodara).

Principal component analysis. To investigate the fractional spread of different principal components,
PCA was performed for five pine seed varieties, with the transformed results being shown in Fig. 2a. An ob-
servation can be made that the cumulative contribution rate of the three principal components reached 98.8%
(84.14, 11.64, and 2.64%, respectively), and such results can represent most of the hyperspectral infor-
mation. Since each principal component was a linear combination of average spectral reflectance in 128
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wavelengths, to determine the main wavelength of information expression in each principal component, the
loadings of the three principal components were plotted in Fig. 2b. According to the loadings map of each
principal component, the position where each peak was located was selected as the characteristic wave-
length. After eliminating repeating wavelengths, a total of 20 wavelengths were identified as the optimal
wavelengths (Table 2).

Principal Component Contribution Rate a
100 84.14% —__ 100
80 | S omeiaidi— 95
60 90
40 85
20 11.64% 80
2.64%
0 — —_— 75
PC1 PC2 PC3
Principal anponent Name Cumulg;e pecentage
The weight coefficient of PC1 The weight coefficient of PC2 The weight coefficient of PC3 b
0.3 "1 016
0.10 | ' .
0.2 0.12 -
0.8
0.05 ! 0.1
. 0.04 I
0 0 i 0
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Fig. 2. Characteristic wavelength extraction results of PCA: (a) Principal component contribution
of spectral reflectivity; (b) The first three principal component loadings of PCA.

TABLE 2. Characteristic Wavelength Selection Results

Principal component number Characteristic wavelengths, nm
PC1 685.46, 743.79, 872.65, 867.24, 888.91, 937.89
PC2 385.39,431.12, 727.84, 749.12, 781.15, 1309.76
PC3 375.26, 632.82, 648.57, 701.32, 738.47, 754.45, 905.2, 910.64

SVM classification performance. Spectral data of 600 samples of each pine species were obtained, and
there was a total of 3000 samples. The samples were randomly divided into the train set and the test set in
aratio of 4:1, with the training sample size totaling 2,400, and the test sample size totaling 600. The SVM
spectral classification model was established with the full wavelengths (128 features) and the characteristic
wavelengths (20 features) as input. Using RBF as a kernel function, each model training determined the op-
timal penalty factor (c) and the kernel function radius (g) by means of cross-validation. In the classification
model based on spectral data, the accuracy rate based on the full-wavelength model train set was 100%, and
the accuracy rate based on the characteristic wavelength model was 97.2%. The classification accuracy rate
based on the full-wavelength test set was 97.7%. Based on the characteristic wavelengths, the classification
accuracy of the test set was 93.1%.

The penalty factor is a weight used for the weight loss and classification interval. For classification
problems, the larger the penalty factor, the more important the loss. When a particularly large penalty factor
is selected, if there are wrongly classified samples, the penalty will be considerably large, which will lead to
a hard interval effect. Figure 3 shows the classification results on the test set in different spectral datasets. An
observation can be made that when the penalty factor was larger, the classification result was better.

LeNet-5 classification performance. The difference between the classification accuracy based on full-
band and characteristic wavelengths was within 5%. To avoid unnecessary calculations, referring to the
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characteristic wavelengths extracted by the PCA, the images corresponding to the 20 characteristic wave-
lengths were chosen for training of the CNN. The train set and test set were divided in the same way. A total
of 40 000 images were used for model building, and 20,000 images constituted a test set. The LeNet-5 net-
work structure was constructed, in which the learning rate was 0.1; the learning rate decay rate was 0.99; and
the regularization coefficient was 0.0001. The network structure and parameters of Lenet-5 were improved
by changing the number of output filters and network structure of the convolutional layer (adding the drop-
out layer). The numbers in brackets represent the dimensions of the output spaces of the first and second
convolutions, respectively (that is, the number of output filters). The following results could be obtained
(Table 3).

Category of test setsamles a s b
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Fig. 3. SVM model classification results: (a) Full wavelengths (¢ =2, g=1);
(b) Characteristic wavelengths (c =0.5, g=1).

TABLE 3. Network Model Running Results

Network model | Parameters Training Testing Training loss | Testing loss Epoch
accuracy, % | accuracy, %

LeNet-5 (32-64) | 703.101 94.89 93.06 0.1523 0.2002 200

LeNet-5 (28-10) 62.007 98.12 99.06 0.0524 0.0324 96

LeNet-5 (16-6) 35.587 99.62 99.44 0.0161 0.0239 71

LeNet-5 (6-16) 35.587 99.70 99.58 0.0102 0.0149 157
LeNet-5

(16-6-+dropout) 35.587 96.52 99.72 0.1024 0.0153 119
LeNet-5

(6-16-+dropout) 89.097 95.99 99.92 0.1130 0.0182 113

An observation can be made from Table 3 that the number of convolution output filters had a significant
influence on the convolution speed. Comparing the training speeds of the four groups of convolution output
filters with different numbers, the experimental data set used a network with a small number of convolution
output filters to meet the requirements, with fast training speed and high efficiency.

After adding a dropout layer after the flatten layer and the first dense layer with a dropout ratio of 0.1,
the experimental results show that in the improved network model, the time (the number of iterations) for the
training set and the test set to reach the fitting varied significantly. Notably, the fitted loss function curve and
accuracy curve were significantly smoother than before.

After swapping the number of output filters in the two convolutional layers, the results show that the du-
ration of each iteration varied significantly. Taking LeNet-5(16-6) and LeNet-5(6-16)) as examples to com-
pare the results, the former had a larger number of convolutional output filters in the first layer than in the
second layer LeNet-5(16-6), while the latter had a larger number of second-layer convolutional output filters
than the first-layer convolutional output filters LeNet-5(6-16). The number of iterations required for the for-
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mer to reach the fit was significantly less than the latter, indicating that reasonable selection of the number of
output filters of each convolutional layer is considerably significant.

Conclusions. The research object was pine seeds of different varieties, and hyperspectral imaging tech-
nology was used to realize the rapid and nondestructive identification of seed varieties. PCA was adopted to
qualitatively analyze and extract characteristic wavelengths. In the SVM classification model, 128 spectral
features in the full wavelengths and 20 spectral features in the characteristic wavelengths were well repre-
sented. The recognition accuracies of the test set were 97.7 and 93.1%, respectively. The CNN training re-
sults were even better, and after many iterations, the accuracy rate was over 99%. Among the network mod-
els, the improved Lenet-5 performed better. As such, in convolutional neural networks, the selection of the
number of convolutional channels and the design of the network structure are of considerable significance.
The results of the present study provide evidence that convolutional neural networks perform well in the ap-
plication of seed variety recognition, and verify the superiority of convolutional neural networks in pro-
cessing a large amount of image data. In subsequent experiments, more types of seeds will be included, and
images of different wavelengths will be compared with different network models.
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