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Seed variety purity is the main indicator of seed quality, which affects crop yield and product quality.  
In the present study, a new method for the identification of pine nut varieties based on hyperspectral imaging 
and convolutional neural networks LeNet-5 was established so as to avoid the hybridization of different va-
rieties of pine nuts, improve the identification efficiency and reduce the cost of identification. Images of 128 
wavelengths in the 370–1042 nm range were acquired by hyperspectral imaging. The spectrum and image of 
each seed were obtained by means of black-and-white correction and region segmentation of the original 
image. Twenty characteristic wavelengths were extracted from the first three principal components (PCs)  
of principal component analysis (PCA). A support vector machine (SVM) spectral recognition model based 
on full wavelengths and characteristic wavelengths was established. For different species of pine seeds, the 
classification accuracies of the prediction set in the aforementioned datasets were 97.7 and 93.1%, respec-
tively. The seed images of 20 characteristic wavelengths were input into LeNet-5 to improve the network 
structure and the number of convolution channels. The improved LeNet-5 performed better with over 99% 
accuracy. Such results show that the convolutional neural network is of considerable significance for fast 
and nondestructive identification of pine seed varieties. 

Keywords: pine seed, variety identification, hyperspectral imaging, support vector machine model, 
principal component analysis, convolutional neural networks. 
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Разработан метод идентификации сортов кедровых орехов на основе гиперспектральной визуа-
лизации и сверточной нейронной сети LeNet-5 с целью избежать гибридизации разных сортов кед-
ровых орехов, повысить эффективность идентификации и снизить ее стоимость. Изображения 
128 длин волн в диапазоне 370–1042 нм получены с помощью гиперспектральной визуализации. 
Спектр и изображение каждого семени получены с помощью черно-белой коррекции и сегментации 
области исходного изображения. Двадцать характеристических длин волн получены из первых трех 
главных компонент при анализе методом главных компонент. Создана модель спектрального распо-
знавания на основе машины опорных векторов для наборов всех длин волн и характеристических 
длин волн. Для разных видов семян сосны точность классификации в указанных наборах данных со-
ставила 97.7 и 93.1 %. Исходные изображения 20 характерных длин волн введены в LeNet-5 для 
улучшения структуры сети и каналов свертки. Точность улучшенного LeNet-5 99 %.  

Ключевые слова: семена сосны, идентификация сортов, гиперспектральная визуализация, мо-
дель машины опорных векторов, метод главных компонент, сверточная нейронная сеть. 

 

 
** Full text is published in JAS V. 90, No. 4 (http://springer.com/journal/10812) and in electronic version of ZhPS 
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Introduction. Among the existing gymnosperms, Pinaceae is the group with the most species, the wid-
est distribution, and the largest forest area and wood stock. There is a wealth of information on phylogeny 
involving anatomy [1], wood, cells [2, 3], phytochemistry [4] and biochemistry [5], with different species of 
pines having different properties and uses [6]. Surveys have shown that P. thunbergii Parlatore has wind re-
sistance and is highly adaptable to harsh weather, being mainly used for green viewing. The branches of 
P. massoniana Lamb. are rich in turpentine and can be utilized as fuelwood. The ancient Egyptians added 
cedar oil to cosmetics for beauty purposes and as an insect repellent. P. tabuliformis Carriere is an environ-
mentally friendly tree species with a strong adsorption capacity for PM2.5 (airborne particulate matter (PM) 
less than 2.5 µm in diameter). Swamp pine has strong adaptability and has been extensively adopted in con-
struction, fiberboard, paper and other industries. Widely used in vitality detection [7–9], disease detection [10], 
and internal component detection [11], hyperspectral imaging technology is a fusion of spectroscopy tech-
nology and image technology, which can simultaneously acquire the spatial information of the measured ob-
ject and the spectral information of each pixel in the image. Compared with traditional technology, hyper-
spectral imaging technology will promote rapid, accurate and convenient nondestructive seed identification 
methods. With the inevitable trend of agricultural automation and intensification, such technology will be of 
considerable significance in seed purity identification. 

At present, there are numerous existing studies on the detection and identification of seed varieties [12, 13]. 
In terms of accurately evaluating seed quality grades, the purity identification of seed varieties is the main 
basis for such evaluation [14, 15]. The traditional methods of seed recognition primarily include grain shape 
identification, seedling identification, field planting identification, electrophoretic analysis of biochemical 
indicators, molecular marker detection, and others [16]. Although such testing methods are accurate and in-
tuitive, a variety of deficiencies remain, such as damage to seeds, long identification time and strong de-
pendence on personnel [17, 18]. The current seed industry development requires a fast and efficient method 
for seed variety testing, which is of considerable significance for seed variety identification and classifica-
tion. Convolutional neural networks (CNNs) are one of the most popular methods for image classification 
[19, 20]. In a large number of studies, convolutional neural networks have been adopted for detection and 
prediction of hyperspectral images. With regard to crops such as corn [18, 21], soybeans [22–24], and others, 
CCNs also have a wide range of uses. 

The purpose of the present study was to investigate the feasibility of hyperspectral imaging for identify-
ing different pine seed species. The details are as follows: qualitative analysis of different pine seed varieties 
by PCA; establishing the SVM recognition model based on full wavelengths and characteristic wavelengths, 
and comparing the advantages and disadvantages; comparing the results from the improved Lenet-6 network 
after inputting the image data obtained from the 20 characteristic wavelengths selected based on PCA. 

Materials and methods. Five pine seeds with similar appearance and different primary uses were se-
lected, namely P. thunbergii Parlatore, P. massoniana Lamb., Cedrus deodara, P. elliottii, and P. tabulifor-
mis Carriere. After purchasing samples in the market, 600 seeds of uniform size were randomly selected 
from each variety as data collection samples, totaling 3000 pine seeds.  

The hyperspectral data acquisition systems used in the present study included hyperspectral imagers, in-
dustrial cameras, light sources, mobile platforms, and computers. The hyperspectral imager SOC 710-VP 
manufactured by Polytec (Germany) was used to obtain reflected light from the seeds. Two halogen lamps 
were fixed on both sides of the acquisition platform to provide stable, continuous illumination. The specific 
parameters of the equipment are described in Table 1. Sixty seeds were placed at equal intervals on the black 
cardboard each time. After shooting was completed, data were stored in the computer, and the aforemen-
tioned process was regarded as the data collection process. Seed collection for each variety required 10 repli-
cates. 

Owing to the uneven distribution of light intensity of the light source, a dark current exists in the sensor, 
the light intensity is weak, and the obtained hyperspectral image has large noise. As such, black and white 
correction is required: 
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,                                                   (1) 

where I is the corrected spectral data; I0 is the spectral data before correction; B is the black reference value 
which is obtained by completely shading the lens; W is the white reference value (the maximum reflectance), 
which is obtained from a standard tetrafluoroethylene whiteboard with a reflectivity of close to 100%. 
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TABLE 1. Technical Specifications 
 

Hyperspectral imaging 
spectrometer model 

Spectral  
range 

Spectral  
channels 

Spectral  
resolution 

Dynamic  
range 

SOC710-VP 400–1000 nm 128 4.69 nm 12/16-Bit 
Schneider 

Lens model 
focal length F/# range 

Max.  
sensor size

rec. working  
distance range

Xenoplan 2.8/50 50 mm F/2.8 F/32 24mm 131 mm ... ∞
Halogen lamp model power maximum voltage wavelength range wavelength accuracy

SLS CL-150 150 W 250 V 350–2000 nm ±0.1 nm 
 

The steps of image region segmentation in the study were as follows: 
1. Obtain the image threshold by means of the Otsu maximum inter-class variance method [25]. 
2. Enter a threshold to convert the grayscale image to a binary image. 
3. Use morphological operations to denoise to obtain connected regions. 
4. Draw the binary image after the opening operation. 
5. Extract the region of interest (ROI) of a single seed after drawing the binary image. 
Standard normal variable transformation (SNV) is a common spectral preprocessing method that is 

widely used by researchers [26—28] and is primarily adopted to eliminate the effects of solid particle size, 
surface scattering, and optical path variation on the NIR diffuse reflectance spectrum [29]. The spectral SNV 
is calculated as follows:  

 2
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Principal component analysis (PCA) is one of the most widely used data dimensionality reduction algo-
rithms, and allows for the original features with strong correlations to be mapped to a new set of features [30]. 
The mapped feature variables are linear combinations of the original matrices, and the variables are linearly 
uncorrelated. The amount of spectral data obtained by the hyperspectral imaging system is considerably 
large, and contains a large amount of redundant information, which indirectly affects the accuracy of model 
identification. Therefore, PCA needs to be used to extract characteristic wavelengths, thereby reducing the 
amount of input data and improving the performance of the model [31]. 

Support vector machine (SVM) [32] is a generalized linear classifier that performs binary classification 
of data in a supervised learning fashion that can simply represent complex nonlinear patterns [33]. The basic 
concept involves solving the separating hyperplane that correctly divides the training dataset and has the 
largest geometric separation. Through such division of the hyperplane, the generalization ability to unseen 
samples is not only the strongest, but will also have the least impact on the sample when locally perturbed, 
thus the most robust classification results will be produced. The key to SVM is the kernel function. The low-
dimensional space vector set is usually difficult to divide, and the function of the high-dimensional space can 
be obtained by selecting the appropriate kernel function [34]. Gaussian radial basis kernel function [35] was the 
kernel function used in the present study. SVM is described as a quadratic optimization problem [36]: 
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where w is the optimal solution; b is the bias parameter; c > 0 is the penalty parameter of the error term; and 
ξi is the slack variable that is related to prediction errors in SVM. 

LeNet is one of the most representative experimental systems in early convolutional neural networks. 
Lecun et al. [37] first recognized handwritten characters according to LeNet-5, and the artificial neurons re-
spond to a surrounding area of a portion of the coverage, performing well for large image processing [38]. 
LeNet-5 primarily has two convolutional layers, two pooling layers, and three fully connected layers. In the 
present study, network improvements were made on LeNet-5.  

In the present study, the quality of the model was evaluated in terms of the number of parameters, accu-
racy and loss function. Accuracy is a commonly used indicator for evaluating the quality of classification 
models, representing the ratio of the number of samples correctly classified by the classification model to the 
total number of samples for a given test set. Accuracy presents the model’s overall predictions and can be 
calculated as follows: 
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TP+TN
Accuracy

TP+TN+FP+FN
 ,           (4) 

where TP is true positive; TN is true negative; FP is false positive; and FN is false negative. 
Results and discussion. Hyperspectral analysis of pine seeds. In the obtained hyperspectral images, 

each seed needs to be segmented to obtain a single seed, which is convenient for subsequent calculation of 
the spectral reflectance of a single seed. The spectrum curve of each seed was calculated from ROI, and the 
average spectra of the five types of seeds were drawn (Fig. 1a). According to Fig. 1b, the spectral curves of 
different kinds of pine seeds exhibited similar trends and had peaks and valleys at the same position. Such 
findings show that the characteristics were similar. Compared with other categories, P. massoniana Lamb. 
had the highest reflectivity. However, the spectra of different varieties of seeds differed only in reflectivity. 
Consequently, there were difficulties in subjectively discriminating seed types based on spectral curves. 

 

  

 

Fig. 1. Hyperspectral  analysis  of  pine seeds:  (a) Image segmentation  and spectral  extraction  process;  
(b) Average spectrum of different species of pine seeds (the green curve represents P. massoniana Lamb.; 
the red  curve  represents  P. thunbergii Parlatore;  the black  curve  represents  P. tabuliformis Carriere;  

the pink curve represents P. elliottii; the blue curve represents C. deodara). 
 

Principal component analysis. To investigate the fractional spread of different principal components, 
PCA was performed for five pine seed varieties, with the transformed results being shown in Fig. 2a. An ob-
servation can be made that the cumulative contribution rate of the three principal components reached 98.8% 
(84.14, 11.64, and 2.64%, respectively), and such results can represent most of the hyperspectral infor-
mation. Since each principal component was a linear combination of average spectral reflectance in 128 
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wavelengths, to determine the main wavelength of information expression in each principal component, the 
loadings of the three principal components were plotted in Fig. 2b. According to the loadings map of each 
principal component, the position where each peak was located was selected as the characteristic wave-
length. After eliminating repeating wavelengths, a total of 20 wavelengths were identified as the optimal 
wavelengths (Table 2). 

 

 
 

 
 

Fig. 2. Characteristic wavelength extraction results of PCA: (a) Principal component contribution 
 of spectral reflectivity; (b) The first three principal component loadings of PCA. 

 
TABLE 2. Characteristic Wavelength Selection Results 

 

Principal component number Characteristic wavelengths, nm 
PC1 685.46, 743.79, 872.65, 867.24, 888.91, 937.89 
PC2 385.39, 431.12, 727.84, 749.12, 781.15, 1309.76 
PC3 375.26, 632.82, 648.57, 701.32, 738.47, 754.45, 905.2, 910.64

 
SVM classification performance. Spectral data of 600 samples of each pine species were obtained, and 

there was a total of 3000 samples. The samples were randomly divided into the train set and the test set in 
a ratio of 4:1, with the training sample size totaling 2,400, and the test sample size totaling 600. The SVM 
spectral classification model was established with the full wavelengths (128 features) and the characteristic 
wavelengths (20 features) as input. Using RBF as a kernel function, each model training determined the op-
timal penalty factor (c) and the kernel function radius (g) by means of cross-validation. In the classification 
model based on spectral data, the accuracy rate based on the full-wavelength model train set was 100%, and 
the accuracy rate based on the characteristic wavelength model was 97.2%. The classification accuracy rate 
based on the full-wavelength test set was 97.7%. Based on the characteristic wavelengths, the classification 
accuracy of the test set was 93.1%.  

The penalty factor is a weight used for the weight loss and classification interval. For classification 
problems, the larger the penalty factor, the more important the loss. When a particularly large penalty factor 
is selected, if there are wrongly classified samples, the penalty will be considerably large, which will lead to 
a hard interval effect. Figure 3 shows the classification results on the test set in different spectral datasets. An 
observation can be made that when the penalty factor was larger, the classification result was better. 

LeNet-5 classification performance. The difference between the classification accuracy based on full-
band and characteristic wavelengths was within 5%. To avoid unnecessary calculations, referring to the 
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characteristic wavelengths extracted by the PCA, the images corresponding to the 20 characteristic wave-
lengths were chosen for training of the CNN. The train set and test set were divided in the same way. A total 
of 40 000 images were used for model building, and 20,000 images constituted a test set. The LeNet-5 net-
work structure was constructed, in which the learning rate was 0.1; the learning rate decay rate was 0.99; and 
the regularization coefficient was 0.0001. The network structure and parameters of Lenet-5 were improved 
by changing the number of output filters and network structure of the convolutional layer (adding the drop-
out layer). The numbers in brackets represent the dimensions of the output spaces of the first and second 
convolutions, respectively (that is, the number of output filters). The following results could be obtained 
(Table 3). 

 
 

 
 
 

Fig. 3. SVM model classification results: (a) Full wavelengths (c = 2, g = 1);  
(b) Characteristic wavelengths (c = 0.5, g = 1). 

 
TABLE 3. Network Model Running Results 

 

Network model Parameters 
Training 

accuracy, % 
Testing 

accuracy, % 
Training loss Testing loss Epoch 

LeNet-5 (32-64) 703.101 94.89 93.06 0.1523 0.2002 200
LeNet-5 (28-10) 62.007 98.12 99.06 0.0524 0.0324 96
LeNet-5 (16-6) 35.587 99.62 99.44 0.0161 0.0239 71 
LeNet-5 (6-16) 35.587 99.70 99.58 0.0102 0.0149 157 

LeNet-5 
(16-6+dropout) 

35.587 96.52 99.72 0.1024 0.0153 119 

LeNet-5 
(6-16+dropout) 

89.097 95.99 99.92 0.1130 0.0182 113 

 
An observation can be made from Table 3 that the number of convolution output filters had a significant 

influence on the convolution speed. Comparing the training speeds of the four groups of convolution output 
filters with different numbers, the experimental data set used a network with a small number of convolution 
output filters to meet the requirements, with fast training speed and high efficiency. 

After adding a dropout layer after the flatten layer and the first dense layer with a dropout ratio of 0.1, 
the experimental results show that in the improved network model, the time (the number of iterations) for the 
training set and the test set to reach the fitting varied significantly. Notably, the fitted loss function curve and 
accuracy curve were significantly smoother than before.  

After swapping the number of output filters in the two convolutional layers, the results show that the du-
ration of each iteration varied significantly. Taking LeNet-5(16-6) and LeNet-5(6-16)) as examples to com-
pare the results, the former had a larger number of convolutional output filters in the first layer than in the 
second layer LeNet-5(16-6), while the latter had a larger number of second-layer convolutional output filters 
than the first-layer convolutional output filters LeNet-5(6-16). The number of iterations required for the for-
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mer to reach the fit was significantly less than the latter, indicating that reasonable selection of the number of 
output filters of each convolutional layer is considerably significant. 

Conclusions. The research object was pine seeds of different varieties, and hyperspectral imaging tech-
nology was used to realize the rapid and nondestructive identification of seed varieties. PCA was adopted to 
qualitatively analyze and extract characteristic wavelengths. In the SVM classification model, 128 spectral 
features in the full wavelengths and 20 spectral features in the characteristic wavelengths were well repre-
sented. The recognition accuracies of the test set were 97.7 and 93.1%, respectively. The CNN training re-
sults were even better, and after many iterations, the accuracy rate was over 99%. Among the network mod-
els, the improved Lenet-5 performed better. As such, in convolutional neural networks, the selection of the 
number of convolutional channels and the design of the network structure are of considerable significance. 
The results of the present study provide evidence that convolutional neural networks perform well in the ap-
plication of seed variety recognition, and verify the superiority of convolutional neural networks in pro-
cessing a large amount of image data. In subsequent experiments, more types of seeds will be included, and 
images of different wavelengths will be compared with different network models. 
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