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Oil content plays an important role in oilfield wastewater treatment. To investigate the forecast of oil 

content by UV spectrophotometry, samples of oilfield wastewater are collected, and their UV transmittance 
and turbidity are measured. Partial least squares (PLS) and convolutional neural networks (CNN) based on 
a dataset of UV transmittance spectra are used for quantitative analysis in this work. The correlation coeffi-
cient between the oil content and turbidity of oilfield wastewater is 0.924, which shows a high positive linear 
correlation between the oil content and turbidity. Turbidity is added to the dataset to investigate its influence 
on the accuracy of prediction. The results show that the accuracy of models built by transmittance and tur-
bidity is higher than that of models built by transmittance only, which is confirmed for both PLS and CNN. 
With the same dataset composition, the PLS and CNN models are nearly accurate, but the CNN performs 
slightly better overall. This work laid the foundation for the prediction of oil content in oilfield wastewater 
based on UV spectrophotometry and the further implementation of online detection. 

Keywords: UV transmittance spectrum, convolutional neural networks, oilfield wastewater, oil content, 
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Для исследования содержания нефти с помощью УФ-спектрофотометрии отобраны пробы 
сточных вод нефтепромысла и измерены их УФ-пропускание и мутность. Для количественного ана-
лиза использованы метод частичных наименьших квадратов (PLS) и сверточные нейронные сети 
(CNN), основанные на наборе данных спектров УФ-пропускания. Коэффициент корреляции между 
содержанием нефти и мутностью сточных вод нефтепромысла 0.924 свидетельствует о линейной 
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V. 90, No. 4 (http://www.elibrary.ru/title_about.asp?id=7318; sales@elibrary.ru). 
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зависимости между содержанием нефти и мутностью. Мутность добавляется в набор данных для 
исследования ее влияния на точность прогноза. Показано, что точность моделей, построенных по 
коэффициенту пропускания и мутности, выше, чем у моделей, построенных только по коэффици-
енту пропускания, что подтверждается как для PLS, так и для CNN. При одинаковом составе 
набора данных модели PLS и CNN почти точны, но в целом CNN работает немного лучше. Положе-
но начало прогнозированию нефтесодержания в сточных водах нефтепромыслов на основе УФ-
спектрофотометрии и дальнейшему внедрению оперативного детектирования. 

Ключевые слова: спектр пропускания УФ-излучения, сверточные нейронные сети, сточные во-
ды нефтепромыслов, нефтесодержание, мутность. 
 

Introduction. Oilfield wastewater is a complex mixture containing oil, organic and inorganic matter 
and other compounds dissolved in water that ranges from fresh to brine [1], in which oil content detection is 
essential for oilfield wastewater treatment. Currently, common optical measurement methods include fluo-
rescence spectrophotometry [2, 3], infrared spectrophotometry [4], and ultraviolet (UV) spectrophotometry [5, 6]. 
UV spectrophotometry has been used in wastewater quality detection based on partial least squares (PLS) 
and artificial neural networks (ANNs) [7–9]; however, there are few studies on the quantitative analysis of 
oil content in oilfield wastewater based on UV spectrophotometry. In this work, samples of oilfield 
wastewater are collected for the quantitative analysis of oil content prediction. PLS and convolutional neural 
network (CNN) models are built based on their UV transmittance spectra to compare their prediction accura-
cy. In recent years, many studies have shown that turbidity has an inevitable influence on the predicted accu-
racy based on UV spectrophotometry [10, 11]. Y. Hu et al. [12] proposed a method that deduced the turbidi-
ty component from surrogate parameters based on the proportion of four parameters in a formazine turbid 
solution to eliminate the impact of turbidity in water contaminant analysis. To investigate the influence of 
adding turbidity into the training set, PLS and CNN models based on the UV transmittance spectrum and 
turbidity are established. 

Materials and method. A total of 96 samples in this work were of oilfield wastewater originating from 
the two oil extraction plants in Daqing. The sample transmittance of wavelengths ranging 190–900 nm was 
measured by a UV-Vis spectrophotometer (TU1900, Purkinje General Instrument, Beijing), and the turbidity 
of the samples was measured by a turbidity meter (JC-WGZ-1A, Juchuang Environmental Protection Group, 
Qingdao). The optical path was 10 mm, and the environmental temperature was 293.15 K. The dataset of 96 
samples was collected and separated into a training set and a test set at a 5:1 ratio. All transmittance of the 
samples was preprocessed by normalization to reduce noise. The original transmittance spectrum of the test 
set and statistical results are shown in Fig. 1 and Table 1, respectively. 

 

 
Fig. 1. Original transmittance spectrum of the test set. 
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TABLE 1. Statistical Results of the Oil Content in Samples 
 

Dataset Maximum Minimum Mean Standard deviation 
Train 31.603 0.764 7.701 6.580 
Test 21.759 0.912 8.166 6.482 

 

Partial least squares (PLS), as a method commonly used to build an analysis model of spectroscopy 
[13–15], is used to investigate the relationship between two matrices. PLS is a common linear model that 
creates a linear regression by projecting both the predicted and real variable values into a new space [16]. 
The procedure is as follows. A dataset named {X,Y} consists of two matrices, where X is the process variable 
data matrix, and Y is the corresponding dependent variable vector: 

X = TPT + E, 

Y = UQT + F,  

U = TBT, 

where T, P, and E are the score matrix, loading matrix and residual matrix of X, while U, Q, and F are the 
score matrix, loading matrix and residual matrix of Y, respectively. B is the regression coefficient matrix of 
U and T: 

YP = XPB, 

where XP and YP are the transmittance matrices of the validation set and predicted oil content, respectively. 
Artificial neural networks (ANNs) have been one of the most popular methods employed to address 

multiple regression problems. As a kind of ANN, CNN has been widely applied in the field of image identi-
fication, and it has begun to be used in spectrum analysis in recent years [17, 18]. Compared with image 
identification by two-dimensional (2D) CNN, the sample set in spectrum analysis is a matrix of data that 
should be input into a one-dimensional (1D) CNN. The CNN architecture used in this work is composed of 
an input layer, convolution layer, batch normalization layer, flattening layer, fully connected layer and out-
put layer. 

The input layer is set to accept UV transmittance data of one sample in the entire range of measured 
wavelengths. Then, the features of the input data are collected by the convolution layer. Compared with the 
dense layer, which studies global data, the convolution layer studies data in a sliding window on the input 
data, which makes the model utilize data efficiently and perform better with a smaller sample size. To reduce 
the vanishing gradient, exploding gradient and overfitting, a batch normalization layer is added after the 
convolution layer. The output data cannot be input into a fully connected layer, so a flattening layer is neces-
sary to compress data into a 1D array. The fully connected layer has the function of feature classification. 
Then, the result is output according to the output layer. 

At the beginning of model design, an overfitting CNN architecture of large size is set for the best train-
ing accuracy. The validation accuracy of the model based on this architecture is less than the training accura-
cy because of overfitting. Then, the hyperparameters in the architecture are optimized to correct overfitting. 
Finally, the best model architecture with the highest validation accuracy is completed. 

When the sample size is insufficient, the accuracy of different models varies widely due to the dissimi-
lar proportion of dividing the dataset into a training set and a validation set, so the performance of the model 
built by the invariant training set is not representative. As shown in Fig. 2a, the distribution of data used in 
this paper is not uniform, with oil contents between 16–27 mg/L accounting for 8.75%, and 0.9–1 mg/L ac-
counting for 18.75%. Therefore, conventional K-fold validation is not suitable for this work.  

Bootstrap sampling is more efficient. The original dataset was divided into nine value intervals. The da-
ta in the test set were randomly selected from each interval according to the ratio of the number of samples 
in the interval to the dataset. As shown in Fig. 2b, the test set has a similar proportion distribution as the 
original dataset, and the same is true for the training set. In this work, 16 sample data points were taken from 
the dataset as the test set, and the remaining 80 sample data points were used as the training set. Bootstrap 
sampling was used in the training of CNN models. The training set was again divided into a training set and 
a validation set by bootstrap sampling to build the model. The process was repeated ten times, and the model 
was evaluated by the average accuracy for all. The optimized architecture and hyperparameters were used in 
the model trained by all 80 samples and then tested by the test set. 
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Fig. 2. Distribution of the (a) original dataset and (b) test set. 
 
Results and discussion. As shown in Fig. 3, the Pearson correlation coefficient between the oil content 

and turbidity of oilfield wastewater is 0.924, which indicates that there is a high positive linear correlation 
between the oil content and turbidity in oilfield wastewater. Therefore, it can be assumed that turbidity could 
be combined with transmittance to build a model predicting the oil content of oilfield wastewater for better 
accuracy than the model built by transmittance only. 

 

Fig. 3. Correlation between oil content and turbidity in oilfield wastewater. 
 

Two PLS models named PLS-T and PLS-T-T were established to test this hypothesis. The models were 
built based on the dataset of transmittance and the combination of turbidity and transmittance. The predicted 
results of the test set by the two models are shown in Fig. 4. 

 

 
Fig. 4. Result of (a) PLS-T and (b) PLS-T-T. 
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Fig. 5. Architecture of CNN-T (a) and CNN-T-T (b). 
 

The predictive R2 and RMSEP were 0.945 and 1.516 mg/L for PLS-T, while those of PLS-T-T were 
0.972 and 1.085 mg/L, respectively. Obviously, the result by PLS-T-T had higher R2 and lower RMSEP, 
which means that PLS-T-T had better accuracy than PLS-T. Therefore, PLS accuracy is effectively im-
proved by adding turbidity to the dataset. 

Two CNN models named CNN-T and CNN-T-T, based on transmittance and the combination of turbid-
ity and transmittance, respectively, were established to evaluate the accuracy of predicting oil content in oil-
field wastewater by a CNN. The architecture was optimized in the bootstrap sampling of the transmittance 
training set to overcome overfitting. The best CNN architecture optimized to obtain the minimum predicted 
MAE is summarized in Table 2 and Fig. 5. 

 
TABLE 2. Hyperparameters of the CNN Models 

 

Model Activation Learning rate Batch size Epochs 
CNN-T Relu 3.00E-05 356 3489 

CNN-T-T Linear 3.00E-05 357 1996 
 

 
Fig. 6. Result of (a) CNN-T and (b) CNN-T-T. 

 
The CNN architecture is affected by many factors in which the sample type and sample size have a 

great influence; thus, two different architectures were used in CNN-T and CNN-T-T. Initially, a deep net-
work was set to overfit the model, and then the filter size and layer size were decreased for better validation 
accuracy; furthermore, the max pooling layer, which decreases computation and extracts features, was not 
used in this work because the dataset in this work is insufficient compared with the image recognition field 
and valuable features can be lost when sifted out by the max pooling layer. Meanwhile, this is also the rea-
son why the dropout layer was not used. The model without the max pooling layer and dropout layer had 
better accuracy during model training, and the MAE was 0.1–0.2 lower. The results are shown in Fig. 6. The 
R2 and RMSEP of CNN-T were 0.955 and 1.374, respectively, while those of CNN-T-T were 0.978 and 
0.968, respectively. Apparently, the CNN-T-T had better performance than CNN-T overall. The distribution 
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of predicted oil content in the range of high oil content (higher than 12 mg/L) in CNN-T is spread out com-
pared to that of CNN-T-T; moreover, the result by CNN-T-T has a lower error than that of CNN-T, which 
indicates that in the same sample size, the CNN model based on the combination of transmittance and turbid-
ity made better predictions than that based on transmittance. 

When transmittance is used as the dataset to establish the model of predicting oil content in oilfield 
wastewater, comparing the PLS and CNN, R2 of CNN is 0.01 higher than that of PLS, while RMSEP  
is 0.0142 lower. When the dataset contains transmittance and turbidity data, R2 of the CNN is 0.006 higher 
than that of the PLS, while RMSEP is 0.117 lower; therefore, the CNN model had higher accuracy than PLS 
under the same conditions. Overall, for both CNN and PLS, the model based on the combination of transmit-
tance and turbidity performs better than that based on transmittance only. 

The CNN model has more tunable parameters and randomness than PLS; therefore, for the CNN model 
presented in this work, the architecture was used to repeat the building model 30 times to evaluate the ro-
bustness of the architecture. The average R2 and RMSEP values were calculated separately for comparison 
with PLS. The results are shown in Figs. 7 and 8. 

 

Fig. 7. R2 (a) and RMSEP (b) of 30 replications. 
 

 
 

Fig. 8. Average result of 30 replications. 
 
As shown in Fig. 7, it is obvious that for CNN-T-T, most R2 values were higher than those of the other 

models, and the corresponding RMSEP was the lowest. All R2 and RMSEP values of CNN-T-T were in the 
ranges of 0.974–0.981 and 0.894–1.043, respectively. For CNN-T, the ranges were 0.937–0.966 and 1.205–
1.627, respectively. The results show that the architecture of CNN-T-T has better robustness than that of 
CNN-T. As shown in Fig. 8, the average R2 of CNN-T-T was 0.026 higher than that of CNN-T, and RMSEP 
was 0.448 lower, while PLS-T-T was also more precise than PLS-T because of the better R2 and RMSEP. 
Therefore, the PLS and CNN models can be made more accurate by adding turbidity to the dataset. 
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For the transmittance dataset, the R2 (average) of CNN-T was 0.006 higher than that of PLS-T, and 
RMSEP was 0.079 lower, which indicates that CNN-T had less error than PLS-T, while their R2 values were 
almost the same. When turbidity was added to the dataset, the R2 (average) and RMSEP values of CNN-T-T 
were 0.005 higher and 0.096 lower than those of PLS, respectively. CNN was more accurate than PLS overall. 

In summary, there is no dramatic gap in accuracy between PLS and CNN, although CNN performs bet-
ter than PLS in this study. Nevertheless, CNN architecture with more hyperparameters and long training 
time is much more difficult to train than PLS under the same sample size. Theoretically, the accuracy of 
CNN can be improved by increasing the sample size [19], but the oil content of samples requires too much 
time to measure in the laboratory. Moreover, the models built based on the same CNN architecture perform 
differently because of the randomness of ANNs; therefore, PLS is more suitable for sample sets with small 
sizes. On the other hand, for a fair comparison, the transmittance of all wavelengths was used in both PLS 
and CNN. However, the accuracy of PLS can be improved by selecting wavelengths with useful information 
such as interval partial least squares (iPLS) [20] and MWPLS [21]; thus, it can be assumed that the CNN can 
also be improved in the same way. 

Conclusions. The UV transmittance spectrum of oil content in oilfield wastewater was measured. The 
correlation coefficient between oil content and turbidity was calculated. PLS and ANN models based on the 
transmittance dataset to predict the oil content of oilfield wastewater were compared. Then, turbidity was 
added to the dataset to rebuild the models. The following conclusions can be drawn from the preceding 
study. Firstly, there is a high positive linear correlation between oil content and turbidity in oilfield 
wastewater, with a correlation coefficient of 0.924. Secondly, for the UV transmittance dataset, the average 
R2 and RMSEP values of the CNN models built 30 times were better than the accuracy of the PLS. However, 
the results were not stable, with R2 values in the range of 0.937–0.966 and RMSEP values in the range of 
1.205–1.627. Thus, for the transmittance and turbidity datasets, CNN had dramatically better accuracy than 
PLS with good robustness. Lastly, PLS and CNN models based on the combination of UV transmittance and 
turbidity had higher R2 and lower RMSEP than models built using transmittance alone. Therefore, it is useful 
to add turbidity into the dataset to improve the accuracy of the PLS and CNN models in predicting the oil 
content in oilfield wastewater. 
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