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Реализован алгоритм моделирования плазмы в приближении двухзонного источника и его  
сопряжение с библиотекой NLopt для проведения многопараметрической оптимизации. Для сов-
местной работы алгоритма моделирования спектров и библиотеки NLopt реализована прослойка 
абстракции, выполняющая инициализацию обеих библиотек в одно действие, рассчитывающая 
функцию потерь заданного вида и передачу ее значения алгоритму оптимизации. Корректность 
совместной работы этих алгоритмов проверена на модельных данных: достигается сходимость  
к значениям параметров плазмы, использованных для получения тестового синтетического спектра.  
Алгоритм CRS2-LM позволяет добиться самой быстрой сходимости к исходному спектру, поэтому 
его применяли для аппроксимации экспериментальных спектров. Показано, что использование двух-
зонной модели позволяет корректно описывать как ионные, так и атомные линии, в том числе под-
верженные самообращению при испарении алюминиевых сплавов, при этом методы “слепой” опти-
мизации функции потерь пригодны для оценки температуры и электронной плотности в лазерно-
индуцированной плазме по ее спектрам. 

Ключевые слова: лазерно-искровая эмиссионная спектроскопия, моделирование плазмы, стоха-
стическая оптимизация. 

 
A plasma modeling algorithm using a two-zone light source approximation has been developed and 

coupled with the NLopt library for multiparametric optimization. An abstraction layer was created to 
streamline the initialization of both libraries in a single step, to calculate a loss function of the specified 
type, and to convey its value to the optimization algorithm. The proper functioning of these combined algo-
rithms was confirmed with model data, demonstrating convergence to the plasma parameters that were used 
to generate a test synthetic spectrum. The CRS2-LM algorithm enables the fastest convergence to the origi-
nal spectrum; hence, it has been utilized for the approximation of experimental spectra. It has been demon-
strated that the application of a two-zone model provides an accurate description of both ionic and atomic 
lines, including those that are self-reversed during the evaporation of aluminum alloys. Furthermore, 
“blind” optimization methods for the loss function are effective for determining temperature and electron 
density in laser-induced plasma from its spectra. 

Keywords: laser-induced breakdown, plasma modeling, stochastic optimization. 
 
Введение. Лазерно-искровая эмиссионная спектрометрия (ЛИЭС) — активно развивающийся 

метод экспрессного прямого атомно-эмиссионного анализа, основанный на регистрации излучения 
лазерно-индуцированной плазмы, возникающей под воздействием мощного сфокусированного 
на образец излучения импульсного лазера. Уникальные возможности ЛИЭС используются для пред-
варительной оценки состава поверхности Марса на месте (марсоходы Curiosity и Perseverance [1, 2]) 
и океанского дна на глубинах до 3000 м [3], различных in line промышленных системах, в том числе 
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для анализа расплавленного металла или шлаков [4, 5]. Поскольку во всех перечисленных приложе-
ниях (при анализе космических тел, исследовании морского дна, контроле разнообразных изделий 
и высокотемпературных расплавов) изготовление стандартных образцов невозможно, необходимы 
исследования, направленные на создание способов определения состава без образцов сравнения 
с помощью ЛИЭС. Существующие варианты анализа без построения градуировочной зависимости 
(calibration-free LIBS) требуют трудновыполнимых условий — отсутствия самопоглощения в лазер-
ной плазме [6] или полную диагностику (томографию) лазерного факела с помощью преобразования 
Абеля [7] или Радона [8] с высоким пространственным разрешением, что значительно усложняет 
конструкцию спектрального прибора, появляется необходимость большого количества измерений 
плазмы. Наилучшие результаты в рамках данного подхода по определению состава достигнуты с ис-
пользованием гидродинамической модели расширяющейся лазерной плазмы. Однако данная модель 
не дает преимущества на практике [9], так как слишком сложна из-за большого числа параметров, 
связанных системой дифференциальных уравнений. Данные варианты безэталонного анализа имеют 
низкую правильность: погрешности часто достигают 50 % даже для основных компонентов [10]. 
Другой подход к анализу без использования образцов сравнения — многопараметрическая оптими-
зация для аппроксимации экспериментальных спектров модельными на основе статической модели 
гомогенной лазерной плазмы в состоянии локального термодинамического равновесия [11—15]. В этом 
случае в качестве варьируемых переменных выступают как параметры плазмы (температура, элек-
тронная плотность, размер), так и ее элементный состав. Существенной проблемой этой модели яв-
ляется принципиальная невозможность моделировать самообращение наиболее сильных линий ком-
понентов основы, что может приводить к решению с некорректными параметрами и, как следствие,  
к значительной систематической погрешности.  

Цель данной работы — проверка адекватности представления градиентов температуры и элек-
тронной плотности в лазерно-индуцированной плазме в виде двух гомогенных зон, каждая из кото-
рых имеет определенные размеры, и оценка возможности использования данной модели для аппрок-
симации экспериментальных спектров лазерной плазмы. 

Методы. Для реализации возможности моделирования спектров двухзонного источника излуче-
ния модифицирован алгоритм, описанный ранее [13]. Как и оригинальная версия алгоритма, он реа-
лизован в динамической библиотеке, разработанной на языке C++. Библиотека экспортирует опреде-
ления классов, функционал которых скрыт от пользователя, функции для вспомогательных операций 
(например, извлечение необходимых данных о переходах атомов и ионов из базы) и расчетов, а так-
же структуры данных, в которых хранятся параметры плазмы, аппаратуры и результаты вычислений. 
При этом функционал модифицирован таким образом, что в алгоритм передается количество зон z 
(z  1), описывающих источник, радиусы полуэллипсов r1 и r2, которые определяют границы зон, и 
значения температур T, электронных плотностей ne в них (рис. 1). По высоте (вдоль оси лазерного 
пучка) плазма разбивается на заданное количество s горизонтальных участков (слоев) одинаковой 
толщины h = r2z /s. Элементный состав (массив массовых долей элементов ω = {ωk}) принимается 
одинаковым во всех точках плазмы. Внутри каждого i-го слоя (i = 1, …, s) вдоль оси наблюдения ре-
куррентно интегрируется уравнение переноса излучения [16] для одномерного источника: 
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где l — номер отрезка оптического пути, заключенного между границами зон или зоны 
(l = 1, …, 2zi − 1, zi — количество зон, которые пересекает i-й слой); Δxi,l — длина этого отрезка (м), 
κ|z−l|+1(λ) — зависящий от длины волны λ коэффициент поглощения (м−1); Bλ(T|z−l|+1]) — интенсив-
ность излучения абсолютно черного тела (Вт/(ср  м2  м)), задаваемая законом Планка [16]; Ii,l — ин-
тенсивность излучения после прохождения l-го отрезка (Вт/(ср  м2  м)). Результат усредняется по 
всем слоям для получения конечного значения интенсивности: I = ΣIi /s. Таким образом моделируем 
плазму одной, двумя или большим количеством зон с определенными параметрами.  

При упрощении модели до одномерного случая (s = 1) расчет переноса излучения ведется только 
вдоль основания эллипсов и итоговая интенсивность I = I1 (рис. 1), а число параметров модели со-
кращается на число зон. Таким образом, для многозонной модели плазмы заданного состава имеем 
4×z параметров в общем случае или 3×z параметров в упрощенном случае. 
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Рис.  1.  Модель  двухзонной  лазерно-индуцированной   плазмы   при  наблюдении   сбоку:  
границы зон — полуэллипсы радиусами r1, r2 и с параметрами плазмы в каждой зоне (T, ne) 

 
Коэффициенты поглощения κ(λ) в определенной зоне зависят от объемных концентраций атомов 

и ионов, которые можно рассчитать, совместно решая систему уравнений Саха [17] для каждого эле-
мента и уравнение электронейтральности плазмы [13]: 
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где V — объем (см3); ne — электронная плотность (см−3); m — масса зоны плазмы (г); NA — постоян-
ная Авогадро (моль−1); Nk — число частиц элемента k в зоне плазме; Mk — молярная масса элемента k 
(г/моль); j — заряд иона, βkj(ne,T) — относительное содержание иона элемента k с зарядом j в зоне 
плазмы, рассчитанное из системы уравнений Саха. Выразив объем зоны плазмы как отношение пра-
вой части уравнения (2) и ne, можно рассчитать объемную концентрацию частиц (nk, см−3) элемента k: 
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Число частиц в единице объема необходимо для расчета спектров коэффициента поглощения от-
дельных спектральных линий и суммарного спектра поглощения (с учетом поправки на вынужденное 
излучение): 
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где λm — центральная длина волны перехода (м) (индексы k и j для λm опущены); c — скорость света 
в среде (м/с); Amn — вероятность перехода (с−1); gm — статистический вес верхнего уровня; Z(k,j) — 
сумма по состояниям элемента k в ионном состоянии j; Em и En — энергии верхнего и нижнего уров-
ней (эВ); T — температура плазмы (эВ); Pm(λ) — профиль Фойгта спектральной линии (м−1), учиты-
вающий доплеровское и штарковское уширения. 

По формулам (3) и (4) рассчитаны объемные плотности частиц и спектры поглощения  
в каждой зоне. Если предположить, что плазма обладает осевой симметрией относительно оси лазер-
ного пучка, можно вычислить объем центральной зоны (индекс “1”) 
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а также из (2) найти массу атомизованного вещества в каждой зоне.  
На последней стадии алгоритма проведены свертка спектра с аппаратной функцией спектрогра-

фа и электронно-оптического преобразователя (ЭОП), а также усреднение спектра в соответствии со 
спектральной шириной пикселя ПЗС-матрицы (конечное число точек в модельном спектре равно ши-
рине матрицы в пикселях). 

При сопоставлении экспериментальных спектров с модельными проведены линейная интерпо-
ляция экспериментального спектра, чтобы устранить фактор нелинейной калибровки по длинам волн 
любых экспериментальных данных, а также вычет фона по минимальному значению и нормировка 
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интенсивности на максимум, так что безразмерные значения экспериментального (y) и модельного (ŷ) 
спектров лежали в диапазоне [0; 1]. Задачу регрессии решили с помощью библиотеки алгоритмов нели-
нейной многопараметрической оптимизации NLopt [18], минимизируя сумму квадратов остатков (SSE): 

 2
SSE  ,ˆi ii y y             (7) 

где i — номер точки в спектре.  
Дополнительно рассчитано среднее относительное отклонение между y и ŷ: 

 2 2ˆrSSE /i i ii iy y y   .          (8) 

Библиотека содержит большое количество градиентных и безградиентных алгоритмов оптими-
зации, а также предоставляет унифицированный интерфейс к ним. Для совместной работы алгоритма 
моделирования спектров и библиотеки NLopt реализована прослойка абстракции, выполняющая 
инициализацию обеих библиотек в одно действие, рассчитывающая функцию потерь заданного вида 
и передачу ее значения алгоритму оптимизации.  

Результаты и их обсуждение. Важнейшая задача при многопараметрической оптимизации — 
минимизация времени расчетов, т. е. нахождение компромисса между минимумом функции потерь  
и необходимым для его достижения числом итераций при поиске оптимальных параметров плазмы. 
Для выбора наилучшего алгоритма все доступные в библиотеке NLopt алгоритмы глобальной безгра-
диентной оптимизации применены к экспериментальному спектру нержавеющей стали, полученному 
ранее [13], в относительно узком спектральном диапазоне 392—412 нм. Для описания спектра приме-
няли самую простую модель (одна зона плазмы, один слой), элементный состав плазмы задавали рав-
ным составу образца и оптимизировали параметры T, lgne и r1 = r2. Только алгоритмы DIRECT [19]  
и CRS2-LM [20, 21] достигали сходимости менее чем за 1000 итераций при SSE  0.6 (для 1390 точек 
в спектре).  

Алгоритм DIRECT рассматривает гиперкуб в пространстве параметров и последовательно делит 
его на гиперпараллелепипеды, в центре каждого из которых вычисляет значение функции.  
На каждой итерации из множества имеющихся гиперпараллелепипедов выбирают те, которые могут 
потенциально содержать оптимум (т. е. значения меньше других гиперпараллелепипедов и/или име-
ющие достаточно большие еще не исследованные области), после чего делят их дальше до выполне-
ния критериев остановки. Оригинальная версия DIRECT в ряду последовательных запусков могла 
необъяснимо зацикливаться и возвращать значения, не имеющие физического смысла, поэтому от 
данного алгоритма пришлось отказаться.  

Алгоритм CRS2 [19] работает с популяцией точек в пространстве параметров, изначально выби-
раемой случайно (для параметров N обычно берут 10(N + 1) точек). На каждой итерации выбирают 
точку, в которой значение минимизируемой функции является наибольшим, и отражают это точку 
относительно центроида популяции подобно симплекс-методу. В модификации с “локальной мута-
цией” [20], если отражение относительно центроида не привело к уменьшению значения функции, 
точку с наибольшим значением функции пытаются отразить относительно точки с наименьшим зна-
чением функции со случайными весами при каждой координате. В конечную популяцию попадает 
точка с наименьшим из двух полученных значений. В алгоритме CRS2-LM отсутствует недостаток, 
свойственный алгоритму DIRECT, что позволило перейти к его апробации для аппроксимации спек-
тров в рамках более сложных моделей плазмы. 

Для проверки корректности решения обратной задачи в рамках двухзонной модели (“горячее” 
ядро и “холодная” периферия плазмы), т. е. способности достигать сходимости для параметров T1, T2, 
lgne1, lgne2, r11, r12−r11, r21 и r22−r21, протестирован алгоритм оптимизации на модельном спектре 
алюминиевого сплава (мас.%): Cu 3.6, Li 1.06, Mg 0.59, Ag 0.4, Sc 0.1, Mn 0.06, полученном для за-
данных параметров (табл. 1) в диапазоне 233—467 нм (рис. 2), содержащем ярко выраженные само-
поглощенные и самообращенные резонансные линии алюминия (переходы из возбужденных 3s2ns- и 
3s2md-состояний в основное 3s23p-состояние [22], где n ≥ 4, m ≥ 3), а также менее интенсивные линии 
остальных элементов (300 линий). Контуры линий с известными параметрами штарковского уши-
рения рассчитывались индивидуально, для оставшихся использовано значение 0.006 нм при 
ne = 1017 см−3. Из расчета исключались слабые линии (10−5 относительно самой интенсивной линии 
без учета самопоглощения), порог для расчета крыльев линии составлял 10−7 относительно ее макси-
мума. Полная ширина на полувысоте инструментальной функции спектрометра с параметрами [13] 
составляла ~0.065 нм. Плазма по вертикальной координате разбивалась на s = 40 слоев (рис. 1). 
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Рис. 2. Модельный (тестовый) спектр алюминиевого сплава; показаны наиболее 
интенсивные линии, на вставках — самообращенные линии Al I 

 
За 30000 итераций достигнуты практически идеальное совпадение спектров (SSE = 1  10−5, 

rSSE = 3  10−4), а также сходимость в заданных пределах параметров внутренней зоны T1, lgne1, r11 и 
внешней зоны T2, lgne2. Среднее время расчета одного спектра 0.56 с (на одном ядре процессора AMD 
Ryzen 2600X 3.8 ГГц). Однако размеры плазмы r12−r11, r21 и r22−r21 не сошлись к заданным значе-
ниям, что свидетельствует о неоднозначности решения использовать усредненный по слоям и нор-
мированный спектр. Поэтому апробирована также модель с одним слоем, и в этом случае достигнуто 
хорошее совпадение значений нормированной интенсивности (SSE = 4  10−3, rSSE = 5  10−3), все па-
раметры достигли установленных пределов сходимости за 5815 итераций, среднее время расчета од-
ного спектра сократилось до 0.21 с. Температуры, а также электронная плотность во внутренней зоне 
сошлись к заданным значениям (табл. 1, последний столбец), но во внешней зоне ne оказалась зани-
женной на 35 %. Размеры вдоль основания плазмы (рис. 1, нижний слой) также разошлись, особенно 
толщина внешней зоны (больше на 130 %). Вероятно, это следствие компенсации отсутствующих  
в расчетах слоев только внешней зоны (участок (r21; r22) по высоте плазмы). Отметим, что функция 
потерь достигает SSE = 4  10−3 за ~2700 итераций при 40 слоях, при этом значения T1, lgne1, T2, lgne2  
и r11 не отличаются от заданных априори более чем на 3 %. Алгоритм продолжает варьировать пара-
метры r12−r11, r21 и r22−r21 и может не достичь критериев сходимости по ним. Следовательно,  
в случае 2D-модели с несколькими слоями следует использовать с осторожностью полученные дан-
ные по размерам плазмы, поскольку решение относительно них нестабильно.  

 
Т а б л и ц а  1.  Тестовые параметры для модельного спектра и результаты его аппроксимации 

 
Параметр Заданное 

значение 
(40 слоев) 

Нижняя 
граница 
поиска 

Верхняя 
граница 
поиска

Критерий 
сходимо-

сти 

Оптимизирован-
ное значение 

 (40 слоев) 

Относитель-
ное откло-
нение, % 

Оптимизиро-
ванное значение 

(один слой) 

T1, К 8120 4640 23210 10 8120 <0.1 8120 
T2, К 3480 1160 11600 10 3550 2.0 3450 

lg(ne1, см−3) 16.900 15.000 18.000 0.001 16.899 <0.006 16.897 
lg(ne2, см−3) 14.300 13.000 18.000 0.001 14.298 −0.014 14.109 

r11, мм 1.00 0.01 3.00 0.01 1.005 <1 0.81 
r12−r11, мм 1.00 0.01 3.00 0.01 1.61 61 2.29 

r21, мм 1.00 0.01 3.00 0.01 0.54 −46 — 
r22−r21, мм 2.00 0.01 3.00 0.01 0.64 −68 — 
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Алгоритм аппроксимации CRS2-LM апробирован для аппроксимации экспериментального спек-
тра алюминиевого сплава (390—400 нм), полученного на воздухе при задержке регистрации 2 мкс 
после лазерного импульса, в котором присутствуют самообращенные резонансные линии Al I (рис. 3), 
в рамках однозонной и двухзонной моделей с пятью слоями. Как и ожидалось, однозонная модель 
не позволяет провести аппроксимацию контура самообращенных линий (rSSE = 0.14), что приводит 
к завышению температуры на 1200 К и электронной плотности в 1.3 раза относительно “горячей” зо-
ны в двухзонной модели (табл. 2). В результате этого контур малоинтенсивной ионной линии Al II 
390.07 нм описывается некорректно однозонной моделью (рис. 3). 

 

 

Рис. 3. Спектр  алюминиевого  сплава (задержка  регистрации  2 мкс)  с  самообращенными  
линиями Al I 394.40 и 396.15 нм и его аппроксимация одно- (а) и двухзонной (б) моделями:  
1 — эксперимент,   2 — модель   (1  зона),   3 — модель   (2   зоны),   на  вставках — слабая   

линия   Al II  390.07  нм 
 

Двухзонная модель, напротив, хорошо описывает самообращенный контур линий алюминия, как 
и профили других малоинтенсивных линий (rSSE = 0.06). Параметры плазмы, при которых достига-
ется сходимость модели к экспериментальному спектру (табл. 2), также хорошо согласуются с суще-
ствующими представлениями о лазерно-индуцированном факеле на поверхности твердой мишени: 
небольшая горячая область в центре окружена остывающим облаком разлетающейся плазмы, темпе-
ратура и электронная плотность в котором существенно ниже. Нами оценена электронная плотность 
плазмы по линии H- 656.3 нм по формуле wS = 4.63  10−12ne

2/3 [23] и получено lgne = 17.15, что близ-
ко к оптимизированному значению 17.28 для внутренней зоны в двухзонной модели (табл. 2). Как и 
следовало ожидать, время расчета одного спектра в узком спектральном интервале на порядок ниже 
(0.02 с), чем в синтетической задаче, однако число итераций по-прежнему может быть велико  
(до 25000) из-за неоднозначности решения для размеров плазмы, особенно r2. Оценены также слу-
чайные погрешности аппроксимации на основании 50 параллельных запусков с рандомизацией ин-
тенсивности в каждой точке экспериментального спектра в пределах погрешности измерений  
(для спектра на рис. 3 RSD ~ 3 %). Как видно из табл. 2, хорошая стабильность сходимости парамет-
ров в двухзонной модели достигается только для параметров T1 и lgne1, удовлетворительная — для T2, 
lgne2, r11 и r12, а для r21 и r22 ожидаемо плохая. 

 
Т а б л и ц а  2.  Результаты аппроксимации экспериментального спектра  

алюминиевого сплава (рис. 3) 
 

Зона T1, К T2, К lgne1 lgne2 r11, мм r12, мм r21, мм r22, мм 
1 11510±60 — 17.397±0.008 — 1.46±0.07 — 6±4 — 
2 10300±700 3800±800 17.28±0.04 14.4±0.9 1.4±0.7 3.9±0.7 1.2±0.9 2.7±1.6
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Дополнительно адекватность описания лазерной плазмы с помощью двухзонной модели прове-
рена при аппроксимации экспериментальных спектров, полученных при различных временах за-
держки. В этом случае изменение оптимальных параметров (T, ne), получаемых при аппроксимации 
двухзонной моделью, соответствует физическому процессу разлета и остывания лазерного факела 
(рис. 4). Таким образом, двухзонная модель — хорошее приближение, позволяющее описывать гра-
диент температуры и электронной плотности в плазме (получать оценку их значений в центре и на 
периферии) и с высокой точностью аппроксимировать экспериментальные спектры, в том числе  
самообращенные линии. 

 

 
Рис. 4. Изменение оптимальных параметров при аппроксимации спектров алюминиевого сплава,  

полученных при различных задержках: Т1 (1), lgne1 (2), lgne2 (3) и Т2 (4)  
  

Заключение. На модельных спектрах с использованием двухзонной модели показана сходи-
мость решения задачи многопараметрической оптимизации параметров лазерно-индуцированной 
плазмы к заданным значениям. Использование данных алгоритмов для определения свойств право-
мерно. При этом быстрее всего удается добиться сходимости при использовании алгоритма CRS2-LM 
из семейства методов “случайный поиск”. Использование двухзонной модели позволяет корректно 
описывать как ионные, так и атомные линии, в том числе подверженные самообращению. Методы 
“слепой” оптимизации функции потерь пригодны для оценки температуры и электронной плотности 
в лазерно-индуцированной плазме по ее спектрам.  

Работа выполнена при финансовой поддержке гранта Президента РФ № МК-5513.2021.6. 
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