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Методом высокочастотного импульсно-периодического f  6—10 кГц воздействия лазерного  

излучения с длиной волны  = 1.064 мкм и плотностью мощности q = 120 МВт/см2 на цирконий  
при давлении в вакуумной камере p = 2.2 Па получены наноструктурированные тонкие пленки  
на кремниевой подложке. Изучена морфология тонких пленок циркония с помощью атомно-силовой 
микроскопии. Получены спектры пропускания пленок циркония в видимой, ближней и средней  
ИК-областях. Проанализированы электрофизические характеристики структур Zr/Si. 

Ключевые слова: высокочастотное лазерное воздействие, структура тонких пленок, спектры 
пропускания и отражения, электрофизические характеристики. 

 
By the method of high-frequency repetitively pulsed f  6—10 kHz laser radiation with wavelength 

 = 1.064 μm and power density q = 120 MW/cm2 on zirconium target at a pressure in the vacuum chamber 
p = 2.2 Pa nanostructured thin films on a silicon substrate have been obtained. The morphology of thin zir-
conium films has been studied using atomic force microscopy. Transmission spectra of zirconium films have 
been obtained in the visible, near and mid-IR regions. The electrophysical characteristics of Zr/Si structures 
are analyzed. 

Keywords: high-frequency laser irradiation, the structure of thin films, transmission and reflection 
spectra, electrophysical characteristics. 

 
Введение. Тонкие пленки различных материалов широко применяются в полупроводниковой 

электронике, в том числе микроэлектронике. Благодаря ряду физико-химических свойств они ис-
пользуются в качестве буферных покрытий, стойких к воздействиям высокой температуры плазмы, 
коррозионных сред, медленных нейтронов, материала твердотельных электролитов и др. [1]. Для по-
лучения защитных покрытий наиболее перспективны оксиды титана и циркония (Zr). В частности, 
тонкие пленки Pb(Zr,Ti)O3 на кремнии, полученные методом лазерного осаждения в вакууме, иссле-
дуются в качестве ферроэлектриков [2]. 

Цирконий — металл с высокой температурой плавления (Т = 1855 °С), обладающий низким се-
чением захвата нейтронов, идеальной биосовместимостью с тканями живых организмов, высокой 
коррозионной стойкостью в широком интервале температур вследствие того, что при взаимодей-
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ствии с кислородом на поверхности образуется плотная защитная оксидная пленка ZrO2. Благодаря 
этим уникальным свойствам Zr широко используется в качестве конструкционного материала ядер-
ных реакторов, для создания хирургических инструментов, имплантатов и протезов, а также 
в качестве защитных покрытий [3—6]. Нанесение Zr на пленки оксида индия и олова ITO  
(In2O3)0.9–(SnO2)0.1, которые используются в солнечных элементах, приводит к увеличению работы вы-
хода последних и улучшению характеристик солнечных элементов с гетеропереходом a-Si:H/c-Si [7]. 
Установлено [8], что при совместном распылении ITO и Zr осаждаются пленки с улучшенными оп-
тическими свойствами. 

Из-за вышеуказанных свойств диоды Шоттки более предпочтительны, чем диоды на основе  
p-n-переходов, для таких приложений, как коммутация в цифровых схемах, преобразователи пере-
менного тока в постоянный, радиолокационные системы, смешивание сигналов, полевые транзисто-
ры на основе оксидов металлов (MOSFET), инфракрасные (ИК) детекторы [9]. 

Физико-химические свойства пленок Zr во многом определяются структурными особенностями, 
в том числе морфологией поверхности, которые во многом определяются способом нанесения пле-
нок. На свойства структур типа диода Шоттки существенное влияние оказывает наличие локализо-
ванных интерфейсных состояний. Состояния границы раздела также влияют на высоту барьера 
структуры. Так, нанесение металла с высокой работой выхода на n-полупроводник или металла с 
низкой работой выхода на p-полупроводник не всегда дает высокую высоту барьера [10]. Zr имеет 
работу выхода 4.05 эВ и поэтому обладает высоким потенциалом для Si [9]. 

В настоящей работе исследованы структурные, оптические и электрические свойства тонких 
пленок циркония, осажденных в вакууме на кремниевую и стеклянную подложки при многоимпуль-
сном высокочастотном лазерном воздействии [11]. 

Экспериментальная установка и методы исследований. Пленки Zr осаждались методом вы-
сокочастотного лазерного распыления керамических мишеней в вакууме (p = 2.2 Па). Эксперимен-
тальная установка (λ = 1.06 мкм) с регулируемой частотой повторения лазерных импульсов от 5 до 
50 кГц содержит источник лазерного излучения, оптическую систему транспортировки лазерного из-
лучения к распыляемой мишени, вакуумную камеру и измерительно-диагностический модуль. Ча-
стота повторения импульсов изменяется за счет варьирования уровня накачки лазера и оптической 
плотности затвора из радиационно облученного кристаллического фторида лития (LiF) с F2¯-
центрами окраски, длительность лазерных импульсов на полувысоте  ~ 85 нс. Осаждение макроско-
пически однородных тонких пленок достигалось при плотности мощности лазерного излучения 
q = 120 МВт/см2 и частоте повторения импульсов f ~ 6—10 кГц. 

Метод атомно-силовой микроскопии (АСМ) использован для исследования морфологии поверх-
ности и определения основных параметров шероховатости пленок Zr. Измерения проводились на 
сканирующем зондовом микроскопе Solver P47 Pro (NT-MDT, Россия), в качестве зондовых датчиков 
использованы стандартные кантилеверы для бесконтактных методов с резонансной частотой  
 = 230 кГц и коэффициентом жесткости 15.1 Н/м. Радиус кривизны кончика иглы 3 нм. Пропуска-
ние оптического излучения тонкими пленками в ближнем ИК-диапазоне измерялось на спектрофо-
тометре Carry 500 Scan. Спектры пропускания в средней ИК-области регистрировались с помощью 
ИК-Фурье-спектрометра NEXUS (Thermo Nicolet) в диапазоне 400—4000 см–1. Измерения вольт-
амперных характеристик (ВАХ) и вольт-фарадных (ВФХ) характеристик проводились на измерителе 
иммитанса Е7-20 при комнатной температуре с частотой сигнала 100 кГц и 1 МГц. 

Результаты и их обсуждение. Методом АСМ в режиме амплитудно-частотной модуляции уста-
новлено, что при высокочастотном лазерном распылении мишени в вакууме на кремниевой и стек-
лянной подложках осаждается нанокристаллическая тонкая пленка Zr (рис. 1). Основные параметры 
шероховатости морфологии поверхности определялись в пяти разных точках образца при сканирова-
нии области размером 2020 мкм. Средний размер структурных элементов пленки Zr на кремниевой 
подложке 15 нм при среднеквадратичной шероховатости 6.2 нм. На поверхности пленок наблюдается 
незначительное количество крупных образований высотой до 250 нм и латеральным размером  
0.5—1.2 мкм (рис. 1, в). Средняя высота рельефа поверхности пленок на стеклянной подложке  
11 нм, среднеквадратичная шероховатость 3.4 нм. На поверхности пленок на стеклянных подложках 
наблюдается значительно меньше крупных образований, чем на кремниевой подложке, их высота 
находится в диапазоне 40—120 нм, латеральный размер 0.3—0.6 мкм (рис. 1, г). 
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Рис. 1. АСМ-изображения  морфологии  поверхности  (а, б, д, е)  и профиль 
сечения вдоль выделенной линии (в, г) лазерно-осажденной  тонкой пленки 

циркония на кремниевой (а, в, д) и стеклянной подложках (б, г, е) 
 
Резкий скачок пропускания лазерно-осажденной пленки Zr на кремнии наблюдается в ближней 

ИК-области  = 953—1190 нм в пределах Т = 0.1—39.5 %. Пропускание пленки Т ~ 40 % в области 
1190—2890 нм (рис. 2, а). Пропускание пленки в средней ИК-области остается постоянным Т ~ 37 % 
в интервале частот  = 1960—3490 см–1 (рис. 2, б). Коэффициент отражения R (рис. 2, в) уменьшается 
в области λ = 190—280 нм, остается постоянным при λ = 286—360 нм и плавно нарастает  
до λ = 1020 нм. 

На рис. 3 представлены ВАХ и ВФХ пленки Zr на Si-подложке. Как видно, кривая ВАХ практи-
чески симметрична. При положительных напряжениях зависимость тока от напряжения близка  
к линейной. В области отрицательных напряжений на ВАХ наблюдается небольшой гистерезис, что 
может быть обусловлено сложным соединением пленки, образованным в процессе напыления на гра-
нице раздела, в том числе в процессе напыления оксидом и присутствием высокого последовательно-
го сопротивления. Структура Zr/Si имеет частотно- и вольт-зависимую ВФХ (рис. 3, б). Зависимость 
емкости от напряжения возникает из-за характерного поведения обедненного слоя, образующуюся на 
поверхности полупроводника, а также из-за наличия последовательного сопротивления и состояний 
интерфейса. Частотная зависимость связана с наличием последовательного сопротивления и локали-
зованных интерфейсных состояний на границе раздела. На низких частотах (100 кГц) измеренная ем-
кость равна  эквиваленту  емкости  интерфейсных  состояний,  емкости  межфазного  слоя  и емкости 
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пространственного заряда. По мере увеличения частоты приложенного переменного сигнала состоя-
ния интерфейса перестают быть полностью заполненными и вклад состояний интерфейса в контакт-
ную емкость уменьшается. Таким образом, емкость структуры уменьшается с увеличением частоты. 
Для ВФХ исследуемого образца при приложении положительного напряжения 1 В на высокой ча-
стоте 1 МГц наблюдается максимум, что может быть вызвано более сильным изменением емкости 
барьерного слоя и частотными свойствами поверхностных состояний границы раздела. Процессы пе-
реключения достаточно сложно наблюдать в образцах с высокой удельной проводимостью с учетом 
сильного вклада границы раздела Zr/Si (наличие быстрых поверхностных состояний). Наличие гисте-
резиса на ВФХ свидетельствует о встроенном заряде, причем на 100 кГц |ΔU| = 2.4 В, а на частоте 
1 МГц |ΔU| = 1.4 В. Это может быть связано с наличием встроенного заряда тонкого слоя оксида на 
границе раздела. 

 

 
 

 

Рис. 2. Спектр пропускания  лазерно-осажденной  пленки  циркония  на  кремниевой  подложке  
в видимой  и  ближней  ИК-областях  (а),  средней  ИК-области (б);  спектр отражения лазерно- 
осажденной пленки циркония  на кремниевой  подложке в видимой и ближней ИК-областях (в) 
 

   
 

Рис. 3. Вольт-амперная (а) и вольт-фарадная (б) характеристики 
тонкой пленки циркония на кремнии 
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Заключение. Получены тонкие пленки циркония с достаточно однородной структурой поверх-
ности. Средняя высота рельефа поверхности пленок на кремнии не превышает 15 нм при среднеквад-
ратичной шероховатости 6.2 нм. Наблюдается незначительное количество крупных образований вы-
сотой до 250 нм. Средняя высота микровыступов пленки на стеклянной подложке не превышает  
11 нм, среднеквадратичная шероховатость 3.4 нм, при этом наблюдается незначительное количество 
крупных образований высотой до 120 нм. У пленки на кремниевой подложке наблюдается минимум 
отражения в интервале λ = 286—360 нм. Структура Zr/Si показывает неидеальную вольт-амперную 
характеристику из-за высокого последовательного сопротивления. Наличие высокого последователь-
ного сопротивления, встроенного заряда на границе раздела Zr/Si ограничивает прямой ток и не при-
водит к эффекту выпрямления, что объясняется несовершенством омического контакта. Для получе-
ния диодов Шоттки металл-полупроводник Zr/Si с низким током насыщения необходимо проведение 
дальнейших исследований для улучшения омического контакта. Полученные тонкие пленки цирко-
ния на кремниевой подложке могут применяться в многослойных оптических покрытиях, имеющих 
высокую термическую и химическую стойкость, и для просветления в видимой и ближней  
ИК-областях спектра. 
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