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Выведены новые (линейное и нелинейное) интегро-функциональные уравнения, решениями кото-
рых является усеченная спектральная характеристика четырехточечной функции когерентности 
лазерного пучка излучения, распространяющегося в турбулентной среде. В линейное интегро-
функциональное уравнение входит некоторая вспомогательная функция W, от которой само реше-
ние данного уравнения не зависит (оно инвариантно по отношению к выбору W). Впервые получены 
формально строгие и достаточно простые представления для четырехточечной функции коге-
рентности и ее усеченных спектральных характеристик. При отыскании представлений для данных 
функций использовалось, в частности, свойство инвариантности решений дифференциального 
уравнения в частных производных второго порядка для четырехточечной функции когерентности и 
нового линейного интегро-функционального уравнения по отношению к выбору функции W. Показа-
но, что посредством специального выбора этой функции и параметров, определяющих положения 
точек “наблюдения” и поперечные сечения лазерного пучка, можно получить различные точные, 
асимптотические и полуаналитические представления для усеченных спектральных характеристик, 
интегральных характеристик четырехточечной функции когерентности и самой этой функции. 
При этом под полуаналитическими понимаются представления, которые содержат информацию 
об искомых величинах частично в неявной форме, но одновременно позволяют находить их в анали-
тическом (или численном) виде посредством использования каких-либо (например, итерационных) 
конструктивных процедур. В частности, полуаналитическим представлением является полученная 
рекуррентная формула, с помощью которой можно эффективно находить аналитические выраже-
ния и численные значения для указанных выше функций на различных поперечных сечениях лазерного 
пучка, распространяющегося в турбулентной среде.  

Ключевые слова: турбулентная среда, четырехточечная функция когерентности, усеченные 
спектральные характеристики, полуаналитические представления, пучок лазерного излучения,  
интегро-функциональные уравнения. 
 

New (linear and non-linear) integro-functional equations are derived. The solutions of these equations 
are truncated spectral characteristics of fourth-order mutual coherence function of a laser beam propagat-
ing in a turbulent medium. The linear integro-functional equation includes some function W on which the so-
lution of this equation does not depend (that is, it is invariant under any choice of function W). Firstly, for-
mally rigorous and fairly simple representations for the fourth-order mutual coherence function and its 
truncated spectral characteristics are obtained. In finding these and other representations for these func-
tions, we used, in particular, the property of invariance of solutions of a second-order partial differential 
equation for fourth-order mutual coherence function and new linear integro-functional equation with respect 
to any choice of function W. It is shown that by means of a special choice of this function and the parameters 
that determine the positions of the observation points and the cross sections of the laser beam, it is possible 
to obtain various exact, asymptotic, and semi-analytical representations for the truncated spectral charac-
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teristics, integral characteristics of the fourth-order mutual coherence function, and this function itself. 
In addition, semi-analytical representations are understood as representations that contain information 
about   unknown values in a partially implicit form, but at the same time allow them to be found in an analyt-
ical (or numerical) form through the use of any (for example, iterative) constructive procedures. In particu-
lar, a semi-analytical representation is the recursive formula obtained in the article. It can be used to effec-
tively find analytical expressions or numerical values for the above-mentioned functions on various cross 
sections of a laser beam propagating in a turbulent medium.  

Keywords: turbulent medium, fourth-order mutual coherence function, truncated spectral characteris-
tics, semi-analytical representations, laser beam, integro-functional equations. 

 
Введение. Уже более полувека различными методами исследуются процессы распространения 

волн (в частности, электромагнитных) в непрерывных случайных (турбулентных) средах. Первые 
важные результаты, относящиеся к теории распространения волн в таких средах, были изложены 
в работах [1, 2]. В частности, в [1, 2] развита статистическая теория турбулентности и сформулирова-
ны в рамках скалярного квазиоптического (параболического) приближения дифференциальные урав-
нения в частных производных для статистических моментов комплексных амплитуд волновых полей 
в случайно неоднородных средах. Однако до сих пор отсутствуют публикации, в которых была бы 
решена в полном объеме проблема отыскания строгих аналитических или полуаналитических реше-
ний соответствующих краевых задач (BVPs) для данных дифференциальных уравнений для случаев 
статистических моментов четвертого и более высоких порядков. Исследование процессов распро-
странения волн в турбулентных средах в силу сложности решения таких BVPs проводилось в [1, 2]  
и иных публикациях посредством использования других подходов. К ним относятся, например, диа-
граммный метод [2, 3], метод интегрального уравнения [4], обобщенный принцип Гюйгенса-Френеля 
[5, 6], метод фазовых экранов [7, 8], численные алгоритмы [9, 10], метод функции Грина [11], метод 
интегралов по траекториям (путям) [12]. Дополнительные сведения о методах исследования распро-
странения электромагнитного (оптического) излучения в стохастических (турбулентных) средах и  
об использовании его закономерностей для решения различных прикладных проблем приведены,  
в частности, в [13—24] (см. также ссылки в них). 

В данной работе выведены новые (линейное и нелинейное) интегро-функциональные уравнения 
для четырехмерного образа Фурье для четырехточечной функции когерентности Γ22(…) для случая 
лазерного пучка излучения, распространяющегося в земной атмосфере. При этом линейное уравне-
ние такого типа является обобщением интегро-функционального уравнения, полученного и исполь-
зованного ранее в [23, 24] при получении точных выражений для интегральных характеристик функ-
ции Γ22(…) и при отыскании асимптотических и приближенных аналитических представлений для 
самой этой функции. Как и в [23], при выводе искомых обобщенных интегро-функциональных урав-
нений использованы эвристические процедуры и преобразования (действия), положенные в основу 
метода редукции общих соотношений инвариантности (general invariance relations reduction method — 
GIRRM [25]). Этот общий метод предложен и развит в [25—30], а также использован для отыскания 
строгих, асимптотических и численных решений ряда проблем (в частности, многомерных) теории 
переноса излучения, математической физики и теории распространения лазерного излучения в зем-
ной атмосфере (см., например, [23—35] и ссылки в них). 

На основе использования общих математических свойств (в частности, свойств инвариантности) 
краевой задачи (BVP), решением которой является функция Γ22(…), и обобщенных интегро-функцио-
нальных уравнений показано, что можно получить формально строгое решение данной BVP и найти 
полуаналитические, асимптотические и достаточно точные приближенные аналитические представ-
ления для этой функции. Эти представления, например, можно использовать для нахождения таких 
важных величин, как индекс мерцаний и пространственная корреляционная функция интенсивностей. 

Постановка задачи и вывод обобщенных интегро-функциональных уравнений. Рассмотрим 
замкнутое полупространство [V], на границе S которого лежит плоскость OXY правой прямоугольной 
декартовой системы координат OXYZ. Пусть ось Z направлена внутрь этого полупространства [V], 
заполненного случайно неоднородной средой, свойства которой идентичны свойствам “прозрачной” 
части турбулентной атмосферы Земли. Возьмем четыре точки M1, M2, M3, M4 на произвольной плос-
кости z = const (const  0), положения которых в системе OXYZ задаются радиус-векторами 

1 2 1 2( ), ( ), ( ), ( ),z z z z                          r r r r . Кроме того, используем двумерные век-

торы 1 2 1 2( ), ( ), ( ), ( ).                       ρ ρ ρ ρ  Предположим, что среда облучается 
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пространственно ограниченным (финитным) монохроматическим линейно поляризованным пучком 
лазерного излучения, для которого проекции напряженности электрического поля на оси X, Y могут 
быть записаны в виде exp{i(t – kz)}U(;z). Здесь i — мнимая единица, k = (2/) — волновое число,  
 — длина волны, t — время,  — круговая частота, U(;z) — комплексная амплитуда, которая явля-
ется случайной функцией и незначительно изменяется на расстояниях порядка длины волны. Пусть 
пучок лазерного излучения имеет конечную мощность, и отношение (/a) удовлетворяет неравенству 
(/a) << 1 (под a понимается точная верхняя грань множества длин хорд, соединяющих любые две 
точки границы любого поперечного сечения этого пучка, когда z[0, L], где L — длина трассы рас-
пространения пучка лазерного излучения; a может зависеть от L). Допустим, что “центры” попереч-
ных сечений лазерного пучка вдоль трассы находятся достаточно близко к оси Z и модуль комплекс-
ной амплитуды для любых z[0, L] удовлетворяет оценке U(;z) = O(exp{–w0}) при +  
(w0 — некоторое положительное число, размерность которого обратна размерности длины). Предпо-
ложим, что известна четырeхточечная функция когерентности 22(1,2,1,2;z) [1, 2, 23, 24] на плос-
кости z = 0 (т. е. известна информация о когерентных свойствах исходного лазерного пучка). Данная 
функция формально определяется выражением  

* *
22 1 2 1 2 1 2( ; ) ( ; ) ( ; ) ( ; ) ( ; ) .z U z U z U z U z           ρ ρ ρ ρ ρ ρ ρ ρ                 (1) 

Здесь … означает операцию усреднения по ансамблю реализаций; * есть символ операции ком-
плексного сопряжения; 1 2 1 2( ; ), ( ; ), ( ; ), ( ; )U z U z U z U z ρ ρ ρ ρ  имеют смысл комплексных амплитуд вол-

нового поля на плоскости z = const в системе OXYZ в точках M1, M2, M3, M4 соответственно. 
В работах [1, 2] получено дифференциальное уравнение в частных производных второго порядка 

для функции 22(1,2,1,2;z). Для случая финитных пучков естественно искать решение этого 
уравнения в классе функций, имеющих непрерывные частные производные порядка n(n  2) по всем 
компонентам векторов 1, 2, 1, 2 и непрерывную частную производную по z в полупространстве 
[V]. Решение данного уравнения для функции 22(1,2,1,2;z) при z = 0 должно совпадать с функ-
цией 22(1,2,1,2;0) (это первое краевое условие). В качестве второго краевого условия, как  
и в [24], возьмем асимптотическое соотношение 22(1,2,1,2;z) = O(exp{–w0(|1|2|)}, 
которое имеет место, когда хотя бы одна из величин |1|2| стремится к +∞ (для финитных 
пучков это условие выполняется автоматически). Будем считать, что решение BVP для указанного 
выше дифференциального уравнения, которому удовлетворяет функция 22(1,2,1,2;z), имеет 
единственное решение в указанном выше классе функций. 

Как показано в [23], нахождение функции 22(1,2,1,2;z) можно свести к решению уравнения: 
3

22 1 2 22 1 2( , , ; ) Г ( , , , ; ) 0.
2 16

ik ik
F z z

z    

  
           

ω u ω p ω p ω u ω ω u ω ω u p      (2) 

Здесь 1
, 2

, u, p — двумерные операторы Гамильтона; точка между этими операторами и дру-
гими величинами в (2) и далее имеет смысл реального или символического скалярного произведения: 

  1 2, , 1,2 , ,l l l l l l l       ω ρ ρ τ ρ ρ u τ τ  

1 2 22 1 2 22 1 2 1 2; ( , , , ; ) ( , , , ; );z z      p τ τ ω ω u p ρ ρ ρ ρ  
1 1 1 1

1 1 2 22 ( 2 ( )), 2 ( 2 ( )),        ρ ω u p ρ ω p u  
1 1 1 1

1 1 2 22 (2 ( ) ), 2 (2 ( ) ).         ρ u p ω ρ p u ω        (3) 

Функция 22 1 2( , , ; )F z ω ω u в (2) имеет вид [23]  

1 1
22 1 2 1 2( , , ; ) 8 ( ; ) 1 cos(2 ( ))cos(2 ( ( )))F z z

 
  


 

        ω ω u q q u q ω ω  

1 1 1
1 2 1 2 1 2cos(2 ( ( )))(cos(2 ( )) cos(2 ( ( ))) dq dq          q ω ω q u q ω ω .           (4) 

В (4) функция 
(q; z) = const(q; z) имеет смысл спектральной плотности флуктуаций диэлектри-

ческой проницаемости ε воздуха, которая с учетом соотношения n    непосредственно связана  
с плотностью флуктуаций показателя преломления n (const есть положительное число, которое зави-
сит от форм записи прямого и обратного преобразований Фурье). При этом верно равенство  
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
(q; z) = 

(–q; z). Принимая во внимание второе краевое условие, которому удовлетворяет функ-

ция 22(1,2,1,2;z), и соответствующее ему второе краевое условие для функции 22 1 2( , , , ; )z ω ω u p ,  

с помощью двумерных преобразований Фурье по переменным p = (p1,p2), u = (u1,u2) из (2) можно по-
лучить соотношение [23]: 

     22 1 2
1 2

, ; , ;
2

k
z

z
      

                 
γ + ζ γ ζ ω ω ζ γ

ω ω
               (5) 

        1 3
22 22 1 232 exp , , ; , , ; ; 0;k i F z z du du

   

 
      1 2 1 2ζ u ω ω u ω ω u γ  

          1
22 22 1 2 1 2, , ; ; 2 exp , , , ; , ,z i z dp dp

  

 
        1 2 1 2ω ω u γ γ p ω ω u p γ            (6) 

          1
22 22 1 2 1 2, ; , ; 2 exp , , ; ; , ,z i z du du

  

 
      1 2 1 2ω ω ζ γ ζ u ω ω u γ ζ ζ ζ . 

Для вывода искомых уравнений используем более общий вариант процедуры разбиения по сравне-

нию с примененной в [23]. Разобьем функцию 22 1 2( , , ; )F z ω ω u  на такую сумму слагаемых: 

   22 1 2 1 1 2 2 1 2( , ; ; ) , ; , ; ; , , ; , ; ; ;F z z L z L    ω ω u ω ω ζ γ ω ω u ζ γ           (7) 

     

     

1 1 2 1 1 2 1 2

2 1 2 2 1 2 1 2

κ , ; , ; ; 8 ; , ; , , ; ; ,

, , ; , ; ; 8 ; , , ; , ; ; ; ,

z L z z L dq dq

z L z z L dq dq

 


 

 


 


   


    

 

 

ω ω ζ γ q ω ω ζ γ q

ω ω u ζ γ ω ω u ζ γ q



 q

         (8) 

          
       

1 1
1 1 2 1 2 1 2 1 2

1
2 1 2 1 2

, ; , , ; ; 1 (...) , ; cos(2 )cos 2 ,

, , ; , , ; ; , ; cos 2 (...) .

z L W C

z L C W

 



       

   

ω ω ζ γ q ω ω q q ω ω q ω ω

ω ω u ζ γ q ω ω q q u
 (9) 

Здесь C(1,2;q) = cos(2–1(q  (1 – 2))) – cos(2–1(q  (1 + 2))), под W(…) понимается некоторая без-
размерная функция W(…) = W(1,2;,,2–1q;z;L), от выбора которой строгое решение сформулиро-
ванной ранее BVP не зависит (т. е. оно инвариантно по отношению к любым изменениям вида функ-
ции W(…)). Однако от выбора W(…) может зависеть форма решения этой BVP. 

Подставляя в (5) вместо функции 22 (...)F  ее представление (7) и учитывая (6), (8), (9), получаем: 

       

          

3

1 1 2 22 1 2
1 2

3
1

1 2 1 2 22 1 2

, ; , ; ; , ; , ;
2 16

exp ; , ; cos 2 (...) (...) 0,
4

k k
z L z

z

k
i z C W dq dq du du



   
 


   

      
                   

            
   

γ ζ γ ζ ω ω ζ γ ω ω ζ γ
ω ω

ζ u q ω ω q q u

+
 (10) 

где 22 22(...) ( ; ; )z    1 2ω ,ω ,u γ . Принимая во внимание свойства симметрии косинуса, функции 


(q; z) и определения функций 22 (...) , 22 (...) , можно посредством биективных замен перемен-

ных преобразовать соотношение (10) в интегро-дифференциальное уравнение вида 

       

 

3

1 1 2 22 1 2
1 2

3
1 2

, ; , ; ; , ; , ;
2 16

2 , ; , ; ; 0,

k k
z L z

z

k g z L

      
                   

  

γ ζ γ ζ ω ω ζ γ ω ω ζ γ
ω ω

ω ω ζ γ

+
     (11) 

       

     

1 2 1 2

22 1 2 1 2 22 1 2 1 2

, ; , ; ; 2 ; , ;2

, ; , ; , ; , , ; ; , ; , ; .

g z L z C

z W z L z dq dq

 


 

 

    

       

 ω ω ζ γ ζ q ω ω ζ q

ω ω q γ ω ω ζ γ ζ q ω ω ζ γ



          (12) 

Cделаем в (11) биективные замены переменных [23]: 
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1 1 1
1 1 2 22 , 2 ( ), 2 ( ).z k z k z k z        ω ω γ ζ ω ω γ ζ             (13) 

С учетом (13) уравнение (11) примет форму: 

    

       

3
1

1 1 2

1 3 1
22 1 2 1 2

, ; ;2 ;
16

, ; ;2 2 ( ), ; ;2 ; 0.

k
z z kz L

z

z z kz k g z z kz L



  

 
        

           

ω γ ζ ω γ ζ ζ,γ

ω γ ζ ω γ ζ ζ,γ ω γ ζ ω γ ζ ζ,γ

   


        

    (14) 

Считая формально известной функцию g(…), принимая во внимание первое краевое условие и 

определение функции 22 (...) , с учетом единственности решения исходной BVP получаем из (14) ис-

комое обобщенное линейное интегро-функциональное уравнение: 

       

      

1
22 1 2 1 2

3
22 1 2 1 2

0

, ; , ; 2 exp , ; , ; ;

, ; , ;0 2 exp , ; , ; ; , ; , ;ψ; ;
z

z z kz f z L

k f z L g L dz

 



       

      
 



ω γ ζ ω γ ζ ζ γ ω ω ζ γ

ω ω ζ γ ω ω ζ γ σ θ ζ γ


      

     
                (15) 

        1 3 1
1 2 1 1 2

0

, ; , ; ; 16 , ; , ;2 ; ,
z

f z L k z z kz L dz
        ω ω ζ γ ω γ + ζ ω γ ζ ζ γ


         

    1
1 2, , 2 .z z kz        σ ω γ + ζ θ ω γ ζ                (16) 

Уравнение (15) при W(…) = cos(2–1(q  )), где   (–, +) и  = (1, 2), совпадает с (13) из [23]. 

Функция 22 (...)  кроме линейного интегро-функционального уравнения (15) удовлетворяет так-

же нелинейному уравнению такого типа. При выводе этого уравнения используем соотношение (10), 
единственность решения исходной BVP и его инвариантность по отношению к выбору W(…). Пере-
пишем интегральный член в (10) в таком виде: 

      

       

1 3
1 2 1 2

1 1
1 2 22 1 2 1 2

4 ; , ; exp

cos 2 , ; , ,2 ; ; , , ; ; .

k z C dq dq i

W z L z du du H

   



   

  

  

    

   q ω ω q ζ u

q u ω ω ζ γ q ω ω u γ



         (17) 

Из (17) следует, что если в качестве (...)W взять функцию 

  
1

22 1 2 22 1 2 22 1 2(...) 2 , ; , ; , ; , ; , ; , ; ,
2 2

W z z z


                         

q q
ω ω ζ γ ω ω ζ γ ω ω ζ γ         (18) 

то интегральный член в (10) обратится тождественно в нуль. В силу существования решения исход-
ной BVP для уравнения (2) функция W(…) в виде (18) также существует. Пусть W(…) выбрана в виде 
(18). Тогда с учетом свойств симметрии косинуса и функции 

(q; z) равенство (10) с помощью эле-
ментарных преобразований можно привести к виду: 

       3
1 2 22 1 2

1 2

, ; , ; , ; , ; 0.
2

k
k z z

z
      

                    
γ ζ γ ζ ω ω ζ γ ω ω ζ γ

ω ω
       (19) 

Коэффициент (…) в (19) определен равенством 

            1 2 1 2 1 2 1 2(...) 2 2 ; 1 cos cos (...; ) , ;2z T z C d d
 


 

             η η ω ω η ω ω ω ω η ,  (20) 

где      
1

1 2 22 1 2 22 1 2(...; ) , ; , , ; , ; , ; , ; , ; .T z T z z z


       
 

ω ω ζ η γ ω ω ζ γ ω ω ζ η γ  

Сделав в (19) замены (13), с учетом первого краевого условия получим искомое нелинейное ин-
тегро-функциональное уравнение: 

        1
22 1 2 0 22 1 2, ; , ;2 exp (...) , ; , ;0 ,z z kz f        ω γ ζ ω γ ζ ζ γ ω ω ζ γ     +       (21) 

      3 1
0 0 1 2 1 2

0

(...) , ; , ; , ; , ;2 .
z

f f z k z z kz dz         ω ω ζ γ ω γ ζ ω γ ζ ζ γ


         



ПОЛУАНАЛИТИЧЕСКИЕ ПРЕДСТАВЛЕНИЯ ДЛЯ ЧЕТЫРЕХТОЧЕЧНОЙ ФУНКЦИИ КОГЕРЕНТНОСТИ ЛАЗЕРНОГО ПУЧКА 
 

937

Если левую и правую части (21) умножить на (42)–1exp{–i((u  ) + (p  ))} и проинтегрировать 
по каждой из переменных 1, 2, 1, 2 в пределах от – до +, то получится формально строгое пред-

ставление для четырехточечной функции когерентности  1 2, , , ; z ω ω u p . Отметим, что левые части 

уравнений (15), (21) равны  
22 1 2, ; , ; z ω ω ζ γ  (это следует из (13)). Уравнение (21) дает формально 

строгое представление функции  
22 1 2, ; , ; z ω ω ζ γ . 

Процедуры отыскания вспомогательной функции W(…). Как показано выше, существует та-
кая функция W(…), с помощью которой решение исходной BVP для уравнения (2) формально можно 
свести к решению BVP для уравнения (19). Для представления этой функции в явной форме необхо-
дима дополнительная информация. Для получения такой информации могут быть использованы 
формулы (10), (15), (21) и финитность лазерного пучка. 

Пусть область D(L) на OXY содержит все проекции всех точек, сопоставляемых концам радиус-
векторов u и лежащих на плоскостях z = const [0, L] (для финитного пучка эта область является 

ограниченной). Возьмем в (10)       11 1

0
(...) 2 ; 1 cos 2 ,

n

l l
l

W W L n
 


    q q α  где для любых 

0,l n  величина l — некоторое число или функция от q, l — двумерный вектор, задающий неко-
торую точку в D(L). Тогда из равенства (10) следует, что минимизация интегрального члена в нем 

сводится к решению проблемы интерполяции cos(2–1(q  u)) для любых  0, q  по переменной u 

в D(L) и минимизации значений интеграла 

      1 1
1 2 1 2

( )

; cos 2 2 ;
D L

z dq dq W L du du
 

 


 
    q q u q .        (22) 

Для случая спектра флуктуации Кармана [36] и достаточно узких лазерных пучков (т. е. верно 
неравенство qmaxa  1, где qmax — такое значение q, для которого можно пренебречь значением 

интеграла  
max

, z d


   
q


 по сравнению с  

0

, z d


     ) указанная выше проблема легко реша-

ется. Следует просто положить 0
 = 1, 0

 = 0, n = 0. При этом фактически считается, что W(…)  1. 
Минимизацию модуля интегрального члена в (10), записанного в форме (17), для случая финит-

ных пучков можно провести посредством выбора W(…) в виде W(…) =1 + W1(2–1q; L) и неравенства 
Коши—Буняковского. Имеет место оценка 

        
1/2

2
1 1 1

1 1 2 1 2
( )

2 ; cos 2 1 2 ; .
D L

kJ z W L du du dq dq
 

  


 

 
     

  
  q q u q              (23) 

Величина  
1/2

2

22 1 2 1 2
( )

, , ; ;
D L

J z du du 
  
  
 ω ω u 0 в (23) не зависит от функции W1(…) и является огра-

ниченной для любых 1, 2 и z [0, L]. Минимальное значение |H| принимает тогда, когда в качестве 
W1(2–1q; z) берется выражение 

       11 1
1 1 2

( )

2 ; ( ) 1 cos 2 ( )
D L

W L Sq D L du du
    q q u ,       (24) 

где Sq(D(L)) — площадь области D(L). Минимум двойного интеграла в (23) по области D(L) для та-
кой функции W1(2–1q; L) равен  

          
212

1 1
1 2 1 2

( ) ( )

1 cos 2 ( ) 1 cos 2
D L D L

Q du du Sq D L du du


  
       

 
 q u q u .   (25) 

Из (23)—(25) следует, что для случая спектра флуктуаций Кармана верна асимптотическая оценка 
H = O((qmaxa)3) при (qmaxa)0. Следовательно, для достаточно узких лазерных пучков можно по-

лучать практически точные полуаналитические представления для функций 22 22(...), (...)   . Oтме-

тим, что представление W(…) = 1 + W1(2–1q; L) является более общим и конструктивным по сравне-
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нию с представлением W(…)  1, поскольку оно учитывает формы поперечных сечений финитных 
лазерных пучков на трассе длины L. 

При использовании уравнения (21) для отыскания 22 22(...), (...)    в качестве исходной аппрок-

симации функции T(…;z) берем величину T0 = T(1,2;,,;0), которую можно считать известной, 

так как по предположению  22 1 2, , , ;0 ω ω u p  — заданная функция. 

Алгоритм получения точных, полуаналитических и иных представлений. Для отыскания раз-

личных представлений для искомых функций 
22 22(...), (...)    используем следующий алгоритм:  

1) выбрать какой-либо вариант задания функций W(…), W1(…);   
2) решить в аналитической форме BVP для уравнения  

       
3

1 1 2 22;0 1 2
1 2

, ; , ; ; , ; , ; 0
2 16

k k
z L z

z
      

                    
γ ζ γ ζ ω ω ζ γ ω ω ζ γ

ω ω
         (26) 

с учетом (8), (9) и краевого условия    22;0 1 2 22 1 2, , , ;0 , , , ;0   ω ω ζ γ ω ω ζ γ ;  

3) принять  22;0 1 2, , , ; z ω ω ζ γ  за исходную аппроксимацию функции  22 1 2, ; , ; z ω ω ζ γ для z > 0;  

4.1) заменить в формуле (12) для  1 2, , , ; ;g z Lω ω ζ γ  функции  22 1 2, ; , ; z ω ω q γ , 

 22 1 2, ; , ; z ω ω ζ γ  функциями  22;0 1 2, ; , ; z ω ω q γ ,  22;0 1 2, ; , ; ,z ω ω ζ γ  (при этом W(1,2;,;–q;z;L) 

в (12) надо заменить ее явным выражением с учетом сделанного выбора функций W(…), W1(…));  

4.2) в формуле (20) сделать замены функций  22 1 2, ; , ;z ω ω ζ γ ,  22 1 2, ; , ;z ω ω ζ η γ  на  22;0 1 2, ; , ;z ω ω ζ γ , 

 22;0 1 2, ; , ; z ω ω ζ η γ  или подставить вместо T(1,2;,;;z) величину T0 = T(1,2;,,;0).  

5.1) при использовании (15) для получения уточненного выражения  22;1 1 2, ; , ; z ω ω ζ γ  для 

      1
22 1 2 22 1 2, ; , ; , ; ;2z z z kz        ω ω ζ γ ω γ ζ ω γ ζ ζ γ   ,  необходимо в (15) подставить функцию 

 , ; , ;ψ;g Lσ θ ζ γ , найденную с помощью действий из п. 4.1;  

5.2) при использовании (21) для отыскания исходного приближения  22;0 1 2, ; , ; z ω ω ζ γ  для 

функции  22 1 2, ; , ; z ω ω ζ γ  следует под f0(…) в (21) понимать функцию, полученную на основе ее 

определения и замены в (20) величины T(1,2;,;;z) на T0;  

5.3) для отыскания уточненных представлений  22;1 1 2, ; , ; z ω ω ζ γ  на основе (21) следует под 

f0(…) в уравнении (21) подразумевать функцию, найденную посредством действий из первой части 
п. 4.2 (при этом величина T0 не используется);  

6) с помощью операций (действий) инвариантного разбиения и выделения [25—30] полубеско-
нечных частей [Vl] (l  N0 = {0, 1, 2, …}) из [V] и учета единственности решения BVP для (2) следует 
на основе (21) записать рекуррентную формулу, позволяющую проводить полуаналитические вычис-

ления значений функции  22 1 2, ; , ; z ω ω ζ γ  на плоскостях, параллельных OXY;  

7) с учетом определений прямого и обратного преобразований Фурье, формул (3), (13), уравне-

ний (15), (21) и пп. 1—6 найти полуаналитические аппроксимации функции  22 1 2, , , ; z ω ω u p = 
= 22 1 2 1 2( , , , ; )z  ρ ρ ρ ρ . 

Простейший вариант предложенного алгоритма использован в [24] (где фактически считалось, 
что W(…)  1). Метод решения BVP для уравнения (26) изложен в [23]. Решение этой BVP имеет вид: 



ПОЛУАНАЛИТИЧЕСКИЕ ПРЕДСТАВЛЕНИЯ ДЛЯ ЧЕТЫРЕХТОЧЕЧНОЙ ФУНКЦИИ КОГЕРЕНТНОСТИ ЛАЗЕРНОГО ПУЧКА 
 

939

 

      

        
22;0 1 2 22 1 2

3
1

1 1 2
0

, ; , ; , ; , ;0

exp , ; , ;2 ; ,
16

z

z z z

k
z z z z kz L dz

 



       

                
   



ω ω ζ γ ω γ ζ ω γ ζ ζ γ

ω γ ζ γ ζ ζ γ


 

     ω
                (27) 

где 12z k z . Если положить W(…)  1, то (27) примет форму: 

      

     

22;0 1 2 22 1 2

3 1
1 2 1 2 0 1 2

0

, ; , ; , ; , ;0

exp 2 2 ;2 , , , , , , , , ; ,
z

z z z

k kz z z d d dz z

 

 



 

       

                
   

  

ω ω ζ γ ω γ ζ ω γ ζ ζ γ

η ω ω η ζ γ ω ω ζ γ




 

   
       (28) 

где            1 2 1 2(...) 1 cos 2 1 cos 2z z z z            η ω ω γ η ω ω ζ    . 

Если в правой части (21) под коэффициентом (…) подразумевать выражение (20), в котором 
строгое отношение T(…;z) заменено на 1, то она совпадет с правой частью (28). Отметим, что 
T(…;z)1 при 0 для любых 1 2, , , ; zω ω ζ γ . В рамках такого простого выбора W(…) в [24] факти-

чески получен ряд аппроксимационных представлений для (...)(...), 2222
  . Обобщениями данных 

представлений становятся соотношения, которые получаются заменой T(…;z) в (20) на 

   
1

0 22 1 2 22 1 2, ; , ;0 , ; , ;0


      
 

ω ω ζ γ ω ω ζ η γ  и последующей подстановкой полученной аппрокси-

мации коэффициента (…) в (21). 
Пусть W(…) = W(2–1q; L) = 1 + W1(2–1q; L), где W1(2–1q; L) задается формулой (24). Тогда под ис-

ходной аппроксимацией  22;0 1 2, ; , ; z ω ω ζ γ  функции  22 1 2, ; , ; z ω ω ζ γ  следует понимать: 

   

     

22;0 1 2 0 1 2

3 1
1 1 2 1 2

0

, ; , ; , , , ;

exp 2 2 ;2 ; , , , , ; ,
z

z z

k dz kz W L z z d d



 



 

   

 
          

 
  

ω ω ζ γ ω ω ζ γ

η η ω ω η ζ γ


   
           (29) 

где            1 2 1 2 1 2, , , , , cos 2 cos 2z z z z z z             ω ω η ζ γ η ω ω ζ η ω ω γ      . Из (29) 

получаем, что исходная аппроксимация  22;0 1 2, , ; z ω ω u p,  для функции (...)22
  в данном случае: 

           

     

12
22;0 1 2 0 1 2

3 1
1 1 2 1 2 1 2 1 2

0

, , ; 4 exp , , , ;

exp 2 2 ;2 ; , , , , ; .
z

z i z

k dz kz W L z z d d d d d d

   

   

 



 

        

 
              

 

   

  

ω ω u p u ζ p γ ω ω ζ γ

η ω ω η ζ γ


   

,


    (30) 

Нелинейное интегро-функциональное уравнение (21) можно использовать для отыскания в полу-

аналитическом виде значений функции  22 1 2, ; , ; z ω ω ζ γ  (см. п. 6 описанного выше алгоритма). 

Разобьем отрезок [0, L] на n частей узлами 0, z1, …, zn (0 < z1 < … < zn; z0 =0, zn = L). При этом каждому 

узлу с номером l поставим в соответствие полупространство [Vl], 01, ([ ] [ ])l n V V  . Для вычисления 

функции  22 1 2, ; , ; z ω ω ζ γ  на границах Sl этих полупространств (задаются равенствами zl = const 

в системе OXYZ) можно использовать рекуррентную формулу: 

      

       

    

1

3
22; 1 2 22; 1 2 1

1
1 2

1
1 1 2

, , , ; , ; , ; exp 2 (...) ,

(...) 2 ;2 1 ,

; , , ;2 ,

l

l

z

ap l ap l l l
z

l l l l l

l l

z z z z k dz

kz C C C C z z

z z kz d d l



 
 

 
    

 
 




              
  

           

    



 

ω ω ζ γ ω γ ζ ω γ ζ ζ γ

η ω γ ζ ω

γ ζ ζ η γ







  

  

   1, .n

  (31) 
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Здесь          1 2 1 2cos 2 , cos 2 ;l l l lC z z C z z           η ω ω γ η ω ω ζ     1
12 , ;l l l l lz k z z z z
        

 22; 1 2, ; , ;ap lz ω ω ζ γ — приближенное выражение для функции  22 1 2, ; , ; lz ω ω ζ γ  на плоскости  

zl = const (если l –1 = 0, то  22; 1 2 1, ; , ;ap lz
 ω ω ζ γ =  22 1 2, ; , ;0 ω ω ζ γ  — известная функция, свойства 

которой определяются свойствами исходного лазерного пучка). Рекуррентная формула (31) позволя-

ет однозначным образом находить все значения функций  22; 1 2, ; , ;ap lz ω ω ζ γ по известной функции 

 22 1 2, ; , ;0 ω ω ζ γ . Формула (31) может использоваться для нахождения (в принципе, с любой точно-

стью) в полуаналитическом виде функций  22 1 2, ; , ; z ω ω ζ γ ,  22 1 2, , , ; z ω ω u p , описывающих ста-

тические свойства любых финитных лазерных пучков в турбулентной среде. 
При некоторых ограничениях, наложенных на векторы ῶ1, ῶ2, , , уравнения (15), (21) имеют 

точные решения, причем для любого выбора функции W(…) в (15) и неизвестных значениях функции 
Т(1, 2; , , ; z) в (20). Эти точные решения несложно получить при выполнении любого из двух 
непротиворечивых условий [23]:  = –, ῶ1 = 0 = (0,0), ῶ2 = h = (h1,h2) — произвольный вектор;  = , 
ῶ2 = 0 = (0,0), ῶ1 = b = (b1,b2) — произвольный вектор. Если выполнено любое из этих условий, то 

функция f0(…) в (21) не зависит от 22 (...) . Это означает, что функции  22 , ; , ; ,z 0 h γ γ  

 22 , ; , ; z b 0 γ γ  находятся в явной аналитической форме. 

Заключение. На основе базовых идей и конструкций СIRRM [25] развит эффективный общий 
подход к решению проблемы нахождения четырехточечной функции когерентности и ее усеченных 
спектральных характеристик для случая финитных лазерных пучков, распространяющихся в турбу-
лентной среде. С помощью этого подхода получены новые интегро-функциональные уравнения для 

функции 22 (...)  и формально строгие представления для данной функции и функции 22 (...) , а так-

же найдены различные точные, полуаналитические и асимптотические представления для указанных 
выше функций. Предложен ряд процедур отыскания приближенных полуаналитических представле-
ний для этих функций (эти представления в предельных ситуациях превращаются в точные соотно-
шения). Впервые на основе выведенного уравнения (21) найдена рекуррентная формула (31), кото-
рую можно использовать как для получения различных полуаналитических представлений искомых 
функций для любых z  [0, L], так и для построения численных алгоритмов вычисления их значений. 
Полученные результаты в явной форме указывают на заметное влияние статистических свойств ис-
ходного лазерного пучка (наряду с воздействием самой турбулентной среды) на такие же свойства 
лазерного излучения вдоль трассы его распространения. Развитый подход можно применять при ис-
следовании влияния типов финитных лазерных пучков [37—39] на процесс их распространения в 
турбулентной среде. 
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