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We investigated the utility of machine-learning-enabled LIBS for direct rapid analysis of selected fis-

sion products (FPs), namely Y, Sr, Rb, and Zr in surrogate high-level nuclear waste mimicking three hypo-
thetical but realistic scenarios: post-detonation glass debris, post-detonation powders, and microliter liquid 
drops from a radiological crime scene (RCS). Artificial neural network calibration strategies for trace quan-
titative analysis of the FPs in these materials were developed and achieved >95% prediction for all sample 
types. Owing to a lack of appropriate certified reference materials synthetic reference standards materials 
were used to perform method validation to accuracies ˃91%. Based on the spectral responses of the FPs, 
principal component analysis successfully differentiated nuclear from non-nuclear waste, demonstrating the 
method’s potential for RCS nuclear forensic and attributive analysis. 

Keywords: laser-induced breakdown spectroscopy, artificial neural networks, principal component 
analysis, machine learning, nuclear forensics and attribution, high-level nuclear waste, fission products. 
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Исследована применимость лазерно-искровой эмиссионной спектроскопии и машинного обуче-
ния для прямого быстрого анализа отдельных продуктов деления (FP), а именно Y, Sr, Rb и Zr, в сур-
рогатных высокоактивных ядерных отходах (постдетонационные обломки стекла, постдетонаци-
онные порошки и капли жидкости (в мкл) с места радиологического воздействия (RCS)). Разрабо-
таны стратегии калибровки искусственной нейронной сети для количественного анализа следов FP 
в этих материалах, которые позволили достичь прогнозирования >95 % для образцов всех типов. 
Из-за отсутствия соответствующих сертифицированных стандартных образцов для валидации 
метода использованы синтетические стандартные образцы с точностью ~91 %. На основании 
спектральных характеристик FP с помощью анализа главных компонент дифференцированы ядер-
ные и неядерные отходы, продемонстрирован потенциал метода для ядерной судебной экспертизы 
и атрибутивного анализа RCS. 

Ключевые слова: лазерно-искровая эмиссионная спектроскопия, искусственные нейронные  
сети, анализ главных компонент, машинное обучение, ядерная криминалистика и атрибуция, высо-
коактивные ядерные отходы, продукты деления.  
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Introduction. The current global nuclear renaissance has led to the growing use and trans-border 
movement of nuclear and radioactive materials (NRMs) for their various applications, resulting in the in-
creased possibility of the illicit use of such materials [1, 2]. NRMs may be diverted from storage facilities or 
enrichment stages while in transit to repository sites, or during reprocessing of spent reactor fuel. In particu-
lar, the special nuclear materials (SNMs) uranium and plutonium need to be highly secured to enhance a safe 
nuclear regime. Nonetheless, should such materials be involved in a nuclear security event and are intercept-
ed, there is a need for a method for direct and rapid nuclear forensic analysis and attribution. Most current 
nuclear forensic (NF) analytical techniques such as inductively coupled plasma-mass spectrometry (ICP-
MS) provide accurate results but they require complex sample pre-treatments; thus, the integrity of the sam-
ples is compromised. Also, they lack the remote capability needed for NRMs. The remote ability of laser-
induced breakdown spectroscopy (LIBS) makes it suitable for measurements at high temperatures or in envi-
ronments with high radioactivity (e.g., inside a reactor) [3]). As NRM particles are representative of the orig-
inal material, their analytical attributes can provide specific information about their sources in which regard 
attribution of post-detonation debris is desirable; measuring bulk samples runs the risk of averaging contri-
butions of different (fallout) sources. 

Laser-induced breakdown spectroscopy possesses remarkable attributes in this regard. It is versatile and 
can directly and simultaneously perform elemental, isotopic, and molecular analysis of solid and liquid sam-
ples in real-time, non-invasive mode [4]. The theory of LIBS has been extensively described [5, 6]. Howe-
ver, appropriate methods are needed to realize in particular portable LIBS for single-shot in-field applica-
tions of interest to nuclear forensics. Despite its advantageous attributes, however, LIBS has only rarely been 
investigated for nuclear forensic glass analysis [7–10]. LIBS has also been used for in situ analysis of radio-
active surrogates on building bricks, pavements, and traffic signs [11], including those embedded in glass [9]. 

A typical RCS is characterized by samples of limited size (particulate matter, liquid droplets, and de-
bris), which may yield only subtle LIBS analyte peaks buried in the pronounced background. Accurate trace 
quantification of fission products using LIBS in such cases is a challenge. Machine-learning methods are 
handy in facilitating the extraction of information from such spectra, including performing multivariate calibra-
tion [12]. In LIBS, thousands of data are collected in typically a second, constituting a complex spectrum [13]; 
it is, therefore, a natural extension to use machine-learning methods for dimensionality reduction as well as 
to aid interpretation [14]. 

Laser-induced breakdown spectroscopy has been applied in the analysis of uranium in glass matrices 
with an emphasis on investigating spectral interference [7]. The study of fission products (FPs) in ‘trinitite’ 
glass has been reported by Molgaard et al. and Hanson [15, 16]. Machine-learning techniques were used to 
associate spent fuel and the reactor type of origin based on the FP Inventory Code (FISPIN) [12]. Instead of 
using simulation codes, it is feasible to perform nuclear forensics utilizing real samples prepared to mimic 
those expected in the actual nuclear crime scenarios. This study focuses on cross-analyzing FPs in nuclear 
glass, powders, and liquid aliquots that have relevance in nuclear forensics. Fused glass offers a more physi-
cally stable matrix that gives more reliable spectral responses than sample forms such as pellets [17]. Artifi-
cial neural network (ANN) modeling was used to develop calibration strategies for trace quantitative analy-
sis of the FPs in surrogate high-level nuclear waste in the absence of clearly observable LIBS peaks (peak-
free LIBS). The attractions of ANN in multivariate calibration [18, 19] include the ability of neural networks 
to rapidly learn from input–output relationships as well as to model nonlinear data [20]. Principal component 
analysis (PCA) was used for data visualization in a graphical interface in a reduced dimension to more clear-
ly discern any patterns that have the potential for nuclear forensic signature attribution. Three hypothetical 
but realistic nuclear security scenarios were mimicked: post-detonation scenes involving nuclear devices 
such as radiological dispersal devices (RDDs), re-detonation scenes in which a suspected NRM is intercept-
ed, and accidental or intentional spillage of liquid NRM. As such cases are characterized by limited samples 
(tiny glass debris, powder particles, liquid droplets) for analysis and attribution of the NRM, a suitable NF 
methodology is desirable. 

Materials and methods. Calibration samples were prepared using analytical grade standards namely 
RbCl, SrCl2  6H2O, ZrO (Aldrich, USA), Y(NO3)2  5H2O (Sigma-Aldrich, Germany), UO3, UO2(NO2)  6H2O 
(BDH, England). Randomized concentrations were generated in Microsoft Excel covering the range  
10–1000 ppm, which are typical for the Sr, Rb, and Y in reprocessed high-level nuclear waste (HLNW).  
Zr concentration was higher (up to 4000 ppm) as it is the main cladding for nuclear fuel pellets [21]. The 
simulated FPs were spiked on a 0–5% augmented natural uranium (grade) matrix, formulated to mimic 
HLNW arising from the reprocessing of a pressurized heavy water reactor (PHWR) with a burn-up of 
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7000 MW d/t U, a concentration of 250 L HLLW/t U, and a cooling period of 20 years [22]. The PHWR di-
rectly utilizes uranium in its natural form as fuel; therefore, the composition of the fuel is similar to that of 
yellow cake. The resultant mixture was placed in a mixer with a drill machine rotating for 5 min to homoge-
nize. Each sample was prepared in three replicates. The first set was mixed with lithium metaborate (fluxing 
agent) and other glass-forming matrices SiO2, CaCO3, NaCO3, and Al2O3. A micropipette was used to add 
200 L of potassium bromide as a nonwetting agent to facilitate the separation of glass from the crucible af-
ter fusion. The mixture was put into a Pt-Au crucible (2.5 mL capacity) and introduced into a pre-heated Na-
bertherm furnace at 1050°C and fused for 180 s. The alumina plate containing the samples was then with-
drawn slowly to minimize recrystallization and sample fracturing and allowed to cool to room temperature. 
The procedure was repeated for the remaining samples. Thirty (30) fused glass ( 3 mm) samples (mimick-
ing the borosilicate glass used to contain FPs) were prepared. 

The second set was thoroughly mixed with cellulose powder and using 10 tons of hydraulic pressure, 
the mixture was pressed into pellets (~0.3 g) of 1.0 cm in diameter. Cellulose powder was used additionally 
to mimic one of the concealed forms in which NRM may be smuggled: the material may be mixed with 
powders, trafficked as that or as tablets and subsequently recovered through extraction at the destination. 
The cellulose-to-sample ratio was maintained at 5:1. 

The third set of samples simulated high-level liquid nuclear waste (HLLNW). 0.1 g of the sample con-
taining the FPs (Sr, Rb, Zr, Y) and uranium (U) was treated with 3M nitric acid to mimic the HLLNW slurry 
type that results from the reprocessing of spent fuel [23]. The diluent (nitric acid) to sample ratio was 5:1. 
Through a micropipette, small liquid aliquots (2 µL) were carefully deposited on the Perspex wafer to form a 
drop coat deposit (DCD) for subsequent LIBS analysis. 

Sample analysis was realized using an appropriately optimized Q-switched and pulsed Nd:YAG laser 
(Ocean Optics Inc.) operating at a fundamental wavelength of 1064 nm. The pulse repetition frequency was 
10 Hz, the laser pulse energy was 42.5 mJ, the Q switch delay was 150 µs, and the integration time was 0.42 s. 
The emitted radiation was collected by means of an optic fiber (with fused silica with a 0.22 numerical aper-
ture and a focal length of 101 mm) positioned perpendicular to the direction of microplasma evolution. The 
spectrometer has a broad-band 7-CCD coupled system spanning the wavelength range 200–980 nm  
at 0.065 nm resolution. This wavelength range contains most of the analytically useful lines required for 
LIBS analysis of most materials in the air at atmospheric pressure. The spectrometers acquire data through 
the OOILIBS software to help to identify the emitted photons, and compare and match with an existing data-
base of atomic and molecular emissions. 

Multivariate analyses of LIBS spectra. Machine-learning analysis of the LIBS spectra utilized spectral 
feature selection of regions of interest enveloping the analyte peaks (both the discernible and subtle) corre-
sponding to Y, Sr, Rb, and Zr. The spectra were pre-processed using normalization and baseline restoration 
procedures. A representative region of the spectrum acquired by LIBS from a simulated HLLNW drop-
coated on Perspex is shown in Fig. 1. Some FP interference-free peaks are discernible and are shown. 

 

 
Fig 1. Example of FP spectral lines excited from simulated HLLW drop-coated on Perspex. 
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Artificial neural networks are nonlinear computational tools with the capability of modeling complex 
phenomena and hence are suitable for processing noisy and fuzzy data by emulating human cognitive pro-
cesses. In addition, ANNs are valuable in nonlinear ordination, data visualization, and the development of 
hybridized deductive models [14]. 

Artificial neural networks consist of a huge number of parallel-connected arithmetic units called neu-
rons with the capability of building an empirical multivariate calibration model of the form [24]: 

Y = f(X) + ,             (1) 
where Y is the matrix of the response variables (known concentrations), f refers to the network function,  
and X is the input matrix (LIBS selected spectral features for input into MATLAB 7.8.0 (R2009a in our 
case);  is the calibration error. Spectral feature selection not only highlights the analyte signatures to be 
modeled but also reduces data redundancy to achieve a more robust model. Feed-forward backpropagation 
algorithm and cascade correlation algorithms were compared for robustness. Although the backpropagation 
algorithm converges more easily [17, 18] the feed-forward one was found to be better. Two layers were 
used. The known concentrations of the analytes were treated as network targets. Three neurons were used, 
with a learning rate of 0.001. Sixty percent of the data was used for training, 25% for model testing; the re-
maining 15% was used for model validation. Models that gave the minimum square error were utilized for 
prediction. For the lack of an appropriate certified reference material (CRM), synthetic SRMs of the ICP and 
atomic absorption spectroscopy (AAS) solutions containing the FPs were used for model validation. The 
predictive ability of the developed ANN models was examined using three figures of merit: the limit of de-
tection (LOD) calculated according to the criteria published in Choi et al. [7], the coefficient of determina-
tion (R2), and the relative error of prediction (REP) [25]. 

As the combination of PCA is widely applied in spectroscopy before prediction by the use of multivari-
ate techniques [26], this method was used for dimensionality reduction; mathematically, it realizes orthogo-
nal transformation, which creates new uncorrelated variables to successively maximize the variance in the 
analyzed data. The principal components (PCs) describe the information hidden in a system of characteristic 
but partly dependent variables (each component is a weighted linear combination of the original variables). 
PCA, therefore, offers an avenue via which multivariate data can be explored to discover latent patterns as it 
is an unsupervised method. 

The HLLNW samples with known concentrations of the FPs were used together with the reference 
blank matrix composed of pure 3M nitric acid as model inputs. Instead of feature selection as in the ANN 
modeling, the spectrum region containing most of the analyte spectral lines (300–400 nm) was selected for 
14 samples (9 spiked with FPs, 5 blanks) and used in the PCA modeling in R studio Version 1.0.143 with the 
‘Chemospec’ package [16]. Three samples were randomly selected from the dataset to be used for model va-
lidation. Figure 2 summarizes the framework for the analysis of the FPs using machine-learning-enabled LIBS. 

 

 

Fig. 2.  Conceptual  workflow  for  the  detection  and  quantification  of  FPs  
in surrogate high-level nuclear waste utilizing machine-learning-enabled LIBS. 
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Results and discussion. Those LIBS FP lines that showed analytically useful spectral responses are 
shown in Fig. 3. The purpose of studying the spectral responses of these lines as a function of analyte (FP) 
concentration was to identify, based on the highest spiked concentrations, the regions of interest to guide the 
use of spectral feature selection in building the ANN models for the analysis of samples where such peaks 
are subtle and/or not discernible owing to the pronounced background and unexpected matrix spectral inter-
ference. LIBS spectra of such matrices are complex and require tailor-made calibration models based on the 
diversity of matrix-matched sample suites [27]. 

 

Fig 3. Selected (a) Sr spectral line λ = 460.733 nm and (b) Y spectral line λ = 371.029 nm  
showing the spectral response variations with respect to the concentration in fused glass. 

 
Univariate calibration strategies [28, 29] and the calibration-free LIBS technique [30, 31] are character-

ized by inaccuracies and high detection limits when subtle analyte peaks are involved. LIBS also suffers 
from shot-to-shot irreproducibility, which further complicates the desired linear relationships between inten-
sity and analyte concentration. Because LIBS spectra are multi-dimensional, they are amenable to a pipeline 
utilizing multivariate chemometrics [32–34]. In this work, ANN multivariate calibration models were used 
to circumnavigate these challenges. 

Multivariate calibration for trace quantitative analysis using ANN. The performance of the developed 
ANN models for each of the FPs is summarized in Table 1. The R2 values were  0.95 for most of the mod-
els, illustrating the robustness of ANN compared with univariate calibration, which, as discussed above, is 
not feasible in this case. Selected examples of ANN regression performance curves are shown in Fig. 4. REP 
values for new sets of samples introduced into the model are given in Table 2. The values for drop deposits 
on Perspex were lowest compared with fused glass and pellets, which is attributed to reduced matrix effects. 
LIBS of glass is accompanied by fluorescence and quenching, which interfere with the analyte lines [35]. 
Fusing glass, however, does not eliminate matrix effects, it only reduces inconsistencies in the absorption of 
the laser energy and minimizes the saturation of strong and resonance peaks [17]. 

 

TABLE 1. Model Performance Based on the Explained Variance (R2), Relative Error of Prediction (REP)  
and Limit of Detection LOD for Fused Glass, Pellet and Drop-Coatings on Perspex. 

 

Element Fused glass Pelletized form Drop-coat on Perspex
 R2 REP, % LOD, ppm R2 REP, % LOD, ppm R2 REP, % LOD, ppm

Sr 0.939 12.350 175.0 0.974 8.730 18.8 0.957 1.470 6.5
Rb 0.985 9.610 181.0 0.991 5.560 25.5 0.897 11.680 6.0 
Y 0.984 3.780 129.1 0.999 31.060 70.1 0.977 12.350 7.2
Zr 0.987 7.300 199.1 0.750 15.020 67.7 0.957 4.180 54.6

 

TABLE 2. HLLW Model Validation Using Synthetic SRM 
 

Standard solution Certified standard 
concentration, ppm

Average predicted 
(Triplicate), ppm

Deviation from the 
certified value, % 

Sr-ICP standard 100 91.342.34 8.66 
Z-AAS standard 500 542.145.51 8.43 
Y-ICP standard 100 93.614.14 6.39 
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Fig 4. Selected ANN regression performance curves for (a)  Y  and  (b)  Zr  in fused nuclear glass samples,  
(c) Rb in drop liquid aliquot deposited on Perspex, and (d) Sr in a pellet sample (simulated nuclear powder) 

utilizing LIBS spectral feature selection. 
 

The prediction power of the ANN model in real samples was done for the DCDs using a synthetic ICP 
standard solution (CertiPUR® MERCK) developed via a methodology similar to that used for the simulated 
liquid samples. This was done because, just like for the glass and pellet samples analyzed in this work, 
a CRM for high-level liquid nuclear waste was not available. The concentrations of Sr, Y, and Zr had 9% 
deviation from the SRM values (Table 2). REP values for dry micro-drop deposits on Perspex agreed closely 
with the results obtained using the synthetic SRM solutions. 

PCA of surrogate HLNW samples. In a typical nuclear security scenario, for example, a detonated nu-
clear device/radiological crime scene, the contents of the material involved get jumbled and it is hard to sep-
arately sample each for laboratory analysis. If data from such samples is acquired, then pattern recognition 
can be explored to reveal trends (e.g., the relationship between samples collected, the FP present). PCA can 
be used to help to visualize such relationships. Figure 5a shows the scores plot for 9 samples spiked with FPs 
and 5 blanks. It was noted that 75% of the variation in the data is captured by the first and second PCs. The 
rest of the variation (25%) is associated with other PCs, noise, and matrix-related influences. The liquid 
samples spiked with trace quantities (<1000 ppm) of the FP cluster together (SL group). The blank samples 
also cluster together (BL group). The loadings plot shows that the peaks of Y and Zr, together with U, ac-
count for the positive PC-1 clustering, as shown in Fig. 5b. 

The PCA model was further tested using new samples (SLT1 and SLT3). These grouped together with 
the spiked liquid samples whereas the blank sample (LBT2) clustered with the blank liquid samples. This 
observation is important in nuclear forensic analysis because it demonstrates that samples that are suspected 
to originate from a nuclear security scene can be identified and discriminated against those that do not con-
tain FPs. Notably, spectra of tiny liquid aliquots (2 µL) collected from a radiological scene can be sampled 
and deposited on a suitable substrate and compared with the reference spectral database to furnish a nuclear 
forensic interpretation that leads to attribution. It has been shown [36] that it is possible to simulate post-
blast residues of non-nuclear origin with the use of PCA, underscoring the utility of machine-learning-
enabled nuclear forensic analysis. 
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Fig 5. (a) PCA scores plot to simulate high-level liquid nuclear waste and (b) the corresponding  
loadings plot for PC1 and PC2 for simulated high-level nuclear liquid waste. 

 
Conclusions. We have demonstrated proof-of-concept for a machine-learning-enabled laser-induced 

breakdown spectroscopy methodology for directly analyzing and attributing fission products (Rb, Sr, Y, Zr) 
in surrogate high-level nuclear waste. These fission products always coexist with U following reprocessing 
of the high-level nuclear waste. The proposed analytical framework is rapid as there is limited sample prepa-
ration. The novelty of the methodology lies in the reliance on tiny samples (3 mm for solid samples, and 
typically 2 µL for liquid samples) to achieve direct, non-invasive, and potentially in situ nuclear forensics 
analysis and attribution. Artificial neural networks were found to be useful in developing accurate regression 
models that predict and quantify trace fission products in the samples. Principal component analysis was 
used to discriminate the samples containing trace FPs from those without them based on the spectral feature 
selection criterion. The spectral peaks from Y, Zr, and U are responsible for the observed grouping and 
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therefore they depict powerful nuclear forensics signatures for high-level nuclear waste. The results demon-
strate the potential of machine-learning-enabled peak-free laser-induced breakdown spectroscopy for the fo-
rensic analysis of nuclear debris. 
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