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Theoretical investigation on self-focusing of an elliptical q-Gaussian laser beam carrying an intensity 

ripple over its cross section, in plasma with an axial density ramp has been presented. The optical nonline-
arity of plasma has been modeled by the relativistic mass nonlinearity of plasma electrons in the field of  
a laser beam. Using the variational theory approach, semi-analytical solutions of the wave equations for the 
fields of the main beam and that of the ripple have been obtained. Emphasis has been put on the evolutions 
of the beam widths of the main beam and that of the ripple.  
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Исследована самофокусировка эллиптического q-гауссова лазерного пучка с импульсами интен-
сивности по поперечному сечению в неоднородной плазме. Оптическая нелинейность плазмы моде-
лировалась релятивистской массовой нелинейностью электронов плазмы в поле лазерного луча.  
С использованием вариационной теории получены полуаналитические решения волновых уравнений 
для полей главного луча и импульсов. Показана эволюция ширины луча главного луча и импульса. 

Ключевые слова: q-гауссиан, лазерный импульс, вариационная теория, чистая энергия, самофо-
кусировка. 

 
Introduction. Ever since the beginning of human civilization, light has continuously fascinated human 

beings and the investigations on light-matter interactions are as old as human civilization. However, the in-
vention of the laser by T. H. Maiman in 1960 at Hughes Research Laboratory in California, changed the en-
tire scenario of light-matter interactions. Laser brought the same revolution to optics that the transistor 
brought to electronics and the cyclotron brought to nuclear physics. Laser's distinctive qualities – its ability 
to generate an intense, very narrow beam of light of a single wavelength – helped in revealing the true beau-
ty of light-matter interactions. The giant leap in laser technology during the past few decades fueled by the 
advent of the chirped pulse amplification technique led to a renaissance in the field of light-matter interac-
tions by giving birth to an entirely new field of research known as laser-plasma interactions. In the past few 
years, this new field of laser plasma interactions has gained significant interest among researchers due to its 
importance in laser-driven nuclear fusion [1, 2] for viable energy production without doing any harm to 
global climate change. In laser-driven fusion, the goal is to deposit laser energy at a particular density in the 
plasma in order to derive the compression and subsequent heating of the fuel pellet [3]. If the pellet is com-
pressed sufficiently, it may undergo fusion, leading to the release of a large amount of energy. It’s as if there 
is a tiny hunk of the sun on Earth. For the successful realization of ICF, it is highly necessary that the fuel 
pellet should be heated uniformly. However, due to the nonuniform irradiance (intensity ripples) over the 
cross sections of the laser beams, the pellet is not heated uniformly thereby deriving an instability known as 
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Rayleigh Taylor instability [4–6]. Whenever a not-very-dense fluid (like air) pushes on a denser fluid (like 
water), it is an inherently unstable situation. If the interface between the two fluids has any imperfections, 
any bumps or divots, then those imperfections immediately get bigger and bigger. In ICF as we compress the 
pellet of deuterium, it becomes denser and denser. Long before we get it hot and dense enough to fuse, it will 
be much denser than whatever means we are using to compress it, whether it is particles of light or a collec-
tion of hot atoms. We are using a less-dense substance to squash and contain a much denser one, and that 
means we will get Rayleigh Taylor instabilities. Any tiny imperfections on the interface between the plasma 
and the stuff that is pushing on the plasma will immediately grow. Even an almost perfectly round sphere of 
deuterium will quickly become distorted, squirting tendrils in all directions (Fig. 1). Just as this ruins any at-
tempt to keep water in an inverted glass by means of air pressure, it seriously damages a machine’s ability to 
compress and contain a plasma by means of light. Thus, it becomes essential to investigate the behavior of 
intensity ripples over the cross section of laser beams during their propagation through plasmas. 

Intensity ripples in a laser system are due to spontaneous emissions [7, 8]. Each spontaneously emitted 
photon adds to the coherent field (established by stimulated emissions) a small field component whose phase 
is random, and thus perturbs both amplitude and phase in a random manner. The net result is that the intensi-
ty profile of the laser beam exhibit fluctuations in the form of ripples (Fig. 2). 

 

Fig. 1. Rayleigh Taylor instability in ICF. 
 

 

 

Fig. 2. Intensity ripple on laser beam. 
 
It is a well-known fact that laser beams differing in intensity profiles behave differently in plasmas [9–12]. 

However, a literature review reveals the fact that most of the earlier investigations on the self-focusing of 
rippled laser beams in plasmas have been carried out for ideal Gaussian laser beams [13–18]. In contrast to 
this picture, the experimental investigations on the irradiance profile of Vulcan petawatt laser at Rutherford 
Appleton laboratory [19] reveal that the actual irradiance over the cross section of the laser beam is not ide-
ally Gaussian. A significant amount of laser energy was found to be lying outside the full-width half maxi-
mum of the laser beam. By fitting into the experimental data, it has been found that the actual irradiance pro-
file [20] of the laser beams can be modelled by Tsalli’s q-Gaussian distribution [21]. To the best of the au-
thor’s knowledge, earlier investigations on self-focusing of rippled laser beams in plasmas have been report-
ed for q-Gaussian laser beams with elliptical cross sections. Thus, the aim of this paper is to give the first 
theoretical investigation on self-focusing of rippled q-Gaussian laser beams with elliptical cross section in 
plasma with an axial density ramp. 

 q-Gaussian Laser Beam 
(without Ripple) 

q-Gaussian Laser Beam 
(with Ripple) 
                         Ripple 
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   Radial position         Radial position    
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Relativistic nonlinearity of plasma. Consider the propagation of a laser beam with angular frequency 0 
and wave number k0 through a plasma whose equilibrium electron density is modeled as 

ne(z) = n0(1 + tan(dz)),           (1) 
i.e., the equilibrium density of the plasma is in the form of an upward ramp. Here, n0 is the density of plasma 
electrons at z = 0 and the constant d is associated with rate of increase in electron density with distance. 
Thus, the constant d is termed as the slope of density ramp. The dielectric function of plasma modeled by 
Eq. (1) can be written as 

  
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1 1 tanp dz


   


, 

where 
2

2
0

4
p

e

e
n

m


                 (2) 

is the equilibrium plasma frequency, me and e are the electronic mass and charge, respectively. 
The laser beam has sharp intensity ripples over its cross section. The electric field vector of such a laser 

beam can be written as 
 0 0

0( ) k z t
rE E e   exE ,             (3) 

where E0 is the amplitude of the field of main beam and Er is that of the intensity ripple. Under the intense 
field of the laser beam, the oscillations of the plasma electrons become relativistic and the mass me of the 
electron in Eq. (2) needs to be replaced by m0  where, m0 is the rest mass of electron and  is the relativistic 
Lorentz factor and is related to laser field amplitude as [22]:  

1 EE    ,             (4) 

where 
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 is the coefficient of relativistic nonlinearity and 
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p is the phase difference between the fields of the main beam and the intensity ripple. 
Thus, in the presence of laser beam, the dielectric function of plasma gets modified as 

   
2

1/20
0 02

0

1 1 tan( ) 1p dz A A


    


 ,       (6) 
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   is the equilibrium plasma frequency. Thus, the relativistic effects make the index of 

refraction of plasma intensity dependent which is in turn due to the spatial dependence of the amplitude 
structure of the laser beam, resembling that of graded index fiber. Separating the dielectric function of plas-
ma into linear (0) and nonlinear () parts as 

 = 0 + (EE*)              (7) 
we get 
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Evolution of beam widths of laser beam. The wave equation governing the evolution of amplitude E0 of 
the main beam is  

 20 0
0 0 0 0
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E k
i E E E E

z k 


   
 
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Being nonlinear in nature, linear combination of two solutions is not a solution of this equation. In other 
words, superposition principle does not apply to eq. (10). Due to the nonapplicability of the superposition 
principle, eq.10 does not possess any closed form analytical solution. The only way to get physical insight is 
to use numerical methods or semi-analytical methods. In the present investigation, we have used a semi-
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analytical technique known as the variational method [23, 24] to obtain the solution of Eq. (10). This method 
converts the problem of solving a partial differential equation to that of solving a set of coupled ordinary dif-
ferential equations. These ordinary differential equations govern the evolution of the various parameters of 
interest. In the case of the self-focusing of a laser beam, the parameters of interest are the beam widths of the 
laser beam. The essence of the method consists in finding solutions for this class of function E0(x,y,), where 
the set of parameters  = (fx(z), fy(z)) depends on the evolution variable and is determined based on the solu-
tions of the corresponding system of ordinary differential equations. According to this method, Eq. (10) is  
a variational problem for action principle based on Lagrangian density 
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In the present investigation we have considered the trial function of the form 
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Here E00 is the axial amplitude of the field of the laser beam and a, b are the widths of the laser beam in x, y 
directions, respectively. The phenomenological parameter q is related to the deviation of the amplitude struc-
ture from the ideal Gaussian profile and is termed the deviation parameter. The value of deviation parameter 
q varies from laser to laser and can be obtained by fitting into the experimental data for a given laser system. 
fx, fy are the currently undetermined, real functions of only the longitudinal coordinate z. Upon multiplication 
with a and b, respectively, fx and fy give the instantaneous beam widths of the laser pulse in x and y directions 
respectively. Thus, fx and fy are termed as dimensionless beam width parameters. 

Substituting the trial function given by Eq. (12) in Lagrangian density and integrating over the entire 

cross section of the laser beam we get the reduced Lagrangian as LM = 2
M d r . The corresponding Euler-

Lagrange equation 
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Thus, by using Eq. (12) in Eqs. (14) and (15), we get 
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where 

3
2 1 222 2
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 , d  = dk0a2,  = z/k0a2. 

Equations (16) and (17) are the nonlinearly coupled differential equations governing the evolution of 
beam widths of the elliptical q-Gaussian laser beam during its journey through the plasma. The first terms on 
the right-hand sides of these equations correspond to the linear propagation of the laser beam, i. e., its propa-
gation through a vacuum or through the media whose index of refraction is independent of the intensity of 
the laser beam. The second terms on the right hands side (RHS) of these equations correspond to the nonlin-
ear response of the medium. It can be seen that although in linear media the beam widths along the two 
transverse directions of the laser beam evolve independently, in the case of plasma due to the laser-induced 
optical nonlinearity, however, they get coupled to each other. 

Evolution of beam width of intensity ripple. Wave equation for the intensity ripple over the cross section 
for the laser beam is given by 
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The Lagrangian density corresponding to this equation can be written as 
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In the present investigation we have assumed Gaussian irradiance profile of the intensity ripple riding 
over the cross section of the laser beam. Such an intensity ripple can be modeled as 

2 2

2 22 2 2
* 00

2 2 2

x y n
r grE x y

E E e
g r g



  
 
 

 


 
   

 
.          (20) 

Here rr is the initial width of the ripple and g is the dimensionless beam width parameter of the ripple. The 
constant n gives the position of intensity ripple from the axis of the main beam. As the value of n increases, 
the intensity ripple shifts away from the beam axis.   

Using the same procedure as that of below 3, we get the following equation for the evolution of beam 
width of the intensity ripple 
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Results and discussion. In the present investigation the Runge Kutta fourth-order method has been 
used to solve Eqs. (16), (17), and (21) numerically for the following set of laser-plasma parameters: 

15
0 1.78 10   rad/s, 

2 2
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00 002
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6
p r

r p

a r
a E E n

ac

 
            and q = (3, 4, ), 

d=(0.025, 0.035, 0.045) and a/b = (1, 1.1, 1.2). 

In solving Eqs. (16)–(18), it has been assumed that at the plane of incidence, the laser beam has a plane 
wave-front. Mathematically this condition means that at  = 0: 

fx,y = g = 1, 

, 0x ydf dg

d d
 

 
.  

Figure 3 illustrates the evolution of beam widths of the laser beam and that of the intensity ripple with 
the distance of propagation through the plasma. It can be seen that inside the plasma medium, the beam 
widths of the main beam along both of the transverse directions show oscillatory behavior across the longi-
tudinal direction. The oscillatory variations of the beam widths of the laser beam are due to the saturation na-
ture of the relativistic nonlinearity of plasma. Initially, due to laser-induced relativistic nonlinearity, the 
beam widths of the laser beam start decreasing and hence its intensity starts increasing, which further en-
hances the relativistic nonlinearity. When the intensity of the laser beam becomes too high, the mass of 
plasma electrons in the illuminated portion of the plasma becomes saturated. Hence, now the laser beam 
propagates as if it is propagating through a vacuum; thus, after attaining the minimum possible beam widths, 
the spot size of the laser beam bounces back. These processes keep on repeating themselves giving an oscil-
latory behavior to the beam widths of the laser beam.  

Further it has been observed that, after every focal spot, the maximum as well as the minimum of the 
beam width shift downwards. This is owing to the fact that the equilibrium electron density is an increasing 
function of longitudinal distance. Hence, the plasma index of refraction keeps on decreasing with the pene-
tration of the laser beam into the plasma. Consequently, the self-focusing effect gets enhanced and the max-
imum as well as minimum of the beam width go on shifting downwards after every focal spot. It is also seen 
that the frequency of the oscillations of the beam width increases with distance. The physics behind this fact 
is that the denser the plasma, the higher the phase velocity of the laser beam through it. Hence, in denser 
plasma, the laser beam takes less time to become self-focused. 

It can be also be seen that initially the beam widths of the laser beam along the two transverse directions 
vary in phase with each other but over some distance of propagation their oscillations establish a phase mis-
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match. This phase mismatch in the oscillations of beam widths along the x and y directions is due to the fact 
that, because of its ellipticity, the laser beam experiences different indices of refraction along the x and y di-
rections. i. e., for the elliptical beam the plasma behaves as an anisotropic medium. 

It can also be seen that the extent of self-focusing of the laser beam along the x direction is more com-
pared to that along the y direction, which is due to the fact that the initial width of the beam along the x di-
rection is more compared to that along the y direction (a/b = 1, a/b = 1.1). Thus, the opposition offered by 
the diffraction effect to the nonlinear refraction is more along the y direction, resulting in reduced focusing 
along the y direction. 

The Fig. 3 indicates that the beam width of the intensity ripple decreases monotonically with the dis-
tance of propagation, showing step-like behavior at the focal spots of the laser beam. This is due to the fact 
that because of its nonlinear coupling with the main beam, the intensity ripple follows the main beam. Thus, 
as the main beam gets self-focused, the beam width of the intensity ripple also starts decreasing. However, 
after attaining minimum beam width and the spot size of the main beam bounces back, the ripple does not 
follow it but rather its beam width keeps on decreasing with the distance of propagation. This is due to the 
fact that the intensity of the laser ripple is not enough to saturate the relativistic nonlinearity. The step-like 
behavior of the beam width of intensity ripple at the focal spots of the main beam is due to the fact that at 
these locations the intensity ripple experiences maximum relativistic nonlinearity. Thus, at the focal spots of 
the main beam, the rate of change of beam width of the ripple experiences a sudden increase, leading to step-
like behavior in the beam width of the ripple. 

 

  
 

Fig. 3. (a) Evolution of beam widths fx (1), fy (2) of the laser beam and (b) g of the intensity ripple  
with distance of propagation through plasma for q = 3, d = 0.025, and a/b = 1.1. 

 
Now in order to see the effect of the deviation parameter q on the evolution of beam widths of the laser 

beam and that of intensity ripple, Eqs. (16), (17), and (21) have been solved for different values of q, while 
keeping other laser-plasma parameters fixed. The corresponding variations of the beam widths of the main 
beam and that of the ripple are shown in Fig. 4. It can be seen that with increase in the value of deviation pa-
rameter q, the extent of self-focusing along both the transverse directions is reduced. This is due to the fact 
that for laser beams with a larger value of q, most of the beam energy is concentrated around a narrow region 
around the beam axis. Hence, these beams get a little contribution form the of axial rays towards the nonlin-
ear refraction. As the phenomenon of self-focusing is a homeostasis of nonlinear refraction of the optical 
beam due to optical nonlinearity of the medium, increase in the value of deviation parameter q reduces the 
extent of self-focusing of the laser beam. Thus, compared to q-Gaussian laser beams, ideal Gaussian laser 
beams possess minimum focusing character.  

It can also be seen that instead of their reduced focusing, laser beams with higher values of deviation 
parameter q possess faster focusing along both of the transverse directions, due to the faster focusing charac-
ter of the rays closer to beam axis. Being away from the beam axis, axial rays take longer to get self-focused. 
As there are more off axial rays in laser beams with lower values of deviation parameter q, these beams pos-
sess slower focusing character. 

It can also be seen that increase in the deviation parameter q of the main beam results in decrease in the 
extent of self-focusing of the intensity ripple. This is due to the nonlinear coupling of the intensity ripple 
with the main beam. As a result of this nonlinear coupling between the main beam and ripple, there is one 
to one correspondence between the self-focusing of the main laser beam and that of the ripple. Thus, as in-
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crease in the value of q results in a decrease in the extent of self-focusing of the main beam, there is a further 
decrease in the extent of the self-focusing of laser ripple with the increase in the value of the deviation  
parameter q.  

Figure 5 illustrates the effect of beam ellipticity on self-focusing of main beam as well as that of the in-
tensity ripple. It can be seen that with the increase in the beam ellipticity along the y direction, there is a re-
duction in the extent of self-focusing of the laser beam along the y direction. This is due to the fact that, at  
a fixed value of a, increase in beam ellipticity (i. e., a/b) means the reduction in initial width of the beam 
along the y direction. Hence, the increase in beam ellipticity along the y direction makes the diffraction effect 
stronger along the y direction. This results in the reduced focusing of the laser beam along the y direction. 

It can also be seen that initially the increase in beam ellipticity does not produce any significant effect 
on self-focusing of the beam along the x direction. However, as the beam penetrates deeper into the plasma, 
the focusing along the x direction also decreases, due to the fact that as the beam penetrates deeper and deep-
er into the plasma, the nonlinear coupling between the two beam widths becomes stronger and stronger. 

From the Fig. 5 it can also be seen that with increase in ellipticity of the main beam, there is decrease 
in the rate of decrease of beam width of the ripple. This is due to the fact that with increase in ellipticity 
of the main beam, the overall extent of it self-focusing gets reduced. As the extent of self-focusing of ripple 
is dependent on that of the main beam, decrease in the extent of self-focusing of the main beam results in a 
decrease in that of the ripple. 

 

   

 

Fig. 4. Evolution of beam widths (a) fx, (b) fy of the laser beam and (c) g of the intensity ripple with distance  
of propagation through plasma for q = 3 (1), 4 (2),  (3), d = 0.025 and a/b = 1.1. 

 
Figure 6 depicts the effect of the slope of the density ramp on the extent of the self-focusing of the main 

beam as well as that of the intensity ripple riding over its cross section. It can be seen that increase in slope 
of the density ramp enhances the extent of self-focusing of the main beam along both of the transverse direc-
tions. This is due to the fact that with increase in slope density of the ramp, the number of electrons contrib-
uting to the relativistic nonlinearity increases along the direction of propagation. This results in enhanced 
transverse as well as longitudinal gradient in the index of refraction of the plasma that in turn increases the 
extent of self-focusing of the laser beam along the two transverse directions. 

The plots in Fig. 6 also indicate an increase in the extent of the self-focusing of the ripple with an in-
crease in the slope of the density ramp. This is also due to increase in the extent of self-focusing of the main 
beam with an increase in the slope of the density ramp. 
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Fig. 5. Evolution of beam widths (a) fx, (b) fy of the laser beam and (c) g of the intensity ripple with distance  
of propagation through plasma for q = 3, d = 0.025 and a/b = 0 (1), 1.1 (2), 1.2 (3). 

 

      

 
Fig. 6. Evolution of beam widths (a) fx, (b) fy of the laser beam and (c) g of the intensity ripple with distance  

of propagation through plasma for q = 3, d  = 0.025 (1), 0.035 (2), 0.045 (3) and a/b = 1.1. 
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Conclusions. Effect of self-focusing of the laser beam on propagation dynamics of intensity ripples rid-
ing over its cross section has been investigated. It can be concluded that as the irradiance profile of the main 
laser beam converges towards the ideal Gaussian profile, the rate of localization of the intensity ripple re-
duced. Thus, in order to obviate the risk of Rayleigh Taylor instability in ICF, the irradiance over the cross 
sections of the laser beams should be close to the ideal Gaussian profile. Another way to negate the Rayleigh 
Taylor instability is to make the laser beams slightly elliptical, as with an increase in beam ellipticity, the 
rate of the localization of the intensity ripples reduces. 
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