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Theoretical investigation on self-focusing of an elliptical q-Gaussian laser beam carrying an intensity
ripple over its cross section, in plasma with an axial density ramp has been presented. The optical nonline-
arity of plasma has been modeled by the relativistic mass nonlinearity of plasma electrons in the field of
a laser beam. Using the variational theory approach, semi-analytical solutions of the wave equations for the
fields of the main beam and that of the ripple have been obtained. Emphasis has been put on the evolutions
of the beam widths of the main beam and that of the ripple.
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Hccnedosana camoghoxkycuposka s1aunmuiecko2o ¢-2ayccosa 1a3epHoco nyuka ¢ UMNYIbCaMUu UHMEeH-
CUBHOCU NO NONEPEYHOMY CEUEHUI) 8 HeOOHOPOOHOU naasme. Onmuueckas HeIUHelHOCIb NAA3Mbl MOOe-
JUPOBANACH PENTMUBUCINCKOU MACCOB0U HENUHEUHOCMbIO JIEeKMPOHO8 NIA3Mbl 8 NOJle J1a3epHO20 JYd.
C ucnonv3osanuem 6apuayUOHHOU MeopUU NOJIYYEHbL NOIYAHATUMUYECKUE PeUleHUsl 80HOBLIX YPAGHEHUU
0J1s noJell 21A8H020 yHa U UMNYIbCo8. Tlokazana 36010YUA WUPUHBL YA 2AABHO20 VYA U UMNYTIbCA.

Knroueevie cnosa: q-eayccuan, 1azepHulili UMRYIbC, 8APUAYUOHHASL MEOPUS, YUCMAs dHEp2Usl, camogpo-
KyCUpo8Ka.

Introduction. Ever since the beginning of human civilization, light has continuously fascinated human
beings and the investigations on light-matter interactions are as old as human civilization. However, the in-
vention of the laser by T. H. Maiman in 1960 at Hughes Research Laboratory in California, changed the en-
tire scenario of light-matter interactions. Laser brought the same revolution to optics that the transistor
brought to electronics and the cyclotron brought to nuclear physics. Laser's distinctive qualities — its ability
to generate an intense, very narrow beam of light of a single wavelength — helped in revealing the true beau-
ty of light-matter interactions. The giant leap in laser technology during the past few decades fueled by the
advent of the chirped pulse amplification technique led to a renaissance in the field of light-matter interac-
tions by giving birth to an entirely new field of research known as laser-plasma interactions. In the past few
years, this new field of laser plasma interactions has gained significant interest among researchers due to its
importance in laser-driven nuclear fusion [1, 2] for viable energy production without doing any harm to
global climate change. In laser-driven fusion, the goal is to deposit laser energy at a particular density in the
plasma in order to derive the compression and subsequent heating of the fuel pellet [3]. If the pellet is com-
pressed sufficiently, it may undergo fusion, leading to the release of a large amount of energy. It’s as if there
is a tiny hunk of the sun on Earth. For the successful realization of ICF, it is highly necessary that the fuel
pellet should be heated uniformly. However, due to the nonuniform irradiance (intensity ripples) over the
cross sections of the laser beams, the pellet is not heated uniformly thereby deriving an instability known as
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Rayleigh Taylor instability [4-6]. Whenever a not-very-dense fluid (like air) pushes on a denser fluid (like
water), it is an inherently unstable situation. If the interface between the two fluids has any imperfections,
any bumps or divots, then those imperfections immediately get bigger and bigger. In ICF as we compress the
pellet of deuterium, it becomes denser and denser. Long before we get it hot and dense enough to fuse, it will
be much denser than whatever means we are using to compress it, whether it is particles of light or a collec-
tion of hot atoms. We are using a less-dense substance to squash and contain a much denser one, and that
means we will get Rayleigh Taylor instabilities. Any tiny imperfections on the interface between the plasma
and the stuff that is pushing on the plasma will immediately grow. Even an almost perfectly round sphere of
deuterium will quickly become distorted, squirting tendrils in all directions (Fig. 1). Just as this ruins any at-
tempt to keep water in an inverted glass by means of air pressure, it seriously damages a machine’s ability to
compress and contain a plasma by means of light. Thus, it becomes essential to investigate the behavior of
intensity ripples over the cross section of laser beams during their propagation through plasmas.

Intensity ripples in a laser system are due to spontaneous emissions [7, 8]. Each spontaneously emitted
photon adds to the coherent field (established by stimulated emissions) a small field component whose phase
is random, and thus perturbs both amplitude and phase in a random manner. The net result is that the intensi-
ty profile of the laser beam exhibit fluctuations in the form of ripples (Fig. 2).

Fig. 1. Rayleigh Taylor instability in ICF.

g-Gaussian Laser Beam

g-Gaussian Laser Beam (with Ripple)

(without Ripple) Ripple

- -

Irel [ : Irel ! ! E !

| | | e

| | [ | )t/ [

| | | [

{ | | AW

| | | I N

Radial position Radial position

Fig. 2. Intensity ripple on laser beam.

It is a well-known fact that laser beams differing in intensity profiles behave differently in plasmas [9-12].
However, a literature review reveals the fact that most of the earlier investigations on the self-focusing of
rippled laser beams in plasmas have been carried out for ideal Gaussian laser beams [13—18]. In contrast to
this picture, the experimental investigations on the irradiance profile of Vulcan petawatt laser at Rutherford
Appleton laboratory [19] reveal that the actual irradiance over the cross section of the laser beam is not ide-
ally Gaussian. A significant amount of laser energy was found to be lying outside the full-width half maxi-
mum of the laser beam. By fitting into the experimental data, it has been found that the actual irradiance pro-
file [20] of the laser beams can be modelled by Tsalli’s g-Gaussian distribution [21]. To the best of the au-
thor’s knowledge, earlier investigations on self-focusing of rippled laser beams in plasmas have been report-
ed for g-Gaussian laser beams with elliptical cross sections. Thus, the aim of this paper is to give the first
theoretical investigation on self-focusing of rippled g-Gaussian laser beams with elliptical cross section in
plasma with an axial density ramp.
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Relativistic nonlinearity of plasma. Consider the propagation of a laser beam with angular frequency o

and wave number ko through a plasma whose equilibrium electron density is modeled as
ne(z) = no(1 +tan(dz)), )
i.e., the equilibrium density of the plasma is in the form of an upward ramp. Here, no is the density of plasma
electrons at z = 0 and the constant d is associated with rate of increase in electron density with distance.
Thus, the constant d is termed as the slope of density ramp. The dielectric function of plasma modeled by

Eq. (1) can be written as
2

3 =1—0)—‘2”(1+tan(dz)) R

®
where
2
5, 4dme
o2 =2, 2)
m

e
is the equilibrium plasma frequency, m. and e are the electronic mass and charge, respectively.
The laser beam has sharp intensity ripples over its cross section. The electric field vector of such a laser
beam can be written as

E=(E,+E)e " e, 3)
where Ey is the amplitude of the field of main beam and E, is that of the intensity ripple. Under the intense
field of the laser beam, the oscillations of the plasma electrons become relativistic and the mass m. of the

electron in Eq. (2) needs to be replaced by mg y where, my is the rest mass of electron and v is the relativistic
Lorentz factor and is related to laser field amplitude as [22]:

y=+1+BEE™ , 4)

is the coefficient of relativistic nonlinearity and

2

where B =———

0@
EE* = E,Ey + E,E} +2E,E, cos(0,,), (5)

0, is the phase difference between the fields of the main beam and the intensity ripple.
Thus, in the presence of laser beam, the dielectric function of plasma gets modified as

2
£=1- 2 (1 tan(d2)) (1+Bdod; )+ ©6)
Wy
2

where (Dio = n, is the equilibrium plasma frequency. Thus, the relativistic effects make the index of

mqy
refraction of plasma intensity dependent which is in turn due to the spatial dependence of the amplitude
structure of the laser beam, resembling that of graded index fiber. Separating the dielectric function of plas-
ma into linear (go) and nonlinear (¢) parts as

e=¢go+ O(EE") (7)
we get
sozl—oof,o/(oé, (8)
2
O(EE") :"’_f’z"{1 ~(1+ tan(d:)) (1+ BEE*)_I/Z} . )
[))

0
Evolution of beam widths of laser beam. The wave equation governing the evolution of amplitude Ey of
the main beam is
OE, 1 _» k, N
T V2E,+ % O(EoES ) Ey - (10)
Being nonlinear in nature, linear combination of two solutions is not a solution of this equation. In other
words, superposition principle does not apply to eq. (10). Due to the nonapplicability of the superposition
principle, eq.10 does not possess any closed form analytical solution. The only way to get physical insight is
to use numerical methods or semi-analytical methods. In the present investigation, we have used a semi-
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analytical technique known as the variational method [23, 24] to obtain the solution of Eq. (10). This method
converts the problem of solving a partial differential equation to that of solving a set of coupled ordinary dif-
ferential equations. These ordinary differential equations govern the evolution of the various parameters of
interest. In the case of the self-focusing of a laser beam, the parameters of interest are the beam widths of the
laser beam. The essence of the method consists in finding solutions for this class of function Eo(x,y,G), where
the set of parameters ¢ = (fi(z), f,(z)) depends on the evolution variable and is determined based on the solu-
tions of the corresponding system of ordinary differential equations. According to this method, Eq. (10) is
a variational problem for action principle based on Lagrangian density

OE; . OF

) 2 oo;o EoEj 12 .
Ly =i| Ey——Eg —* +|V L E,| -~ [ {1—(1+tan(dz))(1+[3E0E0) }d(EOEO). (11)

In the present investigation we have considered the trial function of the form

—q/2
E 1 2 2
Ey(x,,2)= Tj}y {1 7(—; I +bzy—fjj} : (12)

Here Eyo is the axial amplitude of the field of the laser beam and a, b are the widths of the laser beam in x, y
directions, respectively. The phenomenological parameter ¢ is related to the deviation of the amplitude struc-
ture from the ideal Gaussian profile and is termed the deviation parameter. The value of deviation parameter
q varies from laser to laser and can be obtained by fitting into the experimental data for a given laser system.
[+ fy are the currently undetermined, real functions of only the longitudinal coordinate z. Upon multiplication
with a and b, respectively, f; and f; give the instantaneous beam widths of the laser pulse in x and y directions
respectively. Thus, f; and f; are termed as dimensionless beam width parameters.

Substituting the trial function given by Eq. (12) in Lagrangian density and integrating over the entire

cross section of the laser beam we get the reduced Lagrangian as Ly = IEMd ?r . The corresponding Euler-

Lagrange equation

d| oL, | oLy -0 (13)
dz a[afwj Uy
0z
gives M
dzfX: . L(l_l/ Ji=2/9)| (141 )‘1+ (L >< >ff Ey 5<L1> (14)
pE e q q q f f, 0f,
o . - i E2 O(L
e Geva=2rg) (g () 2 fffm’ (15)
y - o '
where

(L)= 5’0 ] [ Eol {1—(1+tan(dz))(l+ BE,E; );}d(EOEO*)szr,

d *r = dxdy.
Thus, by using Eq. (12) in Egs. (14) and (15), we get

a’f, (1-1/¢)(1-2/4) 1 ~ a’ BE2,
R (R P —(1-1/g)(1-2/¢)| 2 (1+tan(d§))ffgl (16)

df, (a)' (1-1/g)(1-2/9) 1 (a), B wya’ o\ BE2
o _(bj R (bj (-1)0-2/0) 22| (e (@g) P r 07
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2 \24- 2 2\"9) 2
where 7= j;"u3[1+“—] 1+%[1+”—J du ,d' = dkoa®, & = zlkod’.
q oy q
Equations (16) and (17) are the nonlinearly coupled differential equations governing the evolution of
beam widths of the elliptical g-Gaussian laser beam during its journey through the plasma. The first terms on
the right-hand sides of these equations correspond to the linear propagation of the laser beam, i. e., its propa-
gation through a vacuum or through the media whose index of refraction is independent of the intensity of
the laser beam. The second terms on the right hands side (RHS) of these equations correspond to the nonlin-
ear response of the medium. It can be seen that although in linear media the beam widths along the two
transverse directions of the laser beam evolve independently, in the case of plasma due to the laser-induced

optical nonlinearity, however, they get coupled to each other.
Evolution of beam width of intensity ripple. Wave equation for the intensity ripple over the cross section

for the laser beam is given by
OE, 1 k, . N

T T0[¢(EE )-0(EoEs )]EO (18)

The Lagrangian density corresponding to this equation can be written as

OE” 8E g 12 .
£R=z( - = j Cgo [ {1—(1+tan(dz))(l+BErE,) }d(E,Er)_

O jaul ~(1+ tan(d2))(1+ BErEr*)_;} - {1 ~(1+ tan(d) (14 BEE; ) }Jd(EOEJ).

In the present investigation we have assumed Gaussian irradiance profile of the intensity ripple riding
over the cross section of the laser beam. Such an intensity ripple can be modeled as

[ X2 +y2 J n
* E’2 ) rzgz X 2 + y2
BB, =—"re T M T | (20)
g g

Here 7, is the initial width of the ripple and g is the dimensionless beam width parameter of the ripple. The
constant n gives the position of intensity ripple from the axis of the main beam. As the value of n increases,
the intensity ripple shifts away from the beam axis.

Using the same procedure as that of below 3, we get the following equation for the evolution of beam
width of the intensity ripple

dJ> 4 1 oV 4 1 2n 7 m2 2n f 242
g [ 3_{_poj al 1 lygpifa (_] N (_yj R+
dg r,) (n+l)g c r, ) gh(n+]) 7, g r, g
(21
n n+l n n+l n n+l 2n 2n+2
HBEWE, 0 {ij (ij +(£] (ij cos0,R, —BEy L, {ﬁj (QJ +[£J (Lj cosO R,
g h)\8& n)\8 )\ &

where

V2E, +2k—;)¢(EE*)Er +

(19)

=

2 2 b2 2
f" cos’ 0+ fyz sin’ Ouzldude,

2l 2.2

—;[g fx 0+—2 sin 6]
2m (0 2pt g g
R = [ [ou®" G (Egp.E,g) e n+l-

N

2 2
g &

oS

;[azf)é cos® 0+ zfj sin 0 ju 2 7% azfz b2f2
Ry =[{ [ G(EygEyg)e 75 [1+”—J n+2—(1 S5 cos” 0+—2-sin’ 9]142 dudo,
q g g
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a2f2 2f2
—1/2[ ‘2‘ ‘2 cos® 0+ 2‘ )é sin2 6]1; —gn 1
Ry=[[u e \7E e (1+u2 /q) 1- = (1+tan(d'g)) |
2
14 PB4 2 g)
i Sy |

2

2,2 b 2
{n+2—%[1+%cosze+ fyz sin GJ }dude,

g g

1 ’
G (Eog-E,p0)=| 1~ l(1+tan(d &) |
(1+X(f.2))
2 -2
n f,( /
2 2 r2 b2 2 [‘: 508 G+r2,2 sin2 0 |u
X(fx’fwf)—B 0 (14 gyt + o0 | E T oos2 0 zfz sin?0 | ue 7€ e +
fxfy g g g
2 1@ 2o Vf7 o
b2 2 " Z[r S 9+ﬁsm 9]u
+2%0089p(a2f2 cos” 0+ 2f2 sin®0 | u'e 8 & (+u?/ q)1.
X yg r.g rn.g

Results and discussion. In the present investigation the Runge Kutta fourth-order method has been

used to solve Egs. (16), (17), and (21) numerically for the following set of laser-plasma parameters:
2 2

()
@, =1.78x10" rad/s, a = 10pm, BEg, =3,

=9, BE2,=0.25,2=0.1,0, =%, n=1 and g = (3, 4, ),
a

d'=(0.025, 0.035, 0.045) and a/b = (1, 1.1, 1.2).

In solving Egs. (16)—(18), it has been assumed that at the plane of incidence, the laser beam has a plane
wave-front. Mathematically this condition means that at & = 0:

for=g=1,
—dfx’y =d—g=
g dg

Figure 3 illustrates the evolution of beam widths of the laser beam and that of the intensity ripple with
the distance of propagation through the plasma. It can be seen that inside the plasma medium, the beam
widths of the main beam along both of the transverse directions show oscillatory behavior across the longi-
tudinal direction. The oscillatory variations of the beam widths of the laser beam are due to the saturation na-
ture of the relativistic nonlinearity of plasma. Initially, due to laser-induced relativistic nonlinearity, the
beam widths of the laser beam start decreasing and hence its intensity starts increasing, which further en-
hances the relativistic nonlinearity. When the intensity of the laser beam becomes too high, the mass of
plasma electrons in the illuminated portion of the plasma becomes saturated. Hence, now the laser beam
propagates as if it is propagating through a vacuum; thus, after attaining the minimum possible beam widths,
the spot size of the laser beam bounces back. These processes keep on repeating themselves giving an oscil-
latory behavior to the beam widths of the laser beam.

Further it has been observed that, after every focal spot, the maximum as well as the minimum of the
beam width shift downwards. This is owing to the fact that the equilibrium electron density is an increasing
function of longitudinal distance. Hence, the plasma index of refraction keeps on decreasing with the pene-
tration of the laser beam into the plasma. Consequently, the self-focusing effect gets enhanced and the max-
imum as well as minimum of the beam width go on shifting downwards after every focal spot. It is also seen
that the frequency of the oscillations of the beam width increases with distance. The physics behind this fact
is that the denser the plasma, the higher the phase velocity of the laser beam through it. Hence, in denser
plasma, the laser beam takes less time to become self-focused.

It can be also be seen that initially the beam widths of the laser beam along the two transverse directions
vary in phase with each other but over some distance of propagation their oscillations establish a phase mis-
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match. This phase mismatch in the oscillations of beam widths along the x and y directions is due to the fact
that, because of its ellipticity, the laser beam experiences different indices of refraction along the x and y di-
rections. i. e., for the elliptical beam the plasma behaves as an anisotropic medium.

It can also be seen that the extent of self-focusing of the laser beam along the x direction is more com-
pared to that along the y direction, which is due to the fact that the initial width of the beam along the x di-
rection is more compared to that along the y direction (a/b = 1, a/b = 1.1). Thus, the opposition offered by
the diffraction effect to the nonlinear refraction is more along the y direction, resulting in reduced focusing
along the y direction.

The Fig. 3 indicates that the beam width of the intensity ripple decreases monotonically with the dis-
tance of propagation, showing step-like behavior at the focal spots of the laser beam. This is due to the fact
that because of its nonlinear coupling with the main beam, the intensity ripple follows the main beam. Thus,
as the main beam gets self-focused, the beam width of the intensity ripple also starts decreasing. However,
after attaining minimum beam width and the spot size of the main beam bounces back, the ripple does not
follow it but rather its beam width keeps on decreasing with the distance of propagation. This is due to the
fact that the intensity of the laser ripple is not enough to saturate the relativistic nonlinearity. The step-like
behavior of the beam width of intensity ripple at the focal spots of the main beam is due to the fact that at
these locations the intensity ripple experiences maximum relativistic nonlinearity. Thus, at the focal spots of
the main beam, the rate of change of beam width of the ripple experiences a sudden increase, leading to step-
like behavior in the beam width of the ripple.
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Fig. 3. (a) Evolution of beam widths f; (1), £, (2) of the laser beam and (b) g of the intensity ripple
with distance of propagation through plasma for ¢ = 3, d' = 0.025, and a/b = 1.1.

Now in order to see the effect of the deviation parameter ¢ on the evolution of beam widths of the laser
beam and that of intensity ripple, Egs. (16), (17), and (21) have been solved for different values of g, while
keeping other laser-plasma parameters fixed. The corresponding variations of the beam widths of the main
beam and that of the ripple are shown in Fig. 4. It can be seen that with increase in the value of deviation pa-
rameter ¢, the extent of self-focusing along both the transverse directions is reduced. This is due to the fact
that for laser beams with a larger value of ¢, most of the beam energy is concentrated around a narrow region
around the beam axis. Hence, these beams get a little contribution form the of axial rays towards the nonlin-
ear refraction. As the phenomenon of self-focusing is a homeostasis of nonlinear refraction of the optical
beam due to optical nonlinearity of the medium, increase in the value of deviation parameter ¢ reduces the
extent of self-focusing of the laser beam. Thus, compared to g-Gaussian laser beams, ideal Gaussian laser
beams possess minimum focusing character.

It can also be seen that instead of their reduced focusing, laser beams with higher values of deviation
parameter g possess faster focusing along both of the transverse directions, due to the faster focusing charac-
ter of the rays closer to beam axis. Being away from the beam axis, axial rays take longer to get self-focused.
As there are more off axial rays in laser beams with lower values of deviation parameter g, these beams pos-
sess slower focusing character.

It can also be seen that increase in the deviation parameter g of the main beam results in decrease in the
extent of self-focusing of the intensity ripple. This is due to the nonlinear coupling of the intensity ripple
with the main beam. As a result of this nonlinear coupling between the main beam and ripple, there is one
to one correspondence between the self-focusing of the main laser beam and that of the ripple. Thus, as in-
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crease in the value of ¢ results in a decrease in the extent of self-focusing of the main beam, there is a further
decrease in the extent of the self-focusing of laser ripple with the increase in the value of the deviation
parameter q.

Figure 5 illustrates the effect of beam ellipticity on self-focusing of main beam as well as that of the in-
tensity ripple. It can be seen that with the increase in the beam ellipticity along the y direction, there is a re-
duction in the extent of self-focusing of the laser beam along the y direction. This is due to the fact that, at
a fixed value of a, increase in beam ellipticity (i. e., a/b) means the reduction in initial width of the beam
along the y direction. Hence, the increase in beam ellipticity along the y direction makes the diffraction effect
stronger along the y direction. This results in the reduced focusing of the laser beam along the y direction.

It can also be seen that initially the increase in beam ellipticity does not produce any significant effect
on self-focusing of the beam along the x direction. However, as the beam penetrates deeper into the plasma,
the focusing along the x direction also decreases, due to the fact that as the beam penetrates deeper and deep-
er into the plasma, the nonlinear coupling between the two beam widths becomes stronger and stronger.

From the Fig. 5 it can also be seen that with increase in ellipticity of the main beam, there is decrease
in the rate of decrease of beam width of the ripple. This is due to the fact that with increase in ellipticity
of the main beam, the overall extent of it self-focusing gets reduced. As the extent of self-focusing of ripple
is dependent on that of the main beam, decrease in the extent of self-focusing of the main beam results in a
decrease in that of the ripple.
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Fig. 4. Evolution of beam widths (a) f;, (b) f, of the laser beam and (c) g of the intensity ripple with distance
of propagation through plasma for ¢ =3 (1), 4 (2), © (3), d' =0.025 and a/b = 1.1.

Figure 6 depicts the effect of the slope of the density ramp on the extent of the self-focusing of the main
beam as well as that of the intensity ripple riding over its cross section. It can be seen that increase in slope
of the density ramp enhances the extent of self-focusing of the main beam along both of the transverse direc-
tions. This is due to the fact that with increase in slope density of the ramp, the number of electrons contrib-
uting to the relativistic nonlinearity increases along the direction of propagation. This results in enhanced
transverse as well as longitudinal gradient in the index of refraction of the plasma that in turn increases the
extent of self-focusing of the laser beam along the two transverse directions.

The plots in Fig. 6 also indicate an increase in the extent of the self-focusing of the ripple with an in-
crease in the slope of the density ramp. This is also due to increase in the extent of self-focusing of the main
beam with an increase in the slope of the density ramp.
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Fig. 5. Evolution of beam widths (a) f;, (b) £, of the laser beam and (c) g of the intensity ripple with distance
of propagation through plasma for ¢ =3, d =0.025 and a/b =0 (1), 1.1 (2), 1.2 (3).
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Fig. 6. Evolution of beam widths (a) fx, (b) £, of the laser beam and (c) g of the intensity ripple with distance
of propagation through plasma for ¢ = 3, d' = 0.025 (1), 0.035 (2), 0.045 (3) and a/b =1.1.
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Conclusions. Effect of self-focusing of the laser beam on propagation dynamics of intensity ripples rid-
ing over its cross section has been investigated. It can be concluded that as the irradiance profile of the main
laser beam converges towards the ideal Gaussian profile, the rate of localization of the intensity ripple re-
duced. Thus, in order to obviate the risk of Rayleigh Taylor instability in ICF, the irradiance over the cross
sections of the laser beams should be close to the ideal Gaussian profile. Another way to negate the Rayleigh
Taylor instability is to make the laser beams slightly elliptical, as with an increase in beam ellipticity, the
rate of the localization of the intensity ripples reduces.
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