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Terahertz time-domain spectroscopy (THz-TDS) and hyperspectral technology were used for wood
recognition. As wood is a valuable national resource, it is essential to utilize it efficiently and reasonably by
classifying the species of wood. To accomplish this, ten distinct species of wood, including five types of soft-
wood (Pinus sylvestris, Pinus tabulaeformis, Pinus massoniana, Larix gmelinii, and Pinus koraiensis) and
five types of hardwood (Xylosma racemosum, Populus davidiana, Fraxinus rhynchophylla, Betula platyphyl-
la, and Tilia tuan Szyszyl), were selected as experimental samples. Four hundred groups of data for terahertz
absorption coefficient spectra and four hundred groups of hyperspectral data were acquired using THz-TDS
and hyperspectral technology, respectively, and then examined for their spectral features. Three spectral
preprocessing techniques, including the Savitsky—Golay smoothing algorithm, standard normal variable
transformation, and multivariate scattering correction, were employed to preprocess the spectrum. Support
vector machine recognition models were then created to compare and analyze the effects of recognition. The
results demonstrated that both THz-TDS and hyperspectral approaches could successfully identify five dif-
ferent species of hardwood from various families and genera, with the highest accuracy rates of 92 and 94%,
respectively. THz-TDS achieved a 92% recognition rate for five different species of softwood from the same
family, indicating good recognition effects, while hyperspectral technology did not achieve such results.

Keywords: THz spectroscopy, hyperspectral technology, support vector machine, hardwood, softwood.
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(Tllocmynuna 13 dexabps 2022)

s pacnosunasanusi copmos Opegecutvl UCHOTb3OBAHbL MEPALEPYO8As CHEKMPOCKONUS 60 8PEMEHHOT
obnacmu (THz-TDS) u eunepcnekmpanvras mexnonoaus. [ecsmos 06pasyos opesecutvl pasiuyHblx nopoo,
6 mom uucie nsams 6u008 xeotnvix (Pinus sylvestris, Pinus tabulaeformis, Pinus massoniana, Larix gmelinii
u Pinus koraiensis) u namo 6uooe aucmeenuvix (Xylosma racemosum, Populus davidiana, Fraxinus rhyn-
chophylla, Betula platyphylla u Tilia tuan Szyszyl), evibpanvl 6 kawecmeae sxcnepumenmanvhuvix. Mccnedosa-
HUe CneKmpanbHblX Xapakmepucmuk nposedeno na navopax uz 400 TIy-cnekmpos noznowjenus u cunep-
chekmpanbHulX Oannvlx. Hlcnonv3oeanst mpu memooa npedgapumensholi oopadomxy cnekmpa. aicopumm
cenaxcusanusi Caguyxoeo—lones, cmanoapmuoe HOPMAIbHOE NEPEMEHHOEe Hpeodpas’osaHue u KOppeKyusl
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muoeomepnozo pacceanus. Coz0ansvt Mooenu pacno3HagaHusi MemoooM ONOPHBIX 8eKMOPO8 U AHANU3A G-
gexmos pacnosnasarnus. I[loxazano, umo ¢ nomowwro THz-TDS u eunepcnekmpanbHoti mexHoI02uu MONCHO
UoeHMmuUYUPOBams TUCMEEHHble NOPOObL U3 PAHBIX CEMEeliCE U PO008 C HAUBLICUIUMU NOKA3AMENAMU
mounocmu 92 u 94 %. Ypoeseuwv pacnosznaseanus THz-TDS ons nsmu 00pasyoe opesecuibl X60UHbIX NOPOO U3
00H020 cemeticmsa 92 %, umo A67Aemcs XOpOWUM HOKA3AMenem, 8 mo 8peMsi KaK UNepcnekmpanbhas mex-
HONO2USL He Odem MAaKUux pe3yibimamoa.

Knrwueevte cnoea: mepacepyosas cnekmpockonus, eunepcneKmpanbHas MexHoi02us, Memoo OnopHuIxX
BEKMOPOB, TUCMBEHNAS OPeBeCcUnd, X8OUHAs Opeecutd.

Introduction. Wood is a natural material that finds widespread use in various daily life fields, such as
architecture, art, and furniture. Different wood species exhibit significant variations in properties, prices, and
applications. Due to the vast diversity of wood species, modern identification procedures are necessary for
the timber trade and wood processing industries. Currently, traditional methods for identifying wood species
rely mainly on macroscopic observation, microscopic sectioning, DNA barcoding, and other techniques [1, 2].
However, these methods have several limitations. For instance, macroscopic observation requires highly
skilled inspectors and has low detection efficiency, while microscopic sectioning and DNA barcoding are
time-consuming, laborious, and can potentially damage the wood. Therefore, it is crucial to explore more ef-
ficient, rapid, non-destructive, and accurate methods for detecting and identifying wood species when tradi-
tional approaches fall short. Spectral analysis has emerged as a mature technique, providing advantages such
as quick, precise, and non-destructive testing. The visible and near-infrared wavelengths in the electromag-
netic spectrum are commonly used for wood detection, with near-infrared spectroscopy and hyperspectral
imaging methods frequently applied [3—6]. These techniques have been widely utilized for non-destructive
testing of wood in various applications [7-9].

Recently, researchers have shown a growing interest in exploring the terahertz (THz) waveband, the last
frequency range in the electromagnetic spectrum. The primary chemical components of wood, cellulose,
hemicellulose, and lignin, have vibrational and rotational energy levels with fixed frequencies in the THz
range [10, 11]. THz spectroscopy can detect and identify these macromolecules by extracting their vibration-
al and rotational features, providing a specific identification spectrum for the molecular conformation [12].
In addition, wood is nearly transparent to the THz wave, in contrast to its low penetrability in the visible and
near-infrared range. Therefore, it is feasible to collect characteristic data on the THz transmission spectrum
of wood, which can be utilized to investigate its composition, structure, and physical and chemical proper-
ties. THz spectroscopy can be employed for the identification of wood species as a complementary technol-
ogy to other spectral detection techniques such as infrared spectroscopy.

THz spectroscopy has been widely utilized in various fields, including the detection of pesticides, mate-
rials, and cancer tissues [13—17]. While using THz spectroscopy to identify wood is not a conventional prac-
tice, certain studies focused on predicting the physical properties of wood using THz spectroscopy have
demonstrated its viability and superiority in wood detection [18-21]. In a recent study, we successfully iden-
tified five different species of redwood using THz time-domain spectroscopy (THz-TDS), namely Dalbergia
bariensis, Dalbergia oliveri, Bois de rose, Pterocarpus santalinus, and Dalbergia cochinchinensis [22]. The
results showed that THz-TDS performed remarkably well in identifying the wood species. However, there have
been few reports comparing THz spectroscopy with other spectroscopic techniques for wood identification.

Support vector machine (SVM) is a robust machine learning algorithm that is capable of solving nonlin-
ear classification problems and has demonstrated excellent performance in various fields [23-25]. SVM ex-
hibits good generalization ability, particularly when dealing with small sample sizes, and effectively avoids
overfitting and local minima problems that are common in neural networks [26].

We aimed to investigate the properties of five species of softwood and five species of hardwood using
THz-TDS and hyperspectral techniques. We compared and analyzed the differences in spectral properties
between softwood and hardwood and built SVM recognition models for identification. Our research provides
a meaningful comparison between THz-TDS and hyperspectral techniques, which are significant for the
nondestructive testing of wood.

Sample preparation. Ten wood species, including five species of softwood and five species of hard-
wood, were selected for this experiment. The hardwood species were Xylosma racemosum, Populus davidi-
ana, Fraxinus rhynchophylla, Betula platyphylla, and Tilia tuan Szyszyl, while the softwood species were
Pinus sylvestris, Pinus tabulaeformis, Pinus massoniana, Larix gmelinii, and Pinus koraiensis.
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Wood chip samples measuring 50x50%5 mm were precisely cut from discs intercepted at breast height
from the logs using cutting tools. A total of 400 experimental samples were prepared, with 40 samples cut
for each of the ten wood species. The wood chip samples were kept in the same atmospheric environment to
naturally dry to an air-dried state to prevent moisture from affecting the terahertz tests.

THz time-domain spectrum and hyperspectral image collection. The terahertz spectra of the wood
samples were collected using a TERA K15 transmission terahertz spectrometer at the State Key Laboratory
of Precision Measurement Technology and Instruments, Tianjin University [27]. The system generated a te-
rahertz wave with an average power of 500 mW and a pulse width of less than 90 fs using a femtosecond la-
ser pulse with a center wavelength of 1650 nm and a repetition frequency of 100 MHz. Prior to the scanning
procedure, a set of reference spectra without samples was measured. The THz-TDS data for each sample
were acquired three times, and the frequency domain spectra of the sample and reference signal were ob-
tained by performing a fast Fourier transform (FFT) on the time-domain signal. The system had a sampling
interval of 26 fs and a sampling duration of 80 ps. Throughout the experiment, the temperature and relative
humidity were maintained at 25.5-27.6°C and 48.2 to 50%, respectively.

The hyperspectral imaging system used in this experiment was a SOC710VP portable hyperspectral im-
ager, which had 128 bands, a spectral resolution of 1.3 nm, and a wavelength range of 400 to 1000 nm. The
sample was positioned vertically in the middle of a SOC hard grey board, and the measurement was con-
ducted with the lens aperture set at £ 5.6. The hyperspectral image data of each sample was gathered by an
imaging spectrometer.

THz optical parameter extraction. The THz-TDS can be used to calculate the absorption coefficient
and refractive index, based on the optical constant extracting model proposed by Dorney and Duvillaret [28, 29].

The refractive index of the THz spectrum can be expressed as follows:

10) (m) c
n(w) o+ 1. (1)

The absorbance can be expressed as shown:

a((o):gln 4n(m) >
d p(o))(n(m)+1)
where n(®) is the real part of the refractive index, d is the sample thickness, ¢ is the velocity of the THz
wave propagating in a vacuum, o is the angular frequency, p(®) and @(w) are the amplitude ratio and phase
difference between the sample signal and the reference signal, respectively.

Hyperspectral image calibration and region of interest (ROI) extraction. Initial image correction
was performed using the SRAnal710 software of the SOC710VP portable hyperspectral imager. Raw hyper-
spectral reflectance images were normalized into relative hyperspectral reflectance images using white refer-
ence and dark reference images to reduce signal noise caused by changes in equipment structure and detector
sensitivity [30].

In this study, a region of interest (ROI) was set as a 50x50 square area in the center of each sample’s
image. The average reflectance spectrum value of each pixel within the ROI was then extracted as the sam-
ple's average spectral data, resulting in a total of 400 average spectral data.

Result and discussion. Figure 1 illustrates the absorption coefficient spectra for different softwood and
hardwood species. The primary differences among the five softwood species were the intensity and location
of the absorption peak in the frequency range of 0.2 to 2.0 THz. The absorption coefficient spectra of the
five softwood species exhibited significant variations from 0.2 to 1.2 THz. The most prominent distinction
was the varying strength of the absorption coefficients among the five softwood species, with Larix gmelinii
having the highest intensity, followed by Pinus massoniana, Pinus koraiensis, Pinus tabulaeformis, and Pi-
nus sylvestris. Pinus massoniana exhibited four absorption peaks (0.56, 0.93, 1, and 1.1 THz), Pinus syl-
vestris showed three (0.56, 1.11, and 1.18 THz), Pinus tabulaeformis had five (0.56, 0.94, 1.0, 1.11, and 1.19
THz), Larix gmelinii had four (0.79, 0.86, 0.95, and 1.0 THz), and Pinus koraiensis had three (0.56, 1.0, and
1.11 THz). The differences among the absorption peaks of the five softwood species were noticeable. The
absorption coefficient spectra of the five softwood species exhibited greater overlap beyond 1.20 THz, and
the differences were negligible. For subsequent data processing and modeling, the spectrum data in the 0.2 to
1.2 THz region were chosen.

@



AHHOTALIMU AHTJIOSI3bIYHBIX CTATEMN 976-4

Absorption a
3.0 ———
Pinus tabulform
Pinus masson fann |-
| == Larkx gmelinii
A N | Pinus korslensis
L b4 AN e AT Y
2.0 | ../-_ \r \, % ._r -‘\..:)\‘
- ,//' & \ --/6“:-'..{-'\ |
1017 VAR
0.2 0.6 1.0

Absorption
3.0 - T

2.0}

0.2 0.6 1.0 1.4 1.8 f, THz

Fig. 1. Terahertz absorption spectra of five softwoods (a) and five hardwoods (b).

The absorption coefficient spectrum waveforms of the five hardwood species from 0.2 to 1 THz were
highly diverse, primarily due to their various absorption coefficient intensities and locations. Xylosma race-
mosum was the most intense, followed by Fraxinus rhynchophylla, Tilia tuan Szyszyl, Betula platyphylla,
and Populus davidiana. Xylosma racemosum had three main absorption peaks (0.45, 0.63, and 0.76 THz),
Populus davidiana had two main absorption peaks (0.86 and 0.96 THz), Fraxinus rhynchophylla had two
main absorption peaks (0.54 and 0.65 THz), Tilia tuan Szyszyl had four main absorption peaks (0.75, 0.81,
0.87, and 0.95 THz), and Betula platyphylla had three main absorption peaks (0.73, 0.83, and 0.98 THz).
The primary absorption peak positions varied from 0.2 to 0.8 THz for Xylosma racemosum and Fraxinus
rhynchophylla, and from 0.7 to 1.0 THz for Populus davidiana, Betula platyphylla, and Tilia tuan Szyszyl.
The absorption coefficient spectra of the five hardwood species showed the most overlap after 1.0 THz.
Consequently, spectra within the range of 0.2 to 1.0 THz were chosen for post-data processing and modeling.

Figure 2 depicts the original spectral characteristic curves of softwood and hardwood species based
on their hyperspectral reflectance. It is notable that the five species of softwood exhibited similar tendencies
in their reflectance spectrum curves, with a respective reflectance threshold range of 0.09 to 1.00. Pinus syl-
vestris, Pinus tabulaeformis, Pinus massoniana, and Pinus koraiensis demonstrated a high degree of resem-
blance, making it difficult to distinguish them in terms of reflection waveform and intensity. However, dif-
ferentiating Larix gmelinii from the other four pine varieties was straightforward, as it exhibited a distinct
difference in reflectance intensity. The fact that Larix gmelinii belonged to the genus Larix in the Pinaceae
family provided a proper explanation. It is credible that the differences in its physical, chemical, and micro-
structural characteristics contributed to its unique spectrum compared to other Pinus species.

While the five hardwood species shared comparable peaks, troughs, and the direction of their reflec-
tance spectrum curves, the reflectance intensity of the five hardwood species varied significantly. The five
different types of wood exhibited similar overall trends in their visible-near infrared spectra, indicating that
the fundamental chemical elements of each type of tree were essentially the same. The levels of reflectance
among the five hardwood species in the visible light range of 400—727 nm were as follows: Betula platyphyl-
la > Populus davidiana > Fraxinus rhynchophylla > Tila tuan Szyszyl > Xylosma racemosum. The visible
spectrum was the predominant absorption region of the pigment composition, and variations in the composi-
tion and amount of pigment in the wood samples resulted in differences in the visible spectrum's absorption
response in various wood types. To ensure that no valid information in the infrared band was lost,
the 400—-1000 nm band was used for the modeling study.
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Fig. 2. Hyperspectral reflectance spectrum of five softwoods (a) and five hardwoods (b).

The study utilized spectrum data on ten wood species' terahertz absorption coefficients and hyperspec-
tral data across the entire waveband. Preprocessing was conducted using three approaches: Savitsky—Golay
(SG), standard normal variable transformation (SNV), and multivariate scattering correction (MSC). SVM
recognition models were developed using both the original and preprocessed spectral data from the three ap-
proaches. The data were randomly split into training and test sets at a 3:1 ratio prior to modeling. The penal-
ty factor parameter C and kernel function parameter g of the model were calculated using the grid method,
with a linear kernel function employed for the kernel function.

Table 1 presents the recognition rates for the five categories of softwood absorption coefficients based
on the SVM model created using the linear kernel function. The preprocessed spectral data model outper-
formed the original spectral data model, with the SNV-preprocessed model achieving the highest total
recognition rate of 92%. All five species of pine wood exhibited recognition rates above 85%.

TABLE 1. Classification Results of THz Absorption Coefficients of Five Softwoods
(Recognition rate of SVM/%)

Wood Pinus Pinus Pinus Larix Pinus Total recognition
species sylvestris tabuliformis | massoniana | gmelinii | koraiensis rate, %
Original 100 100 69.2 100 77.8 88
SG 90 100 933 71.4 78.6 90
SNV 100 92.3 83.3 100 88.9 92
MSC 94.4 87.5 75 100 87.5 90

The recognition rates of the SVM model using hyperspectral reflectance data from five softwood spe-
cies are presented in Table 2. The preprocessed data model did not exhibit a significant improvement in
recognition accuracy compared to the original spectral data model. The model's recognition accuracy ranged
from 50 to 62%, which did not yield satisfactory results.

Table 3 presents the total recognition rates of the SVM hardwood classification models after prepro-
cessing with SG, SNV, and MSC methods. The results showed that all models achieved recognition rates
higher than 80%, indicating that proper preprocessing improved the classification model’s overall perfor-
mance. Notably, the SNV-SVM model had the highest recognition rate among all models. The SNV prepro-
cessing increased the SVM hardwood classification model’s overall recognition rate by 12% compared to the
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model without preprocessing. This result emphasizes the importance of optimizing the model through appro-
priate preprocessing techniques.

TABLE 2. Classification Results of the Hyperspectral Reflectance of Five Softwoods
(Recognition rate of SVM/%)

Wood Pinus Pinus Pinus Larix Pinus Total recognition
species sylvestris tabuliformis | massoniana | gmelinii | koraiensis rate, %
Original 26.7 57.1 25 90.9 55.5 50

SG 76.7 63.6 60 83.3 81.8 58

SNV 12.5 55.6 444 66.7 66.7 52

MSC 55.6 37.5 50 100 60 62

TABLE 3. Classification Results of THz Absorption Coefficients of Five Kinds of Hardwoods
(Recognition rate of SVM/%)

Wood Xylosma Populus Fraxinus Betula Tilia Total recognition
species racemosum | davidiana | rhynchophylla | ¥ layyphylla fuan rate, %

p Y Py Suk Szyszyl. 70
Original 93.7 83.3 84.6 50 75 80

SG 100 87.5 80 77 72.7 82

SNV 100 100 70 90 100 92

MSC 100 100 80 70 80 86

TABLE 4. Classification Results of the Hyperspectral Reflectance of Five Hardwoods
(Recognition rate of SVM/%)

Wood Xylosma Populus Fraxinus Betula Tilia Total recognition
species racemosum | davidiana | rhynchophylla | ¥ latyphylla fuan rate, %
p Y Py Suk Szyszyl. 70
Original 85.7 87.5 100 92.3 63.6 86
SG 90.9 100 78.5 100 88.9 90
SNV 100 100 100 100 75 94
MSC 100 100 85.7 100 61.5 88

Table 4 presents the recognition rates of the SVM model using data from five hardwood hyperspectral
reflectance. The overall recognition rates of the hardwood were higher after adequate preprocessing (SG,
SNV, and MSC) compared to those without preprocessing. Among them, the SNV-SVM was the most effec-
tive after preprocessing, with an overall identification rate of 94%. After SNV preprocessing, the SVM
hardwood classification model's overall recognition rate increased by 8%.

The visible and near-infrared spectra of the five softwood species generally exhibited similar patterns,
and they also had similar main chemical compositions since the primary spectral region of absorption for
pigments is in the visible range. However, variations in the pigment level and composition of the samples led
to differences in wood absorption in the visible spectrum region. The four pine species belonging to the same
family and genus were challenging to identify in the visible-near-infrared spectral range, which resulted
in a low overall recognition rate for the model. However, Larix gmelinii, a species in the genus Larix, could
be easily distinguished from the other four pine species, and its recognition rate in the model was higher.
This may be because the pigment content of Larix gmelinii was significantly different from that of the other
four pine species.

Analysis of the absorption coefficient spectrum in the terahertz band enables better differentiation
among the five species of softwood, with absorption peaks that are relatively identical in position but notably
different in strength. The SVM model of softwood created using terahertz absorption coefficients after SNV
preprocessing achieved a higher identification rate. The five species of hardwood belong to five separate
families and vary in microstructure and physicochemical characteristics. While the SVM models of hard-
wood created from these two spectra can obtain reasonable recognition results in the terahertz and visi-
ble/near-infrared bands, they are poor recognition results for certain woods, indicating a need for further fea-
ture extraction from the spectral data.
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Conclusions. Three spectral preprocessing methods were utilized for wood identification using terahertz
time-domain spectroscopy and hyperspectral methods. The study involved preprocessing the hyperspectral
reflectance and terahertz absorption coefficient data of wood samples, creating a support vector machine
model for recognition, and comparing the recognition outcomes of the models. The results showed that the
five species of softwood from the same family had similar hyperspectral reflectance curves in the visible and
near-infrared bands, leading to subpar overall recognition performance of the hyperspectral model. On the
other hand, terahertz time-domain spectroscopy was a better option for identifying the five softwood species.
The spectral characteristics of the five hardwood species in different families and genera varied greatly. Alt-
hough both hyperspectral spectroscopy and terahertz spectroscopy could successfully identify the hardwood
species, there were issues with identifying specific hardwood species. To improve identification results, the
next stage of work will focus on extracting features from the wood spectra.
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