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Affected by temperature and humidity in the environment, salt crystals expand and accumulate on the 
surface of murals, causing the pigment layer to peel off, which damages the mural. A method for the rapid 
and nondestructive detection of salt content in murals using hyperspectral techniques is proposed. The spec-
tral data from mural samples were collected with a spectroradiometer and preprocessed by removing break-
points with Savitzky‒Golay smoothing. The raw spectra were subjected to continuum removal, logarithm of 
the reciprocal (LR) processing, multiple scattering correction, and standard normal variate transformation 
combined with first-order differentiation (FD) and second-order differentiation processing to obtain 15 
transformed spectra of different forms. The spectra of samples at different concentration levels were classi-
fied, and the characteristic wavelengths were extracted using sample set partitioning based on the joint X–Y 
distance and successive projection algorithm. The pearson correlation coefficient and variable importance 
in the projection were used for comparison. Salt concentration estimation models were developed using par-
tial least squares regression (PLSR), support vector regression (SVR), and a random forest (RF) model. The 
slopes of fit were calculated and compared. The results showed that the reflectance spectra decreased and 
then increased with increasing salt concentration. The accuracy of RF and SVR was better than that of 
PLSR, and the Rc

2, RMSEc, and RPDc values of the RF-LR-FD model were 0.9703, 0.0466, and 16.8350, re-
spectively. Spectral analysis combined with machine learning models has potential for the nondestructive 
detection of salt in murals. 
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Предложен метод быстрого и неразрушающего определения содержания солей в росписях с ис-

пользованием гиперспектральных изображений. Спектральные данные образцов настенной росписи 
собраны с помощью спектрорадиометра и предварительно обработаны путем удаления точек из-
лома с помощью сглаживания Савицкого–Голея. Необработанные спектры подвергались удалению 
континуума, логарифмированию обратной (LR) обработки, коррекции множественного рассеяния  
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и преобразованию стандартной нормальной переменной в сочетании с дифференцированием первого 
и второго порядка для получения 15 преобразованных спектров различных форм. Спектры образцов 
при различных уровнях концентрации классифицированы, характеристические длины волн извлечены 
с использованием разделения набора образцов на основе совместного расстояния X–Y и алгоритма 
последовательного проецирования. Для сравнения использованы коэффициент корреляции Пирсона  
и переменная в проекции. Модели оценки концентрации соли разработаны с использованием частич-
ной регрессии наименьших квадратов (PLSR), регрессии опорных векторов (SVR) и модели случайно-
го леса (RF). Наклоны подгонки рассчитаны и сопоставлены. Показано, что интенсивность спек-
тров отражения уменьшалась, а затем увеличивалась с ростом концентрации соли. Точность RF  
и SVR лучше, чем PLSR, для модели RF-LR-FD RC

2 = 0.9703, RMSE = 0.0466 и RPD = 16.8350.  
Ключевые слова: разрушение фрески, содержание солей, функция спектрального преобразова-

ния, машинное обучение. 
 

Introduction. Ancient murals, which represent a balance between research and artistic value, are im-
portant cultural and religious treasures from different historical periods [1]; however, they are affected by 
water and salt transport in the environment, which is not conducive to their survival. Soluble Na2SO4 in mu-
rals changes with temperature and humidity in the environment, repeatedly dissolving and swelling, which 
destroys the structural layer of the murals; additionally, salt crystals accumulate on the pigment surface, 
causing irreversible damage such as peeling [2, 3]. Existing salt tests are performed by field sampling fol-
lowed by drenching analysis using ion chromatography analysers [4]. However, the costs of equipment and 
personnel are high, and the sampling and analysis processes generate contamination as well as damage to 
murals. 

Compared to traditional methods, hyperspectral remote sensing, which can be used to predict the salt 
content in murals, provides a low-cost, flexible, and fast detection method without reagents [5] and is highly 
efficient and nondestructive. Spectral analysis techniques have proven to be effective tools that are suitable 
for salt detection in vegetation and soil. García-Martín et al. [6] applied standard normal variate (SNV) trans-
formation, multiplicative scattering correction (MSC), and derivative transformation to the reflectance spec-
tra of Jatropha roots to differentiate the rootstocks based on high or low Cu concentration. Amer et al. [7] 
applied the normalized pigment chlorophyll ratio index and pigment-specific simple ratio to monitor trace 
metal salt concentrations in different wheat growth states and confirmed the feasibility of using hyperspec-
tral indices to monitor the strong correlation between salt concentrations and vegetation spectra. Mashimbye 
et al. [8] established an empirical relationship between soil conductivity and spectral characteristics in South 
Africa using a single band, normalized difference salinity index, partial least squares, and bagging partial 
least squares methods. Tan et al. [9] performed random forest (RF) and support vector machine (SVM) mod-
elling prediction after the augmented transformation of farmland spectra from Xuzhou, Jiangsu, China, and 
the soluble salt concentrations of Zn, Cr, As, and Pb were predicted. 

However, salt on a mural differs greatly from salt in natural soil, the mural production process is com-
plex, the mural surface is smoother and the spectral mixing between the salt in mural pigment layers is dif-
ferent from that between the various constituents in the ground and the pigment layers. Therefore, it is nec-
essary to explore the relationship between the reflectance spectra and the salt content in murals. The purpose 
of this study is to investigate the feasibility of using hyperspectral techniques to predict salt concentrations in 
mural samples. The specific objectives are to explore the variation relationship between reflectance and the 
salt content, to analyse the effect of different spectral forms on the salt prediction accuracy after combined 
transformation, and to evaluate the performance of three regressors, partial least squares regression (PLSR), 
support vector regression (SVR) and random forest (RF) model, for mural salt concentration prediction after 
feature band extraction. 

Materials and methods. Dunhuang sand was obtained from Dunhuang, Shanxi, China, mixed well with 
loess, clarified board soil, wheat straw, and hemp rope, moistened with a small amount of water, and then 
sealed with cling film for 24 h. The mud layer of the mural consisted of 60 moulds filled with mud. Each 
mould had a diameter of 9 cm and a height of 1.8 cm, and sulfuric acid paper was placed underneath the mud 
layer. To restore the saline environment of the real mural, anhydrous Na2SO4 was weighed at a salt-to-soil 
ratio of 0–1% and a grade difference of 0.05%. Twenty concentration levels were set, and three samples 
were prepared at each concentration level, corresponding to 60 mural samples. The salts were completely 
dissolved in ionized water, mixed well with the sample mud layer, and dried naturally under typical inside 
conditions during a period when the moisture and temperature of the samples were monitored using a soil 
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detector MDN-6813. After complete drying, salt-containing mural samples were obtained, and the concen-
tration of Na2SO4 was the only variable. 

The mural spectral reflectance was determined using an ASD-FieldSpec4HI-RES spectroradiometer 
(Analytical Spectroscopy Equipment, USA). The performance parameters of the instrument are shown  
in Table 1. Standard reflectance calibration was performed after instrument warm-up. The sample was pad-
ded with black flannel, and the contact probe and its light source were placed vertically upside down on the 
ventral surface of the sample. The probe was rotated 90° parallel to the surface of the sample, and measure-
ments were repeatedly collected in 4 directions, with the average value used as the measured spectrum. The 
whole process was performed in a dark room. 
 

TABLE 1. Performance Parameters of the ASD-FieldSpec4 Spectroradiometer 
 

Spectral range, nm 350–2500 Band 2151 
Sampling 

interval, nm 
1.4 @ 350–1000 nm; 
2 @ 1001–2500 nm

size, cm 12.735.629.2 

Spectral resolution, nm 
350–1000 nm @ 3 nm; 
1001–2500 nm @ 8 nm

weight, kg 5.44 

 
ASD-FieldSpec4HI-RES measures the radiance of ground objects, which is generally recorded as  

a digital number (DN). The DN value is influenced by the surface conditions of the real object and the accu-
racy of the sensor, such as the light environment at the collection site, the radiation resolution of the sensor, 
and the emissivity of the object. To attenuate the effect of drift error of the sensor response system with the 
variation in the incidence angle, the acquired DN values of the murals were converted to sample reflectance, 
and standard reflectance correction was performed every 10 min based on darkroom measurements. The cor-
responding formula [10] is as follows: 

M
M CP

CP

DN ( )

DN ( )
R R





,            (1) 

where RM and RCP are the mural and the calibration panel reflectance, respectively, the latter being 99%, and 
DNM and DNCP are the DN values of the mural and calibration panel, respectively. The obtained reflectance 
is optimized by breakpoint elimination and spectral averaging in the subsidiary software. Savitzky‒Golay fil-
tering is used to remove the high-frequency burr noise from each reflection spectrum. The filter window is 
set to 21, and a second-order polynomial is used for spectral smoothing while retaining the linear trend and 
salt signal characteristics. To improve the spectral signal-to-noise ratio and highlight the salt-sensitive spec-
tral properties, four enhancement transformations of the reflectance spectra are performed – namely, contin-
uum removal (CR), the logarithm of the reciprocal (LR) transformation, MSC, and SNV transformation – 
and combined with two differential forms – namely, a first-order derivative (FD) and a second-order deriva-
tive (SD) – to obtain 15 spectral forms with different feature enhancement strategies. The advantage of the 
combined transformation strategy is that the effects arising from rough surface undulations, light range scat-
tering, and baseline drift of the sample can be removed, the local spectral response differences can be en-
hanced, and the specific signals of the component spectra can be amplified. By comparing the modelling ac-
curacy for the 15 spectral forms, the most suitable spectral form for mural salt detection is identified. 

Sample-set partitioning based on the joint X–Y distance (SPXY) was proposed by Galvão et al. [11] as 
an approach for spectral data segmentation. Wang et al. [12] implemented SPXY for the segmentation of wa-
termelon NIR spectral data and validated the accuracy of the model for predicting the soluble solids content 
of watermelon. SPXY is used to calculate the spacing between the dependent variable, different salt concen-
trations in samples (Y), and the independent variable, a 350–2500 nm range spectral matrix for samples (X). 
It is ensured that the spectra and salt content have the same weight in sample segmentation to improve the 
confidence of sample division. After three consecutive days of spectral measurements, 280 spectral curves 
from 46 samples were obtained with SPXY as the calibration set, and 128 spectral curves from 28 samples 
were used as the validation set. 

Hyperspectral data contain a large amount of background noise, which reduces the processing efficiency 
and prediction accuracy; additionally, the salt signal is removed from redundant spectral information by 
band screening. The successive projection algorithm (SPA) is a space vector covariance minimization and 
forward variable selection method that was proposed by Mario Cesar Ugulino Araujo et al. [13], whereby 
they extracted bands with the smallest root mean square error by calculating the magnitude of the projection 
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vector between band pairs. Liang et al. [14] used the SPA method to predict the level of mycotoxin deoxy-
nivalenol (DON) in FHB-infected wheat grains, and the accuracy of the model reached 97%. The Pearson 
correlation coefficient (PCC) and variable importance in the projection (VIP) are two typical spectral band 
selection metrics for comparison, which are used to verify the practicability of SPA in the extraction of mu-
ral salt spectral bands. 

Based on the feature bands extracted under different spectral forms, a classical linear regression (PLSR) 
model was combined with two nonlinear machine learning models (SVR and RF) and used to evaluate the 
salt levels in murals. PLSR, which represents the linear relationship between multiple sets of independent 
and dependent variables projected into a new space [15], combines the advantages of multiple linear regres-
sion and principal component regression. Li et al. [16] demonstrated the applicability of PLSR in a statistical 
analysis of soil AS. SVR is a structural risk minimization-based machine learning model that uses a cross-
validation grid search to determine the penalty factor c and obtain a hyperplane with minimal expected risk 
based on multiple kernel functions for high-dimensional, nonlinear problems [17, 18]. The kernel function 
selected for this study was the radial basis function (RBF) with a penalty filter c = 1. The RF method is  
a modelling approach consisting of multiple decision trees for classification by voting through bootstrap 
resampling, where each randomly selected subsample and its corresponding subattributes can be used to 
generate a regression tree, thus forming a forest, with results obtained by voting [19]. High accuracy in salt 
concentration monitoring can be achieved using hyperspectral techniques [20]. In this paper, two important 
parameters were set before using the RF algorithm. One is the number of trees in the forest, which was set  
to 500. The other is the number of root nodes, which was adjusted based on 10 replicate experiments, was 
used to select the parameters when the calibration set R2 was optimal. The values ranged between 3 and 12 
for 15 data sets. 

Three goodness-of-fit statistics, the coefficient of determination (R2), root mean square error (RMSE), 
and relative percent deviation (RPD) were used to evaluate the calibration and validation effects of the mod-
el in terms of stability, precision and confidence. The deviation of the slope of fit (SLOPE) from the 1:1 line 
between the true and predicted concentrations under different conditions was calculated to assist in judging 
the estimation effect. The larger the R2 and RPD are, the smaller the RMSE, and the closer to 1 the SLOPE 
is, the higher the model quality, and vice versa. 

Results and discussion. The sample spectra of murals at seven salt concentration levels were selected 
from the total data, and the sample reflectance curves are shown in Fig. 1. For different salt concentrations, 
the peak and valley positions and curve profile trends changed minimally, and three asymmetric absorption val-
leys were observed at approximately 1420, 1940, and 2210 nm. The only significant change associated with the 
concentration was the magnitude of reflectance. With increasing salt concentration, reflectance first de-
creased and then increased sharply. Na+ has a strong ability to absorb water, forming compounds that en-
hance the absorption of electromagnetic waves, and in high-concentration salt-water transport, the salt crys-
tals gradually become saturated and precipitate, increasing the reflectance [21]. The reflectance is low in the 
visible-near infrared range at a salt concentration of 0.3% and increases sharply at concentrations higher than 
0.6%, with a large difference in reflectance of 0.75 and 0.6% between the two salt concentration samples. 

 

 
Fig. 1. Spectral reflection curves of mural samples at different salt concentrations. 
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According to the principle of RMSE minimization, the SPA algorithm extracts different numbers of 
characteristic bands from 15 spectral forms, and the results are shown in Table 2. The extracted bands are 
concentrated in the following ranges 350–420, 1880–1950, 1100–1180, and 2080–2150 nm and the corre-
sponding positions can be found at the peaks and valleys in the full spectrum. LR is relatively sensitive to the 
SPA, and a total of 32 bands are proposed, accounting for 29.4% of all results. The process of characteristic 
band extraction based on SPA is shown. Figure 2 shows that when the number of SPA-based variables is 12, 
the RMSE is only 0.0841, the minimum value. Figure 3 shows the labelled positions of the 12 bands extract-
ed based on SPA-LR-FD in the spectrum. 

 
TABLE 2. SPA Feature Wavelength Selection Based on Different Spectral Transformation Strategies 

 

Spectral transformation form Differential orders Wavelength range, nm 

R 
– 1988, 1800, 2085, 1907, 1945 

FD 1915, 1943, 372, 1885
SD 1918, 1794, 1115, 1667, 402, 2103, 633, 1256, 2451 

CR 
– 1444, 1907, 403, 1944, 391, 376 

FD 1937, 1914, 1884 
SD 1896, 1730, 351, 359, 372, 350, 376, 354, 368, 1933

LR 

– 1738, 1093, 2086, 391, 587, 376, 361 

FD 
1422, 2067, 1928, 1830, 402, 1679, 399, 1031, 2456, 
1256, 1659, 2282

SD 
1919, 1794, 1115, 2268, 1102, 884, 922, 830, 1641, 
1343, 1016, 423, 2156

MSC 
– 418, 1946, 1907, 2100, 1100, 1987, 858 

FD 795, 1708, 579, 1681, 384, 2419, 372, 410 
SD 1355, 727, 788, 2152, 660, 922, 2328, 649, 1115

SNV 
– 1737, 391, 1397, 2090, 382, 1943 

FD 2109, 1362, 1181, 1314, 1661, 2477 
SD 1794, 369, 1013, 489 

 
 

 
 

Fig. 2. Relationship between the number of SPA selection variables  
and the RMSE of the LR-FD model. 

 
The feature bands extracted by SPA were used as independent variables to establish a mapping relation-

ship with the salt concentration. A total of 45 prediction models were developed based on 15 spectral forms 
using three regressors: PLSR, SVR, and RF. The models with the best accuracy were selected to compare the 
effects of different spectral transformation strategies on the models and find the most suitable spectral forms 
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for mural salt detection. The accuracy of PLSR is shown in Table 3. RC
2 values of 0.9086 and 0.9028 were 

achieved using the LR-FD and MSC-FD models, respectively. These were the only two groups in the PLSR 
model that achieved an RC

2 that exceeded 0.9. For the validation set of MSC-FD, values of 0.9298, 0.0778, 
and 7.1255 were obtained for RV

2, RMSEV, and RPDV, respectively, and are the best in each case. This ap-
proach was considered the most applicable for PLSR prediction. The SVR accuracy results in Table 4 sug-
gest that the indices after FD or SD treatment were improved compared with those for PLSR. In particular, 
an RC

2 of 0.9354 and an RMSEC of only 0.0802 were achieved using SVR-LR-FD. However, the improve-
ment of SVR in terms of the accuracy of the validation set was not obvious, and there were three sets of data 
that could be applicable. The accuracy of the applied RF model in Table 5 was higher than that of PLSR and 
SVR, with an RC

2 value that exceeded 0.9 for 12 of the 15 sets of spectra. RF-R-SD compensated for the 
lower RV

2 of the other regressors and achieved a double-digit RPDV of 11.6932. RF is more reliable in mural 
salt estimation, with the calibration set of RF-LR-FD leading to three indicators with the best results among 
the 45 datasets. 

 
 

 
 

Fig. 3. SPA characteristic band selection results obtained with the LR-FD model. 
 

TABLE 3. PLSR Model and Accuracy Parameters 
 

Spectral trans-
formation form 

Differential 
orders 

Calibration set Validation set 

RC 
2 RMSEC RPDC RV 

2 RMSEV RPDV 

R 
– 0.8176 0.1266 2.7406 0.8245 0.1231 2.8497 

FD 0.8413 0.1182 3.1512 0.8901 0.0974 4.5487 
SD 0.8619 0.1101 3.6210 0.8920 0.0965 4.6305 

CR 
– 0.7969 0.1335 2.4615 0.8241 0.1232 2.8418 

FD 0.8246 0.1241 2.8504 0.8728 0.1048 3.9308 
SD 0.8781 0.1035 4.1002 0.8122 0.1273 2.6630 

LR 
– 0.7865 0.1369 2.3419 0.8552 0.1118 3.4528 

FD 0.9086 0.0896 5.4687 0.8938 0.0957 4.7087 
SD 0.7888 0.1362 2.3669 0.8758 0.1035 4.0256 

MSC 
– 0.8838 0.1010 4.3024 0.9047 0.0907 5.2474 

FD 0.9028 0.0924 5.1417 0.9298 0.0778 7.1255 
SD 0.7829 0.1380 2.3036 0.8833 0.1004 4.2836 

SNV 
– 0.8700 0.1068 3.8456 0.9167 0.0848 6.0032 

FD 0.8579 0.1117 3.5178 0.9003 0.0928 5.0152 
SD 0.2201 0.2616 0.6411 0.4264 0.2225 0.8717 
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TABLE 4. SVR Model and Accuracy Parameters 
 

Spectral transfor-
mation form 

Differential 
orders 

Calibration set Validation set 
RC

2 RMSEC RPDC RV 
2 RMSEV RPDV

R 
– 0.5358 0.2145 1.0771 –1.7260 0.2424 0.1834

FD 0.8377 0.1197 3.0805 0.8117 0.1178 2.6553
SD 0.8964 0.0962 4.8280 0.8981 0.0860 4.9068 

CR 
– 0.7694 0.1449 2.1685 0.7081 0.1261 1.7129

FD 0.8520 0.1162 3.3784 0.8433 0.0996 3.1908 
SD 0.8940 0.0987 4.7153 0.7290 0.1342 1.8450

LR 
– 0.6002 0.1899 1.2506 –0.5220 0.1908 0.3285

FD 0.9354 0.0802 7.7375 0.8817 0.0881 4.2265
SD 0.8938 0.1012 4.7092 0.8117 0.1069 2.6553

MSC 
– 0.8246 0.1337 2.8501 0.6974 0.1170 1.6523 

FD 0.9156 0.0899 5.9230 0.9084 0.0800 5.4585
SD 0.8466 0.1233 3.2584 0.8769 0.0941 4.0617 

SNV 
– 0.8748 0.1099 3.9935 0.8251 0.0968 2.8588

FD 0.8848 0.1045 4.3395 0.8718 0.0892 3.9002
SD 0.2926 0.2502 0.7068 –2.6380 0.2688 0.1374

 

TABLE 5. RF Model and Accuracy Parameters 
 

Spectral transfor-
mation form 

Differential 
orders 

Calibration set Validation set 
RC

2 RMSEC RPDC RV
2 RMSEV RPDV 

R 
– 0.8413 0.0943 3.1506 0.7993 0.0953 2.4907

FD 0.9542 0.0590 10.9266 0.9374 0.0625 7.9911
SD 0.9594 0.0503 12.3122 0.9572 0.0567 11.6932

CR 
– 0.9456 0.0638 9.1844 0.9239 0.0677 6.5720

FD 0.9617 0.0551 13.0378 0.9519 0.0566 10.3864 
SD 0.9683 0.0492 15.7629 0.9447 0.0569 9.0481

LR 
– 0.8321 0.0971 2.9783 0.8825 0.0788 4.2557 

FD 0.9703 0.0466 16.8350 0.9451 0.0576 9.1075
SD 0.9270 0.0699 6.8521 0.9101 0.0701 5.5599

MSC 
– 0.9193 0.0702 6.1920 0.9004 0.0717 5.0191

FD 0.9354 0.0646 7.7399 0.9166 0.0669 5.9945
SD 0.9120 0.0714 5.6792 0.8700 0.0779 3.8473

SNV 
– 0.9189 0.0724 6.1667 0.9245 0.0640 6.6181

FD 0.9366 0.0650 7.8827 0.9355 0.0613 7.7471 
SD 0.5197 0.1323 1.0410 0.5752 0.1213 1.1769

 

The predicted concentration values from the calibration and validation sets obtained for different esti-
mation models were compared with the true concentration values; then, scatter plots were constructed, and 
the slopes of the fitted lines were calculated. The spectra generated using the LR-FD strategy display high 
applicability among those obtained with the three estimation methods, and Fig. 4 shows the effects of the 
three regressors. The SLOPE variable for the SVR regressor is close to the true value of 1 but biased in the 
0.4–0.7% concentration prediction. PLSR yields the most pronounced dispersion trend for the scattered 
points across the full concentration range. Although the SLOPE of the two fits of the RF regressor is slightly 
lower than that of SVR, SVR is more reliable in terms of the measured and predicted scatter distributions. 
The four metrics RC

2, RMSEC, RPDC, and SLOPEC are shown to comprehensively assess the model quality. 
The following conclusions can be drawn from the plots of the four indicators in Fig. 5. The spectra generated 
using the SNV-SD strategy are unsuitable for all three methods of salt estimation and have low sensitivity to 
salt transformation. The difference between FD and SD combined with spectral transformation is not obvi-
ous, and the high-order differential transformation has little effect on accuracy improvement. LR-FD is a re-
liable form of spectral transformation for mural salt estimation and is applicable to all three regressors. The 
SPA feature-based RF-LR-FD model with waveband extraction provides stability, accuracy, and credibility. 
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Fig. 4. Scatter plots of measured and predicted salt concentrations using (a) PLSR, (b) SVR,  
and (c) a RF model for spectra considering the LR-FD form. 

 

  

 

Fig. 5. Comparison of the magnitudes of the four metrics (a) R2, (b) RMSE, (c) RPD,  
and (d) SLOPE for the calibration set under different spectral change strategies. 
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To verify the applicability of SPA, two other variable selection methods, namely, PCC and VIP, were 
used to extract the salt signal. PLSR is applied to the original output of spectral inversion, and the results are 
shown in Table 6. All band extraction methods are proven to be effective, and SPA displays the best model-
ling effect, with comparatively fewer bands extracted. 
 

TABLE 6. Model Comparison Based on Different Spectral Variable Extraction Methods 
 

Variables Model 
Calibration set Validation set 

RC
2 RMSEC RPDC SLOPEC RV

2 RMSEV RPDV SLOPEV

601 Full band 0.6297 0.1803 1.6433 0.8935 0.6611 0.1710 1.7177 0.8629
12 PCC 0.6657 0.1713 1.7294 0.9039 0.6775 0.1668 1.7609 0.8706
11 SPA 0.8508 0.1144 2.5886 0.9571 0.8594 0.1102 2.6665 0.9987 
40 VIP 0.6436 0.1769 1.6751 0.8976 0.5582 0.1953 1.5044 0.8206

 
Conclusions. The highly time-efficient and nondestructive determination of salt accumulation levels in 

murals is important for assessing the survival status of murals and level of peeling protection. In the spectral 
range of 350–2500 nm, 45 mural salt concentration prediction models were developed by using 15 enhanced 
transformation strategies and SPA to extract features and combine three regressors: PLSR, SVR, and RF.  
A correlation exists between the reflectance spectra and salt concentration, with the first decrease followed 
by a significant increase in mural reflectance as the salt concentration increases. Through analytical compari-
son, SPA displayed more advantages than PCC and VIP in the extraction of mural salt feature bands. The 
RF-LR-FD model yielded high RC

2 and RV
2 accuracies of 0.9703 and 0.9451, respectively, indicating that it 

is suitable for quantitative salt estimation in murals. The overall results confirm the preliminary feasibility of 
using hyperspectral techniques to determine the salt content of murals in a highly time-efficient and nonde-
structive manner. Based on this approach, visual assessments and inversions of mural salt distribution can be 
explored in depth in the future. 
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