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Affected by temperature and humidity in the environment, salt crystals expand and accumulate on the
surface of murals, causing the pigment layer to peel off, which damages the mural. A method for the rapid
and nondestructive detection of salt content in murals using hyperspectral techniques is proposed. The spec-
tral data from mural samples were collected with a spectroradiometer and preprocessed by removing break-
points with Savitzky—Golay smoothing. The raw spectra were subjected to continuum removal, logarithm of
the reciprocal (LR) processing, multiple scattering correction, and standard normal variate transformation
combined with first-order differentiation (FD) and second-order differentiation processing to obtain 15
transformed spectra of different forms. The spectra of samples at different concentration levels were classi-
fied, and the characteristic wavelengths were extracted using sample set partitioning based on the joint X—=Y
distance and successive projection algorithm. The pearson correlation coefficient and variable importance
in the projection were used for comparison. Salt concentration estimation models were developed using par-
tial least squares regression (PLSR), support vector regression (SVR), and a random forest (RF) model. The
slopes of fit were calculated and compared. The results showed that the reflectance spectra decreased and
then increased with increasing salt concentration. The accuracy of RF and SVR was better than that of
PLSR, and the R, RMSEc, and RPDc values of the RF-LR-FD model were 0.9703, 0.0466, and 16.8350, re-
spectively. Spectral analysis combined with machine learning models has potential for the nondestructive
detection of salt in murals.

Keywords: mural disruption, salt content, spectral transformation function, machine learning.
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Ipeonoscen memoo 6bIcMpoco U Hepaspyuarue2o OnpedesieHius CoO0epICanus coell 6 POCRUCAX C UC-
NONb306AHUEM SUNEPCNEKMPATbHBIX U300padcenuti. CnexmpanbHbie OaHHble 00PA3YO8 HACMEHHOU POCRUCU
COOPambL ¢ NOMOWDBIO CHEKMPOPAOUOMEMPA U NPEISAPUMENLHO 00paboOmanvl nymem YOaileHus: modex us-
qaoma ¢ nomowwio cenaxcusanuss Casuykozo—I ones. Heobpabomannvie cnekmpul no0gepeanucs yOaieHuio
KOHMUHyyma, nozapugmuposanuro oopamuoi (LR) 0bpabomku, Koppexyuu MHOICECMBEHHO20 PACCEesHUs
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AHHOTALIMY AHIJIOSI3bIYHBIX CTATEN 808-2

U NpeodPA308aHUI CIMAHOAPMHOU HOPMATLHOU NEPEMEHHOU 8 COYemanuu ¢ Oup@epeHyuposanuem nepeozo
U 8Mopo2o NopsoKa 01 noayuenus 15 npeobpazoeanHvlx cnekmpos paziuunvlx gopm. Cnexmpul 00pazyos
npu paA3IUYHBIX YPOBHAX KOHYSHMPAYUU KIACCUDUYUPOBAHDL, XapaKmepucmuieckue OIuHbl 60H U361eYeHbl
€ UCNOABL308AHUEM pa3zideneHus Habopa 0OpaA3Y08 HA OCHOBe COBMECIHO20 paccmosanus X—Y u areopumma
nOCIe008aMeNbHO20 NPOEYUPOBaAHUs. Jlisi cpasHeHus UCnoIb308ansl Kosgpouyuenm xoppensyuu Ilupcona
u nepemennas 6 npoexyuu. Mooenu oyenku KOHyeHmpayuu coau pazpabomanvl ¢ UCNOAb308AHUEM YACTIUY-
Holl peepeccuu HaumeHbuux keaopamos (PLSR), peepeccuu onopruvix eexmopos (SVR) u modenu ciyuaiino-
2o neca (RF). Haxnonvl nooconku paccuumarvl u conocmasienvl. 11okazano, 4mo uHmMeHCUsHOCHb ChekK-
Mpo8 OMPadNiCeHuss YMEeHbUAAACh, d 3aMeM VEeIUUUsalacs ¢ pocmom Konyenmpayuu coau. Tounocms RF
u SVR ayuwe, uem PLSR, onst modenu RF-LR-FD Rc® = 0.9703, RMSE = 0.0466 u RPD = 16.8350.

Knruesvie cnosa: paspywenue ¢pecku, cooepoicanue conetl, QYHKYUs CneKmpaibHo2o npeoopasosa-
HUSl, MAUWUHHOE 0OyyeHue.

Introduction. Ancient murals, which represent a balance between research and artistic value, are im-
portant cultural and religious treasures from different historical periods [1]; however, they are affected by
water and salt transport in the environment, which is not conducive to their survival. Soluble Na;SO4 in mu-
rals changes with temperature and humidity in the environment, repeatedly dissolving and swelling, which
destroys the structural layer of the murals; additionally, salt crystals accumulate on the pigment surface,
causing irreversible damage such as peeling [2, 3]. Existing salt tests are performed by field sampling fol-
lowed by drenching analysis using ion chromatography analysers [4]. However, the costs of equipment and
personnel are high, and the sampling and analysis processes generate contamination as well as damage to
murals.

Compared to traditional methods, hyperspectral remote sensing, which can be used to predict the salt
content in murals, provides a low-cost, flexible, and fast detection method without reagents [5] and is highly
efficient and nondestructive. Spectral analysis techniques have proven to be effective tools that are suitable
for salt detection in vegetation and soil. Garcia-Martin et al. [6] applied standard normal variate (SNV) trans-
formation, multiplicative scattering correction (MSC), and derivative transformation to the reflectance spec-
tra of Jatropha roots to differentiate the rootstocks based on high or low Cu concentration. Amer et al. [7]
applied the normalized pigment chlorophyll ratio index and pigment-specific simple ratio to monitor trace
metal salt concentrations in different wheat growth states and confirmed the feasibility of using hyperspec-
tral indices to monitor the strong correlation between salt concentrations and vegetation spectra. Mashimbye
et al. [8] established an empirical relationship between soil conductivity and spectral characteristics in South
Africa using a single band, normalized difference salinity index, partial least squares, and bagging partial
least squares methods. Tan et al. [9] performed random forest (RF) and support vector machine (SVM) mod-
elling prediction after the augmented transformation of farmland spectra from Xuzhou, Jiangsu, China, and
the soluble salt concentrations of Zn, Cr, As, and Pb were predicted.

However, salt on a mural differs greatly from salt in natural soil, the mural production process is com-
plex, the mural surface is smoother and the spectral mixing between the salt in mural pigment layers is dif-
ferent from that between the various constituents in the ground and the pigment layers. Therefore, it is nec-
essary to explore the relationship between the reflectance spectra and the salt content in murals. The purpose
of this study is to investigate the feasibility of using hyperspectral techniques to predict salt concentrations in
mural samples. The specific objectives are to explore the variation relationship between reflectance and the
salt content, to analyse the effect of different spectral forms on the salt prediction accuracy after combined
transformation, and to evaluate the performance of three regressors, partial least squares regression (PLSR),
support vector regression (SVR) and random forest (RF) model, for mural salt concentration prediction after
feature band extraction.

Materials and methods. Dunhuang sand was obtained from Dunhuang, Shanxi, China, mixed well with
loess, clarified board soil, wheat straw, and hemp rope, moistened with a small amount of water, and then
sealed with cling film for 24 h. The mud layer of the mural consisted of 60 moulds filled with mud. Each
mould had a diameter of 9 cm and a height of 1.8 cm, and sulfuric acid paper was placed underneath the mud
layer. To restore the saline environment of the real mural, anhydrous Na,SO4 was weighed at a salt-to-soil
ratio of 0—1% and a grade difference of 0.05%. Twenty concentration levels were set, and three samples
were prepared at each concentration level, corresponding to 60 mural samples. The salts were completely
dissolved in ionized water, mixed well with the sample mud layer, and dried naturally under typical inside
conditions during a period when the moisture and temperature of the samples were monitored using a soil
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detector MDN-6813. After complete drying, salt-containing mural samples were obtained, and the concen-
tration of Na;SO4 was the only variable.

The mural spectral reflectance was determined using an ASD-FieldSpec4HI-RES spectroradiometer
(Analytical Spectroscopy Equipment, USA). The performance parameters of the instrument are shown
in Table 1. Standard reflectance calibration was performed after instrument warm-up. The sample was pad-
ded with black flannel, and the contact probe and its light source were placed vertically upside down on the
ventral surface of the sample. The probe was rotated 90° parallel to the surface of the sample, and measure-
ments were repeatedly collected in 4 directions, with the average value used as the measured spectrum. The
whole process was performed in a dark room.

TABLE 1. Performance Parameters of the ASD-FieldSpec4 Spectroradiometer

Spectral range, nm 350-2500 Band 2151
Sampling 1.4 @ 350-1000 nm; .
interval, nm 2 @ 1001-2500 nm size, cm 12.7x35.6x29.2

350-1000 nm @ 3 nm;

Spectral resolution, nm 1001-2500 nm @ 8 nm

weight, kg 5.44

ASD-FieldSpec4HI-RES measures the radiance of ground objects, which is generally recorded as
a digital number (DN). The DN value is influenced by the surface conditions of the real object and the accu-
racy of the sensor, such as the light environment at the collection site, the radiation resolution of the sensor,
and the emissivity of the object. To attenuate the effect of drift error of the sensor response system with the
variation in the incidence angle, the acquired DN values of the murals were converted to sample reflectance,
and standard reflectance correction was performed every 10 min based on darkroom measurements. The cor-
responding formula [10] is as follows:

_p. DNLO) 0

YT DN

where Ry and Rcp are the mural and the calibration panel reflectance, respectively, the latter being 99%, and
DNwm and DNcp are the DN values of the mural and calibration panel, respectively. The obtained reflectance
is optimized by breakpoint elimination and spectral averaging in the subsidiary software. Savitzky—Golay fil-
tering is used to remove the high-frequency burr noise from each reflection spectrum. The filter window is
set to 21, and a second-order polynomial is used for spectral smoothing while retaining the linear trend and
salt signal characteristics. To improve the spectral signal-to-noise ratio and highlight the salt-sensitive spec-
tral properties, four enhancement transformations of the reflectance spectra are performed — namely, contin-
uum removal (CR), the logarithm of the reciprocal (LR) transformation, MSC, and SNV transformation —
and combined with two differential forms — namely, a first-order derivative (FD) and a second-order deriva-
tive (SD) — to obtain 15 spectral forms with different feature enhancement strategies. The advantage of the
combined transformation strategy is that the effects arising from rough surface undulations, light range scat-
tering, and baseline drift of the sample can be removed, the local spectral response differences can be en-
hanced, and the specific signals of the component spectra can be amplified. By comparing the modelling ac-
curacy for the 15 spectral forms, the most suitable spectral form for mural salt detection is identified.

Sample-set partitioning based on the joint X—Y distance (SPXY) was proposed by Galvao et al. [11] as
an approach for spectral data segmentation. Wang et al. [12] implemented SPXY for the segmentation of wa-
termelon NIR spectral data and validated the accuracy of the model for predicting the soluble solids content
of watermelon. SPXY is used to calculate the spacing between the dependent variable, different salt concen-
trations in samples (Y), and the independent variable, a 350-2500 nm range spectral matrix for samples (X).
It is ensured that the spectra and salt content have the same weight in sample segmentation to improve the
confidence of sample division. After three consecutive days of spectral measurements, 280 spectral curves
from 46 samples were obtained with SPXY as the calibration set, and 128 spectral curves from 28 samples
were used as the validation set.

Hyperspectral data contain a large amount of background noise, which reduces the processing efficiency
and prediction accuracy; additionally, the salt signal is removed from redundant spectral information by
band screening. The successive projection algorithm (SPA) is a space vector covariance minimization and
forward variable selection method that was proposed by Mario Cesar Ugulino Araujo et al. [13], whereby
they extracted bands with the smallest root mean square error by calculating the magnitude of the projection
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vector between band pairs. Liang et al. [14] used the SPA method to predict the level of mycotoxin deoxy-
nivalenol (DON) in FHB-infected wheat grains, and the accuracy of the model reached 97%. The Pearson
correlation coefficient (PCC) and variable importance in the projection (VIP) are two typical spectral band
selection metrics for comparison, which are used to verify the practicability of SPA in the extraction of mu-
ral salt spectral bands.

Based on the feature bands extracted under different spectral forms, a classical linear regression (PLSR)
model was combined with two nonlinear machine learning models (SVR and RF) and used to evaluate the
salt levels in murals. PLSR, which represents the linear relationship between multiple sets of independent
and dependent variables projected into a new space [15], combines the advantages of multiple linear regres-
sion and principal component regression. Li et al. [16] demonstrated the applicability of PLSR in a statistical
analysis of soil AS. SVR is a structural risk minimization-based machine learning model that uses a cross-
validation grid search to determine the penalty factor ¢ and obtain a hyperplane with minimal expected risk
based on multiple kernel functions for high-dimensional, nonlinear problems [17, 18]. The kernel function
selected for this study was the radial basis function (RBF) with a penalty filter ¢ = 1. The RF method is
a modelling approach consisting of multiple decision trees for classification by voting through bootstrap
resampling, where each randomly selected subsample and its corresponding subattributes can be used to
generate a regression tree, thus forming a forest, with results obtained by voting [19]. High accuracy in salt
concentration monitoring can be achieved using hyperspectral techniques [20]. In this paper, two important
parameters were set before using the RF algorithm. One is the number of trees in the forest, which was set
to 500. The other is the number of root nodes, which was adjusted based on 10 replicate experiments, was
used to select the parameters when the calibration set R’ was optimal. The values ranged between 3 and 12
for 15 data sets.

Three goodness-of-fit statistics, the coefficient of determination (R?), root mean square error (RMSE),
and relative percent deviation (RPD) were used to evaluate the calibration and validation effects of the mod-
el in terms of stability, precision and confidence. The deviation of the slope of fit (SLOPE) from the 1:1 line
between the true and predicted concentrations under different conditions was calculated to assist in judging
the estimation effect. The larger the R* and RPD are, the smaller the RMSE, and the closer to 1 the SLOPE
is, the higher the model quality, and vice versa.

Results and discussion. The sample spectra of murals at seven salt concentration levels were selected
from the total data, and the sample reflectance curves are shown in Fig. 1. For different salt concentrations,
the peak and valley positions and curve profile trends changed minimally, and three asymmetric absorption val-
leys were observed at approximately 1420, 1940, and 2210 nm. The only significant change associated with the
concentration was the magnitude of reflectance. With increasing salt concentration, reflectance first de-
creased and then increased sharply. Na" has a strong ability to absorb water, forming compounds that en-
hance the absorption of electromagnetic waves, and in high-concentration salt-water transport, the salt crys-
tals gradually become saturated and precipitate, increasing the reflectance [21]. The reflectance is low in the
visible-near infrared range at a salt concentration of 0.3% and increases sharply at concentrations higher than
0.6%, with a large difference in reflectance of 0.75 and 0.6% between the two salt concentration samples.
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Fig. 1. Spectral reflection curves of mural samples at different salt concentrations.
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According to the principle of RMSE minimization, the SPA algorithm extracts different numbers of
characteristic bands from 15 spectral forms, and the results are shown in Table 2. The extracted bands are
concentrated in the following ranges 350-420, 1880—-1950, 1100-1180, and 2080-2150 nm and the corre-
sponding positions can be found at the peaks and valleys in the full spectrum. LR is relatively sensitive to the
SPA, and a total of 32 bands are proposed, accounting for 29.4% of all results. The process of characteristic
band extraction based on SPA is shown. Figure 2 shows that when the number of SPA-based variables is 12,
the RMSE is only 0.0841, the minimum value. Figure 3 shows the labelled positions of the 12 bands extract-
ed based on SPA-LR-FD in the spectrum.

TABLE 2. SPA Feature Wavelength Selection Based on Different Spectral Transformation Strategies

Spectral transformation form | Differential orders Wavelength range, nm
— 1988, 1800, 2085, 1907, 1945
R FD 1915, 1943, 372, 1885
SD 1918, 1794, 1115, 1667, 402, 2103, 633, 1256, 2451
- 1444, 1907, 403, 1944, 391, 376
CR FD 1937, 1914, 1884
SD 1896, 1730, 351, 359, 372, 350, 376, 354, 368, 1933
- 1738, 1093, 2086, 391, 587, 376, 361
D 1422, 2067, 1928, 1830, 402, 1679, 399, 1031, 2456,
LR 1256, 1659, 2282
D 1919, 1794, 1115, 2268, 1102, 884, 922, 830, 1641,
1343, 1016, 423, 2156
- 418, 1946, 1907, 2100, 1100, 1987, 858
MSC FD 795, 1708, 579, 1681, 384, 2419, 372, 410
SD 1355, 727, 788, 2152, 660, 922, 2328, 649, 1115
- 1737, 391, 1397, 2090, 382, 1943
SNV FD 2109, 1362, 1181, 1314, 1661, 2477
SD 1794, 369, 1013, 489
RMSE
0.16 | 1
0.14
0.12 +
0.10 | 1
0.08

0 5 10 15

20 25 30

Number of variables included in the LR-FD model

Fig. 2. Relationship between the number of SPA selection variables
and the RMSE of the LR-FD model.

The feature bands extracted by SPA were used as independent variables to establish a mapping relation-
ship with the salt concentration. A total of 45 prediction models were developed based on 15 spectral forms
using three regressors: PLSR, SVR, and RF. The models with the best accuracy were selected to compare the
effects of different spectral transformation strategies on the models and find the most suitable spectral forms
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for mural salt detection. The accuracy of PLSR is shown in Table 3. Rc? values of 0.9086 and 0.9028 were
achieved using the LR-FD and MSC-FD models, respectively. These were the only two groups in the PLSR
model that achieved an R¢? that exceeded 0.9. For the validation set of MSC-FD, values of 0.9298, 0.0778,
and 7.1255 were obtained for R)?, RMSEy, and RPDy, respectively, and are the best in each case. This ap-
proach was considered the most applicable for PLSR prediction. The SVR accuracy results in Table 4 sug-
gest that the indices after FD or SD treatment were improved compared with those for PLSR. In particular,
an R¢? of 0.9354 and an RMSEc of only 0.0802 were achieved using SVR-LR-FD. However, the improve-
ment of SVR in terms of the accuracy of the validation set was not obvious, and there were three sets of data
that could be applicable. The accuracy of the applied RF model in Table 5 was higher than that of PLSR and
SVR, with an R¢? value that exceeded 0.9 for 12 of the 15 sets of spectra. RF-R-SD compensated for the
lower R)? of the other regressors and achieved a double-digit RPDy of 11.6932. RF is more reliable in mural
salt estimation, with the calibration set of RF-LR-FD leading to three indicators with the best results among
the 45 datasets.
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Fig. 3. SPA characteristic band selection results obtained with the LR-FD model.

TABLE 3. PLSR Model and Accuracy Parameters

Spectral trans- | Differential Calibration set Validation set
formation form | orders Rc? RMSEc | RPDc Ry? RMSEy | RPDy
- 0.8176 0.1266 2.7406 0.8245 0.1231 2.8497
R FD 0.8413 0.1182 3.1512 0.8901 0.0974 4.5487
SD 0.8619 0.1101 3.6210 0.8920 0.0965 4.6305
— 0.7969 0.1335 2.4615 0.8241 0.1232 2.8418
CR FD 0.8246 0.1241 2.8504 0.8728 0.1048 3.9308
SD 0.8781 0.1035 4.1002 0.8122 0.1273 2.6630
- 0.7865 0.1369 2.3419 0.8552 0.1118 3.4528
LR FD 0.9086 0.0896 5.4687 0.8938 0.0957 4.7087
SD 0.7888 0.1362 2.3669 0.8758 0.1035 4.0256
- 0.8838 0.1010 4.3024 0.9047 0.0907 5.2474
MSC FD 0.9028 0.0924 5.1417 0.9298 0.0778 7.1255
SD 0.7829 0.1380 2.3036 0.8833 0.1004 4.2836
— 0.8700 0.1068 3.8456 0.9167 0.0848 6.0032
SNV FD 0.8579 0.1117 3.5178 0.9003 0.0928 5.0152
SD 0.2201 0.2616 0.6411 0.4264 0.2225 0.8717
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TABLE 4. SVR Model and Accuracy Parameters

Spectral transfor- Differential Calibration set Validation set
mation form orders Rc? RMSEc RPDc Ry? RMSEy | RPDy
- 0.5358 0.2145 1.0771 —1.7260 0.2424 0.1834
R FD 0.8377 0.1197 3.0805 0.8117 0.1178 2.6553
SD 0.8964 0.0962 4.8280 0.8981 0.0860 4.9068
- 0.7694 0.1449 2.1685 0.7081 0.1261 1.7129
CR FD 0.8520 0.1162 3.3784 0.8433 0.0996 3.1908
SD 0.8940 0.0987 4.7153 0.7290 0.1342 1.8450
- 0.6002 0.1899 1.2506 —0.5220 0.1908 0.3285
LR FD 0.9354 0.0802 7.7375 0.8817 0.0881 4.2265
SD 0.8938 0.1012 4.7092 0.8117 0.1069 2.6553
- 0.8246 0.1337 2.8501 0.6974 0.1170 1.6523
MSC FD 0.9156 0.0899 5.9230 0.9084 0.0800 5.4585
SD 0.8466 0.1233 3.2584 0.8769 0.0941 4.0617
- 0.8748 0.1099 3.9935 0.8251 0.0968 2.8588
SNV FD 0.8848 0.1045 4.3395 0.8718 0.0892 3.9002
SD 0.2926 0.2502 0.7068 —2.6380 0.2688 0.1374

TABLE 5. RF Model and Accuracy Parameters

Spectral transfor- Differential Calibration set Validation set

mation form orders R RMSEc | RPDc Ry? RMSEy | RPDy
- 0.8413 0.0943 3.1506 0.7993 0.0953 2.4907

R FD 0.9542 0.0590 | 10.9266 0.9374 0.0625 7.9911
SD 0.9594 0.0503 12.3122 0.9572 0.0567 | 11.6932

- 0.9456 0.0638 9.1844 0.9239 0.0677 6.5720
CR FD 0.9617 0.0551 13.0378 0.9519 0.0566 | 10.3864

SD 0.9683 0.0492 | 15.7629 0.9447 0.0569 9.0481

- 0.8321 0.0971 2.9783 0.8825 0.0788 4.2557

LR FD 0.9703 0.0466 | 16.8350 0.9451 0.0576 9.1075

SD 0.9270 0.0699 6.8521 0.9101 0.0701 5.5599

- 0.9193 0.0702 6.1920 0.9004 0.0717 5.0191

MSC FD 0.9354 0.0646 7.7399 0.9166 0.0669 5.9945
SD 0.9120 0.0714 5.6792 0.8700 0.0779 3.8473

- 0.9189 0.0724 6.1667 0.9245 0.0640 6.6181

SNV FD 0.9366 0.0650 7.8827 0.9355 0.0613 7.7471

SD 0.5197 0.1323 1.0410 0.5752 0.1213 1.1769

The predicted concentration values from the calibration and validation sets obtained for different esti-
mation models were compared with the true concentration values; then, scatter plots were constructed, and
the slopes of the fitted lines were calculated. The spectra generated using the LR-FD strategy display high
applicability among those obtained with the three estimation methods, and Fig. 4 shows the effects of the
three regressors. The SLOPE variable for the SVR regressor is close to the true value of 1 but biased in the
0.4-0.7% concentration prediction. PLSR yields the most pronounced dispersion trend for the scattered
points across the full concentration range. Although the SLOPE of the two fits of the RF regressor is slightly
lower than that of SVR, SVR is more reliable in terms of the measured and predicted scatter distributions.
The four metrics Rc?, RMSEc, RPD¢, and SLOPE( are shown to comprehensively assess the model quality.
The following conclusions can be drawn from the plots of the four indicators in Fig. 5. The spectra generated
using the SNV-SD strategy are unsuitable for all three methods of salt estimation and have low sensitivity to
salt transformation. The difference between FD and SD combined with spectral transformation is not obvi-
ous, and the high-order differential transformation has little effect on accuracy improvement. LR-FD is a re-
liable form of spectral transformation for mural salt estimation and is applicable to all three regressors. The
SPA feature-based RF-LR-FD model with waveband extraction provides stability, accuracy, and credibility.
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Fig. 5. Comparison of the magnitudes of the four metrics (a) R?, (b) RMSE, (c) RPD,

and (d) SLOPE for the calibration set under different spectral change strategies.



808-9 AHHOTALUU AHIJIOSI3bIYHBIX CTATEN

To verify the applicability of SPA, two other variable selection methods, namely, PCC and VIP, were
used to extract the salt signal. PLSR is applied to the original output of spectral inversion, and the results are
shown in Table 6. All band extraction methods are proven to be effective, and SPA displays the best model-
ling effect, with comparatively fewer bands extracted.

TABLE 6. Model Comparison Based on Different Spectral Variable Extraction Methods

Calibration set Validation set

Rc> |RMSEc| RPDc [SLOPEc| R/ RMSEy | RPDy |SLOPEy
601 Full band | 0.6297 | 0.1803 | 1.6433 | 0.8935 | 0.6611 | 0.1710 | 1.7177 | 0.8629

Variables | Model

12 PCC 0.6657 | 0.1713 | 1.7294 | 0.9039 | 0.6775 | 0.1668 | 1.7609 | 0.8706
11 SPA 0.8508 | 0.1144 | 2.5886 | 0.9571 | 0.8594 | 0.1102 | 2.6665 | 0.9987
40 VIP 0.6436 | 0.1769 | 1.6751 | 0.8976 | 0.5582 | 0.1953 | 1.5044 | 0.8206

Conclusions. The highly time-efficient and nondestructive determination of salt accumulation levels in
murals is important for assessing the survival status of murals and level of peeling protection. In the spectral
range of 350-2500 nm, 45 mural salt concentration prediction models were developed by using 15 enhanced
transformation strategies and SPA to extract features and combine three regressors: PLSR, SVR, and RF.
A correlation exists between the reflectance spectra and salt concentration, with the first decrease followed
by a significant increase in mural reflectance as the salt concentration increases. Through analytical compari-
son, SPA displayed more advantages than PCC and VIP in the extraction of mural salt feature bands. The
RF-LR-FD model yielded high Rc* and R)? accuracies of 0.9703 and 0.9451, respectively, indicating that it
is suitable for quantitative salt estimation in murals. The overall results confirm the preliminary feasibility of
using hyperspectral techniques to determine the salt content of murals in a highly time-efficient and nonde-
structive manner. Based on this approach, visual assessments and inversions of mural salt distribution can be
explored in depth in the future.
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