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Liver cancer and healthy individual serum samples were compared based on their spectral features ac-
quired by Raman and fluorescence spectroscopy to initially establish spectral features that can be consid-
ered spectral markers for liver cancer diagnosis. Intensity differences of the characteristic peaks of caro-
tenes, proteins, and lipids in the Raman spectra were clearly observed in liver cancer patient serum samples 
compared to those of normal human serum samples. The changes in the serum fluorescence profiles of liver 
cancer patients were also analyzed. To probe the capacity and contrast of Raman spectroscopy as an analyt-
ical implement for the early diagnosis of liver cancer, principal component analysis was used to analyze the 
Raman spectra of liver cancer patients and healthy individuals. Furthermore, partial least squares-
discriminant analysis was performed to compare the diagnostic performances of Raman spectroscopy for the 
classification of disease samples and healthy samples. Compared with existing diagnostic techniques, the 
Raman spectroscopy technique has many advantages such as extremely low sample requirements, ease  
of use, and ideal screening procedures. Thus, Raman spectroscopy has great potential for development as  
a powerful tool for distinguishing between healthy and liver cancer serum samples. 

Keywords: Raman spectroscopy, fluorescence spectroscopy, liver cancer, principal component analysis, 
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Для определения спектральных маркеров рака печени образцы сыворотки крови здоровых и 
больных раком печени людей сравнивали на основе их спектральных характеристик, полученных с 
помощью спектров флуоресценции и комбинационного рассеяния света (КР). Различия в интенсив-
ностях характеристических пиков каротинов, белков и липидов в спектрах КР наблюдались для об-
разцов сыворотки крови больных раком печени в сравнении с образцами сыворотки здоровых людей. 
Проанализированы изменения профилей флуоресценции сыворотки крови больных раком печени с ис-
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пользованием анализа главных компонент. Для исследования возможности применения КР-
спектроскопии в качестве аналитического инструмента для ранней диагностики рака печени прове-
ден анализ КР-спектров образцов сыворотки крови больных раком печени и здоровых людей мето-
дом главных компонент (PCA) и частичный дискриминантный анализ методом наименьших квадра-
тов (PLS-DA). По сравнению с существующими методами диагностики КР-спектроскопия обладает 
преимуществами, такими как чрезвычайно низкие требования к образцам, простота использования 
и идеальные процедуры скрининга, и может быть использована в качестве инструмента для разли-
чения здоровых и пораженных раком печени образцов сыворотки крови. 

Ключевые слова: спектроскопия комбинационного рассеяния света, флуоресцентная спектро-
скопия, рак печени, анализ главных компонент, частичный дискриминантный анализ методом 
наименьших квадратов. 

 
Introduction. Cancer is a major public health problem worldwide [1, 2]. According to the latest data 

from the World Cancer Report 2020 of the International Agency for Research on Cancer (IARC), in 2020, 
there were 19.29 million new cancer cases worldwide, including 10.06 million males and 9.23 million fe-
males, and 905,677 new cases of liver cancer accounted for 4.7% of all the new cancers worldwide, ranking 
fifth. There were 9.96 million cancer deaths worldwide in 2020, including 5.53 million males and 4.43 mil-
lion females; of these, 830,180 liver cancer deaths, representing 8.3% of cancer deaths, ranked third [2–5]. 
At present, the treatment of liver cancer still has a low radical cure rate, high recurrence rate, and poor prog-
nosis. The main reason for the unsatisfactory efficacy of liver cancer is that the diagnosis is late. Approxi-
mately 70–80% of patients with liver cancer have reached the late stage of the disease, and effective radical 
treatment cannot be performed. As a result, the early diagnosis of liver cancer is extremely important [4–8]. 
At present, the monitoring and screening of high-risk groups are the main early diagnosis methods of liver 
cancer. The genetic susceptibility for liver cancer, the great differences in the morphological diversity, the 
micro-environment, and other factors as well as the rapid development of the disease create difficulties for 
the early diagnosis of liver cancer. Most patients with liver cancer are diagnosed late and are unable to be 
cured [5–7]. Using various tests to improve the detection rate has great significance in improving the treat-
ment effect of liver cancer, prolonging patient life, and ensuring patient quality of life [6–9]. Currently, the 
traditional methods for diagnosing liver cancer include ultrasound imaging (US), computed tomography 
(CT), magnetic resonance imaging (MRI), and detection of serum alpha-fetoprotein (AFP) levels. However, 
the use of imaging to examine liver cancer is highly dependent on the experience of the operator, and it has a 
limited ability to distinguish liver cancer cells. A commonly used detection method to diagnose liver cancer 
is by detecting the serum AFP content, but the sensitivity of the AFP content is very low and cannot be the 
most effective means for early diagnosis [6–9]. Therefore, it is particularly important to design an economi-
cal and simple test method that can quickly and accurately detect and distinguish between early liver cancer 
patients and normal people. Raman and fluorescence spectroscopy techniques are potential tools for disease 
diagnosis. In recent years, the use of these techniques in biological studies has increased considerably, and 
clinical investigations relevant to cancer detection by spectroscopic means have attracted particular attention 
from both clinical and non-clinical researchers. Raman scattering detects the vibrational frequency of the 
molecular chemical bonds, and this intrinsic property causes Raman scattering to have an ultra-high chemi-
cal resolution ability. It is also important that it does not require the addition of external labels to distinguish 
different components and that it is a non-labeling technique [10–12]. In the medical field, the occurrence of 
disease often starts from subtle variations inside the molecules, which are difficult to detect by routine clini-
cal means, such as changes in the structures of proteins, fats, sugars and nucleic acids [13–15]. However, 
subtle changes in the biological internal molecules can be well detected by Raman spectroscopy, thus 
providing great guidance and help for the early diagnosis of diseases. The Raman spectra of normal human 
serum (75 cases) and liver cancer serum (69 cases) were collected. The differences between the normal hu-
man and liver cancer serum spectra were analyzed, and the molecular structure changes of the main compo-
nents are discussed. The effect of the fluorescence spectrum on the Raman spectra was analyzed. The Raman 
spectra were identified using principal component analysis (PCA) and partial least squares-discriminant 
analysis (PLS-DA) to facilitate the application of Raman spectra for clinical tumor diagnosis. 

Materials and methods. Raman spectra were obtained by a laser microscopic confocal Raman spec-
trometer (ANDOR SR-500, UK). The focal length was 500 mm, a 1200 l/mm grating (Blaze 500) was used 
in the experiment, and the spectral resolution was 1 cm−1. The laser was a 532 nm green solid-state laser 
(Cobolt Samba 532 nm, Cobolt AB Solna, Sweden). A thermoelectric cooled charge-coupled device (CCD) 
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camera was equipped with a back-illuminated, deep depletion CDD chip (Andor iDus 416, DU416A LDC-DD, 
Andor Technology Ltd., Belfast, UK) to collect the sample surface and scattered signals, and the camera was 
cooled to −70°C to reduce noise. A microscope was used (Leica DM 2700m, Leica microsystems Wetzlar 
GmbH) with a 50× (NA = 0.5) objective. The edge filter was used to filter stray light. Spectral data were col-
lected using the Andor Solis software (Andor Technology). Serum samples were provided by the Depart-
ment of Thoracic Surgery, the First People's Hospital of Yunnan Province. All of the participants were in-
formed and signed consent forms for this study. Ethical approval was obtained by the Biomedical Research 
Ethics Committee of Yunnan Normal University (No. 2021-14). Serum samples from 69 liver cancer pa-
tients and 75 healthy subjects were collected. Sample information is listed in Table 1. Three milliliters of ve-
nous blood were drawn from each participant before breakfast and centrifuged at 3000 r/min for 20 min. 
Then, 1.5 mL of upper serum was collected, sealed in an Eppendorf tube, and placed in a refrigerator (tem-
perature 4°C) for use. For the Raman spectroscopy tests, we used a pipette gun to draw 30 μL of sample and 
deposit it on a clean glass slide (it was soaked in aqua regia for 1 h, then washed with a large amount of ul-
trapure water, soaked in acetone solution for 1 h, cleaned with a large amount of ultrapure water, and then 
blown dry), and then it was dried in an M3 ultraclean chamber. 

 

TABLE 1. Information about Patients with Liver Cancer and Healthy Individuals 
 

Patient Mean age ± SD 
Sex

Male, n Female, n 
With liver cancer 55 ± 10 40 29 

Healthy individuals 39 ± 12 44 31 
 

The ANDOR SR-500-type Raman spectrometer laser light path was adjusted, a 532 nm excitation 
wavelength laser was used, and the entire experimental process was performed in the M3 ultraclean chamber 
laboratory. The spectra were collected by scanning for 15 s and superimposing three scans, with a spectral 
measurement range of 800–1800 cm–1. The spectra in this range covered most of the characteristic Raman 
peaks of the analytes studied, with a slit width set at 100 µm and a laser power of approximately 1.16 mW 
on the sample. In the acquisition of the Raman spectra of the fluorescent substances, fluorescence was an 
important interference factor, and Raman scattering of the serum also had a certain degree of fluorescence 
interference. Interference caused by fluorescence occurred in the acquisition of the Raman spectra of the se-
rum, so later, we performed fluorescence spectroscopy analysis. To eliminate the spiking effects introduced 
by cosmic radiation, a running median filter was applied. The entire Raman study flowchart is shown in Fig. 1.  

 

 

Fig. 1. Flow chart of Raman spectroscopy acquisition and analysis of serum samples. 
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PCA is a widely used multivariate analysis technique that can discriminate Raman spectra originating 
from biological systems [7, 16–22]. Two groups of spectra were simultaneously analyzed using PCA to re-
duce the spectral dataset to a smaller number of variables (principal components (PCs)) that describe the ma-
jority of the variance in the spectral dataset [16]. PLS-DA is a supervised classification model that was per-
formed on the spectral data of samples from liver cancer and healthy individuals as X-variables (predictors) 
and their class information as Y-variables [22–26]. The second-derivative spectrum can improve the spectral 
resolution by amplifying small differences [6]. Second-derivative Raman spectra were obtained by the  
Savitzky–Golay algorithm in the OMNIC 8.2 software (Thermo Scientific). PCA and PLS-DA analysis of 
the second-derivative Raman spectra were performed using the Unscrambler X 10.4 software (Camo Soft-
ware AS, Oslo, Norway). 

Results and discussion. Raman spectra of serum samples. Figure 2a shows the Raman spectra of the 
serum samples from 75 healthy individuals. It can be seen that the peak positions of the Raman spectra were 
the same, and the intensity of each Raman peak changed slightly. This occurred because the experimental 
conditions could not be exactly the same during the test – for example, the laser power of the sample fluctu-
ated slightly due to inconsistent focusing each time, which affected the intensity of the detection signal and 
moved the spectrum curve up and down. Figure 2b shows the Raman spectra of serum samples from 69 pa-
tients with liver cancer. The spectra showed that the Raman spectra of the serum samples from patients with 
liver cancer had the same peak positions. The Raman peak intensities of the serum from patients with liver 
cancer were significantly different from the characteristic peak intensities of the serum Raman spectra from 
normal subjects.  
 

 
 

Fig. 2. Raman spectra of serum samples from 75 healthy individuals (a)  
and from 69 patients with liver cancer (b). 

 
In order to compare the serum Raman spectra of patients with liver cancer and normal subjects, we  

averaged the spectra (Fig. 3a). Figure 3a shows that the Raman characteristic peaks of liver cancer serum and 
normal serum mainly occurred in the range of 600–1653 cm−1. The main Raman peaks were caused by se-
rum proteins, amino acids, lipids, sugars, carbohydrates, and other substances, which occurred in the ranges 
of 1003, 1127, 1156, 1301, 1337, 1447, 1519, and 1653 cm−1. The peak assignments corresponding to their 
Raman spectra are shown in Table 2. To find the difference between the serum Raman spectra of liver cancer 
patients and healthy individuals, differential spectra were found by subtraction, as shown in Fig. 3b. In liver 
cancer patients, all the component contents were significantly reduced compared with those in healthy indi-
viduals. The three peaks with the largest differences, due to phenylalanine, protein, carotene, carotenoids, 
and porphyrin content variations [27], were 1003, 1156, and 1519 cm−1. Two high-intensity Raman peaks at 
1156 and 1519 cm−1 were due to the resonance Raman effect of β-carotene being strongly enhanced under 
excitation at 532 nm [28, 29]. The decrease in β-carotene in the diseased serum samples was consistent with 
previous research [29]. Weak difference peaks appeared at 962 cm−1 (C-O stretching of ribose) [22], 1127 cm−1 
(C-N stretching protein), 1297 cm−1 (CH2 deformation fatty acids), 1335 cm−1 (CH3 CH2 wagging, collagen 
(protein assignment), and nucleic acids), 1447 cm−1 (CH2 CH3 bending mode and CH2 deformation of pro-
teins and lipids), 1584 cm−1 (C=C bending mode of phenylalanine) [10], and 1653 cm−1 (carbonyl stretching 
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(C=O), C=C stretching, and protein amide I absorption) [30, 31]. Patients with malignant tumors are mostly 
in a high metabolic state, the amounts of protein synthesis and catabolism in the body increase, and the me-
tabolites produced and various material components in the blood also change. Amino acids are involved in 
protein synthesis and catabolism, and their compositions and concentrations can reflect the metabolic state. 
Hyperproliferation of tumor cells causes changes in proteins, amino acids, and other components in body 
fluid. Rapid growth and unlimited proliferation of cancer cells require a large quantity of nutritional sub-
strates, especially amino acids, to be consumed, inevitably leading to changes in the amino acid metabolic 
database of cancer tissue. 

 
TABLE 2. Spectral Peaks and their Assignments 

 

Peak, cm–1 Vibrational mode Major assignment 
962 symmetric stretching vibration phoisphate [10]

1003 C-C skeletal phenylalanine [32, 10]  
1127 C-N stretching [33] protein [32] 

1156 
C-C, C-N stretching, in-plane vibrations  
of the conjugated=C-C= [34], β-carotene  
accumulation (C=C stretch mode) [38]

protein [32], carotenoids, most 
likely a cellular pigment [35–37],  
glycogen [39]

1297 CH2 deformation fatty acids 

1301 C-H vibration, CH2 twisting 
triglycerides (fatty acids) [38], as-
sign from lipid [40] 

1335 CH3CH2 wagging 
collagen (protein assignment), nu-
cleic acid

1447 CH2, CH3 bending mode, CH2 deformation proteins & lipids [10] 

1519 
C=C stretch mode  
C-C & conjugated C=C band stretch 

porphyrin, carotenoid, carotene 
[10] 

1584 C=C olefinic stretch protein assignment 
1653 Carbonyl stretch (C=O), C=C stretch protein amide I absorption [30, 31]

 
Fluorescence spectra analysis. Endogenous fluorescent substances are present in serum, such as pro-

teins, porphyrins, carotenoids, and riboflavin, which can produce fluorescence after excitation by a certain 
wavelength of light [41–45]. From Fig. 3, we can find that the Raman spectral fluorescence background of 
the liver cancer patients was relatively strong, so we performed fluorescence spectroscopy analysis of the se-
rum of healthy individuals and liver cancer patients.  

 
 

 
 

Fig. 3. (a) Average Raman spectra of serum from patients with liver cancer (line 1, n = 69) and healthy  
individuals (line 2, n = 75). The shaded portion indicates the standard deviation. (b) Difference spectra  

(absolute values of the spectra) between the spectra of liver cancer and healthy individuals. 
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During the experiment, 50 µL of serum samples were added to 2 mL of saline, diluted, and poured into 
quartz fluorescent colorimetric dishes, after which they were inserted into a fluorescent spectrophotometer 
(Edinburgh Instruments, FS5 type, UK, with a 150-W xenon lamp as the excitation source and a scanning 
speed of 60 nm/min) to obtain fluorescence spectra from the physiological saline (background spectroscopy) 
of liver cancer and healthy individual serum. The results are shown in Fig. 4. We can see from Fig. 4a that 
the fluorescence characteristic peak of physiological saline appeared at 462 nm, with porphyrin lumines-
cence mainly present in the 600–700-nm spectral region [42]. In the spectral region with the largest differ-
ence in peak intensity between healthy individuals and liver cancer patients, the molecules playing the main 
luminescence role were proteins [42–46]. Proteins are formed by a peptide chain composed of multiple ami-
no acids repeatedly folding in space, whereby the amino acids capable of fluorescing are tryptophan, tyro-
sine, and phenylalanine [43–44]. The growth and division of cancer cells will not be regulated by genes, and 
their uptake of amino acids is too fast, which disturbs the amino acid metabolism in cancer patients and 
eventually leads to changes in the content of amino acids in the serum [41, 45]. Compared with healthy indi-
viduals, liver cancer patients have a reduced ability to degrade aromatic amino acids, and the contents of tryp-
tophan, tyrosine, and phenylalanine in serum are significantly increased, with increased concentrations of these 
three amino acids, leading to enhanced hydrogen bonding energy between light-emitting molecules [46–48].  

Fluorescence spectra from healthy individual serum and liver cancer patients were used for baseline cal-
ibration, and multipeak Gaussian fitting was performed on liver cancer serum (Fig. 4b). We found that the 
three fitted peaks in the serum of liver cancer patients, 490, 513, and 544 nm, compared with the three peaks 
of healthy individuals, 490, 512, and 580 nm, were significantly different in terms of peak position and 
strength. In particular, the peak of the serum at 544 nm in the liver cancer patients was blue-shifted by ap-
proximately 36 nm compared with that of healthy individuals at 580 nm. This may have been due to impaired 
tissue and organ function in patients with malignant tumors, disrupting amino acid metabolism [45–47]. The con-
tent of luminescent amino acids in the free state was increased, and the concentration of amino acids that 
could emit fluorescence increased, resulting in enhanced hydrogen bond energy and elongation of the two in-
teratomic chemical bonds that form hydrogen bonds [45–47]. 
 
 

 
Fig. 4. (a) Fluorescence spectra  of serum  from healthy individuals and liver cancer patients.  
(b) Baseline calibration fluorescent spectra and liver cancer serum multipeak Gaussian fitting  

fluorescent spectra. 
 

Principle component analysis (PCA) analysis. PCA analysis was performed on the second-derivative 
Raman spectra in the range of 1100–1200 cm–1 (Fig. 5). Figure 5a shows that the serum of patients with liver 
cancer was well separated from the serum samples of healthy individuals. The first three PCs explained 91% 
of the total variance, with 53% for PC1, 29% for PC2, and 9% for PC3. The loading plot of PCA was used to 
identify the peaks that had a high contribution to the differentiated samples. As shown in Fig. 5b, PC1 and 
PC2 mainly contributed significantly near 1127 and 1156 cm–1, respectively, and these contributions were 
related to proteins [28] and carotenoids [34, 37, 39], respectively. 
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Fig. 5.  Principle  component  analysis  (PCA)  analysis   results  in  a  range  of  1100–1200 cm−1.  
(a) PCA scatter plot  and  (b) loading  plot  for the  second-derivative  Raman  spectra  in the range  
of 1100–1200 cm−1: serum from patients with liver cancer ( ), serum from healthy individuals (). 

 
Partial least squares-discriminant analysis (PLS-DA) results. PLS-DA analysis was performed on the 

calibration set (patients with liver cancer provided 52 serum samples and healthy individuals provided 56 se-
rum samples) and the validation set (patients with liver cancer provided 17 serum samples and healthy indi-
viduals provided 19 serum samples) according to the ratio of 3:1 for model work in a range of 1100–1200 cm−1 
(Fig. 6). From Fig. 6a, we can see that the serum samples were distributed into two clusters. The red cluster 
was mainly composed of serum samples from patients with liver cancer, and the blue cluster was mainly 
composed of serum samples from healthy individuals. Fig. 6b shows the loading plot of Factor-1 and Factor-2 
for identifying the peaks with high weights when classifying samples. There were positively weighted peaks 
at approximately 1158 cm–1 and passively weighted peaks at approximately 1154 cm−1. The peak of this re-
gion belonged to the Raman peaks of proteins and carotenoids, thus showing that the protein and carotenoid 
changes during liver cancer carcinogenesis dominated in this classification model. 

 
 

 

 
Fig. 6. Partial least squares–discriminant analysis (PLS-DA) results in the range of 1100–1200 cm–1. 
(a) Scatter plot of PLS and (b) loading weights on the second-derivative Raman spectra in the range 
of 1100–1200 cm–1: serum from patients with liver cancer ( ), serum from healthy individuals (). 

 

Loadings
0.4

 
0.2

 
0 
 

–0.2

 
–0.4

b

a

RC-3 (9%)
1100                     1150                    1200  R, cm–1   

RC-1 (53%)

RC-2 (29%)

RC-2 (29%)

RC-1 (53%)

RC-3 (9%)

Loadings weights

0.4

0.2

0

–0.2

–0.4

b
a

 1100                   1150                  1200   
                           R, cm–1   

800 
 
 

400 
 
 

0 
 
 

–400 
 
 

–800 

Factor-2 (28%)

–1200      –800      –400        0            400        800      1200 
Factor-1 (53%)

814-7 



АННОТАЦИИ АНГЛОЯЗЫЧНЫХ СТАТЕЙ 
 

821

Figure 7 shows the prediction results of the PLS-DA in the range of 1100–1200 cm–1. Predicted Y val-
ues greater than zero were considered to correspond to liver cancer, and less than one was considered 
healthy. The results showed that the predicted Y values of 17 serum samples from patients with liver cancer 
and 19 serum samples from healthy individuals were consistent with the actual situation. The effect was very 
good, and the classification accuracy was 100%. 
 

 

 
 

Fig. 7. Prediction results of PLS-DA in the range of 1100–1200 cm−1. 
 
Conclusions. Raman and fluorescence spectroscopy were used to classify serum samples from liver 

cancer and healthy individuals. The difference spectra clearly showed the changes in the various major com-
ponents of the serum in the body during liver carcinogenesis. According to the fluorescence spectroscopy 
and Raman data analysis via PCA, the main factor causing the serum Raman spectra differences between 
liver cancer patients and healthy people was the changes of carotenoids and proteins in the serum. In particu-
lar, fluorescence spectroscopic analysis found that the autofluorescence amino acid content under the influ-
ence of malignant tumors increased (including tryptophan, tyrosine, and phenylalanine), which can provide a 
reference for clinical treatment. Using Raman spectroscopic data, a PLS-DA model was established to accu-
rately classify serum samples from healthy individuals and liver cancer patients. Based on Raman spectros-
copy, we effectively distinguished a limited sample of liver patients and healthy individuals. Although fur-
ther studies are needed to clearly explain the characteristics of the Raman spectra of various serum biomole-
cules, the results obtained are very promising, suggesting that Raman spectroscopy can be used for clinical 
diagnosis. Significantly, compared with the existing diagnostic techniques, the Raman spectroscopy tech-
nique has several advantages, such as extremely low sample requirements, ease of use, and ideal screening 
procedure. It can provide a clear and objective result at the molecular level and help reduce human errors to 
a maximum extent. Thus, Raman spectroscopy has great potential to be developed as a powerful tool for dis-
tinguishing serum samples of healthy individuals and those with liver cancer. 
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