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A methodology is proposed to identify genetically modified sugarcane from non-genetically modified 
sugarcane by using terahertz spectroscopy and chemometrics techniques, including linear discriminant 
analysis (LDA), support vector machine-discriminant analysis (SVM-DA), and partial least squares-
discriminant analysis (PLS-DA). The classification rate of the above mentioned methods is compared, and 
different types of preprocessing are considered. According to the experimental results, the best option is 
PLS-DA, with an identification rate of 98%. The results indicated that THz spectroscopy and chemometrics 
techniques are a powerful tool to identify genetically modified and non-genetically modified sugarcane. 
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Предложена методология идентификации генетически модифицированного сахарного трост-
ника, основанная на использовании терагерцовой спектроскопии и хемометрии, а также линейного 
дискриминантного анализа (LDA), векторного дискриминантного анализа (SVM-DA) и метода час-
тичных наименьших квадратов (PLS-DA). Получено, что лучшие результаты дает PLS-DA, позво-
ляющий идентифицировать вещество с 98% вероятностью. Показано, что терагерцовая спектро-
скопия и хемометрия – мощный инструмент, позволяющий различать генетически и негенетически 
модифицированный сахарный тростник. 

Ключевые слова: терагерцовая спектроскопия, генетически модифицированный, спектроско-
пия, хемометрия. 
 

Introduction. Genetical modification is a technology of transferring genes from one organism to an-
other, which aims to increase biological resistance. However, genetically modified organisms (GMOs) [1–4] 
bear potential risks for human health and the environment. For these reasons, genetically modified products 
are rigorously regulated in the majority of countries in the world, and it is very important to develop effec-
tive methods for their rapid classification. 

At present, the majority of detection methods for genetically modified organisms include the poly-
merase chain reaction (PCR) [5, 6], and enzyme-linked immune sorbent assay (ELISA) [7, 8], but these 
methods are expensive and complex. In order to avoid using these traditional methods, many researchers 
commit themselves to originating multivariate methods for genetically modified organisms, such as principal 
component analysis (PCA) [9, 10], partial least squares (PLS) [11, 12], support vector machine (SVM) [13–16], 
and linear discriminant analysis (LDA) [17–20]. 
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Alcântara et al. distinguished genetically modified soybean grains from non-genetically modified grains 
by using principal component analysis and FT-MIR methods [21]. Luna, Silva et al. proposed a method to 
identify genetically modified soybean oil samples from traditional soybean oil samples using near infrared 
(NIR) spectroscopy and chemometrics techniques [22]. Aparicio et al. contrasted spectroscopy and high-
performance liquid chromatography (HPLC) in the classification of adulteration in olive oil samples [23]. 
Koidis et al. developed a novel discriminate methodology for correctly labeling vegetable oils using spec-
troscopy and chemometrics techniques [24]. Nunes et al. used absorption spectroscopy and chemometrics 
method to evaluate the authenticity of quality parameters of edible oils and fats [25]. 

Therefore, the absorption spectroscopy and chemometrics technique is a powerful tool to detect geneti-
cally modified organisms. Detecting genetically modified organisms has been applied in food monitoring 
because of its advantages, such as relative ease and excellent classification results. Owing to these advan-
tages, the aim of this paper is to propose a novel approach to distinguish genetically modified sugarcane 
from non-genetically modified sugarcane using terahertz spectroscopy and chemometrics. 

Chemometric methods. Spectral range selection. All of the absorption spectra of sugarcane samples 
are analyzed by discriminant analysis (DA). First of all, it is very important to select an appropriate spectrum 
range for investigation. Because the absorption range of sugarcane is between 0 and 1.5 THz, the spectrum 
data above 1.5 THz cannot be used to establish the model for calculation. In this paper we used a number of 
spectral ranges for the identification (Table 1). It is can be seen from Table 1 that the highest identification 
accuracy is 94.13% in the regions of 0.1–0.6, 0.1–1.0, 0.1–1.2, and 0.1–1.5 THz. In Fig. 1, the THz fre-
quency domain spectra of the genetically modified sugarcane and non-genetically modified sugarcane over-
lap above 0.6 THz, which agrees with Table 1. 

 

TABLE 1. Statistic Results of the Identification of Sugarcane Samples Using DA at Different Bands 
 

Range, THz Accuracy, % Range, THz Accuracy, %
0.1–0.2 61.32 0.1–0.9 87.44 
0.1–0.3 65.67 0.1–1.0 94.13 
0.1–0.4 63.71 0.1–1.1 88.36 
0.1–0.5 84.24 0.1–1.2 94.13 
0.1–0.6 94.13 0.1–1.3 90.85 
0.1–0.7 88.79 0.1–1.4 91.58 
0.1–0.8 86.93 0.1–1.5 94.13 
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Fig. 1. Transmitted terahertz amplitude spectroscopy of genetically modified sugarcane (2), non-genetically 
modified sugarcane (3), and air (1). The inset indicates the time domain signals of the samples. 

 

Spectral feature extracted. The THz spectral data of genetically modified sugarcane was collected from 
0.1 to 1.5 THz in this paper, and 131,072 data points composed a spectral matrix whose size is 256×512. In 
order to reduce the amount of data, it is necessary to extract the feature spectrum. In this paper, PCA is util-
ized to extract the main information from the THz spectra of the sugarcane samples. PCA aims to reduce the 
dimensionality of spectral data and decrease the error. The data matrix X of PCA is defined as: X = TPT + E, 
where T expresses the n×k scores matrix, P describes the m×k loadings matrix, and P is the error matrix. 
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Identification methods for terahertz spectral data. Different schemes are applied to identify the terahertz 
spectral data in this paper. The first scheme is based on LDA, the second scheme is based on the SVM-DA 
model, and the last scheme uses PLS-DA. All of the schemes are multivariate pattern recognition ap-
proaches. 

Scheme 1: Linear discriminant analysis. LDA, or fisher linear discriminant (FLD), is a classical algo-
rithm of pattern recognition. The basic idea of LDA is to map high-dimensional samples into the best identi-
fiable vector space, and the aim of LDA is to achieve the effect of compression of the feature space dimen-
sions and extract the classification information. Therefore, it is an effective method for feature extraction.  
In this paper, this method is utilized to reduce the dimensions of the spectral data. 

Scheme 2: methods of identification using SVM-DA. SVM is a learning machine based on the theory of 
Vapnik–Chervonenkis (VC) and structural risk minimization (SRM). By seeking the minimum risks, it aims 
to improve the generalization ability of the learning machine, minimize empirical risks and the confidence 
limit, and obtain a good statistics with fewer samples. The purpose of SVM is to achieve the best generaliza-
tion ability. SVM-DA is used for regression and the classification of multiple classes.  

Scheme 3: partial least squares-discriminant analysis. PLS-DA is a multivariate statistical analysis 
method used for discriminant analysis. The principle of PLS-DA is training the characteristics of different 
samples, producing a training set, and verifying the credibility of it. The purpose of PLS-DA is to ameliorate 
the separation of samples in different groups. This technique usually uses 0 and 1 to predicate different 
classes. Therefore, when the sample value is closer to 0, the sample will belong to a particular class. 

Figures of merit. When proposing a new identification methodology, it is important to confirm the fig-
ures of merit. In the identification approach for validation, there are several criteria for success. In order to 
establish the identification method for genetically modified sugarcane, the discrimination techniques of 
LDA, SVM-DA, and PLS-DA are compared in the aspect of statistical parameters (sensitivity, specificity, 
precision, and misclassification error) [26, 27]:  

sensitivity = GMC/(GMC + GMIN), specificity = NGMC/(NGMC + NGMIG),  

precision =

 

GMC/(GMC + NGMIG), misclassification error = (NI/TN)100%, 

where GMC 
is the proportion of genetically modified samples that were correctly classified, NGMIG is the pro-

portion of non-genetically modified samples that were incorrectly identified as genetically modified samples, 
NGMC is the proportion of non-genetically modified samples that were classified correctly, GMIN is the pro-
portion of genetically modified samples that were incorrectly classified as non-genetically modified samples, 
NI 

is the number of samples incorrectly classified, and TN the total number of samples. 
Experimental. The genetically modified and non-genetically sugarcane samples with a purity of above 

99% are supplied by Sigma-Aldrich Shanghai Trading Co., Ltd. A total of 100 sugarcane samples (20 ge-
netically modified sugarcane samples and 30 non-genetically modified sugarcane samples) of similar sizes 
are prepared. All genetically modified sugarcane samples are distinguished and labeled as genetically modi-
fied by the manufacturers. 

Spectra are obtained with a terahertz time-domain spectrometer. Each spectrum consists of an average 
of 30 scans collected from the spectrometer. In order to rectify the measurement error, the spectral data of 50 
samples were pretreated by normalization. All spectra of the samples are adjusted to the baseline before be-
ing converted into ASCII format. All of the chemometrics methods are accomplished by using TQ Analyst 
V8.0 (Thermo Nicolet Corporation, Madison, WI, USA).  

Results and discussion. Spectral analysis. Figure 2 shows the terahertz absorption spectra of geneti-
cally modified sugarcane. It can be seen from Fig. 2 that the absorption spectra can be divided into three re-
gions. Region I indicates the absorption peak at 0.55 THz caused by the symmetric and asymmetric structure 
of the C-H bond. Region II presents the absorption peak at 0.75 THz that most likely resulted in the angle of 
the chemical bond of the C-H3 and C-H2. Region III points out the absorption peak at 1.43 THz, related to 
the structure of the C-O and C=O bond. 

Figure 3 indicates the absorption spectra of genetically modified and non-genetically modified sugar-
cane. It is practically impossible to discover any difference between the absorption spectra of genetically 
modified and non-genetically modified sugarcane. Thus, it is difficult to identify genetically modified and 
non-genetically modified sugarcane by the absorption spectroscopy method. So, chemometric tools, includ-
ing PCA, LDA, SVM-DA, and PLS-DA, are adopted to identify genetically modified and non-genetically 
modified sugarcane samples. 
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Fig. 2. Terahertz absorption spectroscopy of a 
genetically modified sugarcane. 

 Fig. 3. Terahertz spectra of a genetically 
modified sugarcane and non-genetically modi-
fied sugarcane. 

 
Principal component analysis. The PCA is used to extract feature information of sugarcane samples. 

PCA indicates that the first two eigenvectors apprehend more than 97.41% of the total variance. Figure 4 
gives the score value of 50 samples by using PCA. The PCA score indicates that the samples are divided into 
two groups, but not all samples are separated correctly. The main reason is that PCA is not a reorganization 
technique but a feature information extract technique. 

In Fig. 5, some samples, labeled 34, 48, and 50 (genetically modified samples), have a high value of  
Q-residuals versus Hotelling T2. Hence, these samples should be excluded from the classification model ow-
ing to the negative effect that they can exert on the classification. As a consequence, 47 samples (17 geneti-
cally modified sugarcane samples and 30 non-genetically modified sugarcane samples) are used in the dis-
criminant analysis. 
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Fig. 4. Score plots of PC1 (84.37% variance) and 
PC2 (13.04% variance) for the sugarcane samples. 

 Fig. 5. The value of Q-residuals versus Hotel-
ling T2 of the samples. 

 
In this study, all samples are divided into two groups: the calibration set and the validation set. The cali-

bration set includes 27 samples (8 genetically modified sugarcane samples and 19 non-genetically modified 
sugarcane samples), and the validation set includes 20 samples (6 genetically modified sugarcane samples 
and 14 non-genetically modified sugarcane samples). 

Linear discriminant analysis. For this technique, the first three principal components are picked for 
LDA. The different data preprocessing techniques, including mean centering (MC), multiplicative signal 
correction (MSC), first Savgol derivative and second Savgol derivative, are used to built different classifica-
tion models. Table 2 exhibits the identification rate of each method. It can be seen from Table 2 that only the 
preprocessing method of MSC can reach a recognition rate of 100% and all other methods are more or less 
misjudging genetically modified ones in the test and validation sets. 
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TABLE 2. Performance of Each Method in the Identification of the Sugarcane Samples Using LDA 
 

Calibration Validation Parameter 

MC MSC 1st derivative 2nd derivative MC MSC 1st derivative 2nd derivative
NI 8 0 3 2 6 0 1 2 
TN 27 27 27 27 20 20 20 20 
Misclassification error, % 29.63 0.0 11.11 7.4 30 0.0 5 10 
GMC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
NGMIG 0.47 0.0 0.16 0.09 0.68 0.0 0.17 0.11 
NGMC 0.39 1.0 0.73 0.77 0.19 1 0.73 0.75 
GMIN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sensitivity 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Specificity 0.45 1.0 0.82 0.90 0.22 1.0 0.81 0.87 
Precision 0.68 1.0 0.86 0.92 0.60 1.0 0.85 0.90 

 
Support vector machine-discriminant analysis. For this algorithm, different classification models are es-

tablished by different data preprocessing methods, including MC, MSC, first Savgol derivative, and second 
Savgol derivative, which are performed with available software. All preprocessing methods can obtain a rec-
ognition rate of 100%, except derivatives methods. The recognition results of SVM-DA are shown in Table 3. 

 
TABLE 3. Performance of Each Method in the Identification of the Sugarcane Samples Using SVM-DA 

 

Calibration Validation Parameter 

MC MSC 1st derivative 2nd derivative MC MSC 1st derivative 2nd derivative 
NI 0 0 6 8 0 0 3 3 
TN 27 27 27 27 20 20 20 20 
Misclassification error, % 0.0 0.0 22.2 29.6 0.0 0.0 15 15 
GMC 1.0 1.0 0.35 0.21 1.0 1.0 0.67 0.67 
NGIMG 0.0 0.0 0.06 0.04 0.0 0.0 0.17 0.17 
NGMC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
GMIN 0.0 0.0 0.59 0.73 0.0 0.0 0.24 0.24 
Sensitivity 1.0 1.0 0.37 0.22 1.0 1.0 0.74 0.74 
Specificity 1.0 1.0 0.94 0.96 1.0 1.0 0.85 0.85 
Precision 1.0 1.0 0.85 0.84 1.0 1.0 0.79 0.79 

 
Partial least squares-discriminant analysis. The same as SVM-DA, different data preprocessing meth-

ods (MC, MSC, first Savgol derivative, and second Savgol derivative) are employed to assemble different 
identification models. Table 4 presents the identification rate of each method. According to the Table 4, the 
PLS-DA method can obtain a discrimination rate of 100 %. 

 
TABLE 4. Performance of Each Method in the Identification of the Sugarcane Samples Using PLS-DA 

 

Calibration Validation Parameter 

MC MSC 1st derivative 2nd derivative MC MSC 1st derivative 2nd derivative
NI 0 0 0 0 0 0 0 0 
TN 27 27 27 27 20 20 20 20 
Misclassification error, % 0 0 0 0 0 0 0 0 
GMC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
NGIMG 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
NGMC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
GMIN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sensitivity 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Specificity 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Precision 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
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Conclusion. Terahertz spectroscopy and chemometrics technique is a powerful tool to detect geneti-
cally modified sugarcane. Terahertz spectroscopy and chemometrics technique can provide the advantage of 
avolding time-consuming, and costly chemical and sensory analyses. Distinguishing genetically modified 
samples by this technique is meritorious, and this research indicates the potential of terahertz spectroscopy 
with chemometrics for genetically modified organisms. The aim of further researches is to establish more 
powerful discrimination models for other genetically modified organisms. 
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