V. 86, N 2

MARCH — APRIL 2019

ИССЛЕДОВАНИЕ ГИДРОКСОКОМПЛЕКСОВ ЛАНТАНИДОВ С ЭФИРАМИ АЦЕТОУКСУСНОЙ КИСЛОТЫ МЕТОДОМ ИК СПЕКТРОСКОПИИ

А. М. Мищенко^{*}, Е. К. Трунова, Л. И. Железнова, Т. А. Макотрик

УДК 535.343.2-15:[546.650:547.484.34]-386

Институт общей и неорганической химии им. В. И. Вернадского НАН Украины, 03142, Киев, просп. Академика Палладина, 32/34, Украина; e-mail: a.m.mishchenko@ukr.net

(Поступила 6 сентября 2018)

В диапазоне частот 400—1700 см⁻¹ исследованы ИК спектры гидроксокомплексов лантанидов (Ln) с β -кетоэфирами метил-, этил- и аллилацетоацетатом состава LnL₂OH · H₂O (Ln = La, Gd, Lu; L — β -кетоэстератный анион). С целью интерпретации спектров и отнесения полос, обусловленных колебаниями β -кетоэстератных лигандов, в приближении PBE0/ECP46(60)MWB+DZP проведен нормально-координатный анализ модельных комплексов LnL(OH)₂ (Ln = La, Lu). На основании экспериментальных данных и результатов расчетов показано, что радиус иона Ln(III) и строение углеводородного радикала алкоксильного заместителя практически не влияют на величину π -электронной делокализации в сопряженной системе [OCCCO] хелатного фрагмента комплексов, в то время как уменьшение ионного радиуса Ln(III) приводит к увеличению сопряжения в эфирной C(O)O-группе лигандов.

Ключевые слова: ИК спектроскопия, *β*-кетоэстераты лантанидов, нормально-координатный анализ, индекс НОМА.

The IR spectra of hydroxo complexes of lanthanides (Ln) with β -ketoesters methyl, ethyl, and allyl acetoacetate having the general formula LnL₂OH·H₂O (Ln = La, Gd, Lu; L — β -ketoesterate anion) were studied in the 400—1700 cm⁻¹ range. In order to interpret the spectra and assign bands caused by vibrations of the β -ketoesterate ligands, a normal coordinate analysis of the model complexes LnL(OH)₂ (Ln = La, Lu) was performed at the approximation of PBE0/ECP46(60)MWB+DZP. The experimental data coupled with theoretical calculations show that the radius of the Ln(III) ion and the structure of the hydrocarbon radical of the alkoxy substituent have a negligible effect on the value of π -electron delocalization in the [OCCCO] conjugated system of the chelate fragments, whereas the decrease of the Ln(III) ionic radius leads to increase of conjugation in the esteric C(O)O group of ligands.

Keywords: IR spectroscopy, lanthanide β -ketoesterates, normal coordinate analysis, HOMA index.

Введение. Кластерные соединения лантанидов (Ln) на основе смешанных гидроксокомплексов Ln(III) с органическими лигандами представляют как теоретический, так и практический интерес, вследствие чего интенсивно изучаются на протяжении последних десятилетий [1, 2]. Для стабилизации гидроксидных кластеров Ln(III) среди органических лигандов наиболее часто используют алифатические и ароматические β-дикетоны [3]. В то же время значительно менее исследованы комплексы лантанидов с β-дикарбонильными соединениями, которые содержат гетероатомы (O, N), непосредственно связанные с атомами углерода карбонильных групп лиганда (β-кетоэфиры, эфиры малоновой

IR SPECTROSCOPIC STUDY OF LANTHANIDE HYDROXOCOMPLEXES WITH ESTERS OF ACETOACETIC ACID

A. M. Mishchenko^{*}, **E. K. Trunova, L. I. Zheleznova, T. A. Makotryk** (V. I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, 32/34 Academic Palladin Prosp., Kiev, 03142, Ukraine; e-mail: a.m.mishchenko@ukr.net)

^{*}Автор, с которым следует вести переписку.

кислоты, β-кетоамиды и т. д.). В частности, гидроксокомплексы Ln(III) с β-кетоэфирами представлены в [4—9].

Для идентификации этих соединений наряду с другими физико-химическими методами используют метод ИК спектроскопии. Однако в работах [4—9] ограничивались предварительным отнесением основных полос поглощения в ИК спектрах комплексов и обсуждалось положение лишь немногих из них (в основном валентных колебаний полуторных связей v(CO) и v(CC) хелатных фрагментов лигандов). Вероятнее всего это вызвано тем, что в отличие от координационных соединений редкоземельных элементов с β-дикетонами [10, 11] в литературе отсутствует подробная информация относительно теоретического анализа колебательных спектров β-кетоэстератов Ln(III). По имеющимся данным расчет частот и форм нормальных колебаний ранее проводили только для отдельных β-кетоэфиров [12—14].

В настоящей работе синтезированы и изучены методом ИК спектроскопии гидроксокомплексы La(III), Gd(III) и Lu(III) с алифатическими эфирами ацетоуксусной кислоты CH₃C(O)CH₂C(O)OR: метил- (meacac, $R = CH_3$), этил- (etacac, $R = C_2H_5$) и аллилацетоацетатом (alacac, $R = C_3H_5$) состава LnL₂OH · H₂O (L — β -кетоэстератный анион). Для интерпретации ИК спектров и отнесения полос поглощения, обусловленных колебаниями атомов в β -кетоэстератных лигандах, с использованием теории функционала плотности проведен нормально-координатный анализ модельных моно-лигандных комплексов LnL(OH)₂ (Ln = La, Lu):

Эксперимент и расчеты. Исследуемые комплексы получены взаимодействием нитратов лантанидов с соответствующим β-кетоэфиром и основанием (10 %-ным водным раствором аммиака) в водном (meacac, etacac) или водно-диоксановом (alacac) растворе при мольном соотношении металл:лиганд:основание = 1:3:3. В этих условиях растворимые *трис*-комплексы LnL₃, которые изначально образуются в растворе, претерпевают частичный гидролиз, что приводит к осаждению нерастворимых гидроксокомплексов [15]:

$$LnL_3 + H_2O \rightarrow LnL_2OH \downarrow + HL$$

Состав полученных соединений установлен методами химического анализа и термогравиметрии. Термограммы записаны на дериватографе Q-1500°D системы F. Paulik, J. Paulik, L. Erdey в интервале температур 25—500 °C со скоростью нагрева 5 °C/мин в платиновом тигле на воздухе. В зависимости от лиганда дегидратация комплексов происходит в интервале температур 120—190 (meacac), 120—200 (etacac) и 110—170 °C (alacac). Для всех комплексов потеря массы соответствует отщеплению одной молекулы воды. Установлено, что синтезированные соединения отвечают составу LnL₂OH · H₂O, что согласуется с литературными данными [4, 8, 9].

Нормально-координатный анализ модельных комплексов La(III) и Lu(III) с β -кетоэфирами и ацетилацетоном (acac) LnL(OH)₂ проведен в программном пакете GAMESS (US) [16] с использованием гибридного функционала PBE0 [17] (пороги сходимости самосогласованного поля и градиентной оптимизации $1 \cdot 10^{-6}$ а.е., расчет гессиана по численному методу). Для легких атомов использован дважды расщепленный базис Даннинга—Хэя (DZP) с добавленными наборами поляризационных *p*- (H) или *d*-функций (C, O) [18], для La и Lu — штутгартские наборы ECP46MWB и ECP60MWB [19, 20]. В расчетах принято, что шестичленный хелатный металлоцикл имеет плоское строение, а молекулы комплексов принадлежат точечной группе C_S . Вычисления проведены на суперкомпьютере СКИТ Института кибернетики им. В. М. Глушкова НАН Украины [21].

ИК спектры гидроксокомплексов в виде таблеток с КВг зарегистрированы на спектрофотометре Specord M80 (Carl Zeiss Jena).

Отнесение полос в экспериментальных спектрах выполнено исходя из рассчитанных интенсивностей нормальных колебаний. Как и ожидалось [22], найденные гармонические частоты нормальных колебаний систематически завышены, поэтому для их масштабирования рассчитаны отношения соответствующих экспериментальных и теоретических частот для β-кетоэстератов лантана и лютеция. Таким образом определен масштабирующий коэффициент 0.958.

Для количественной характеристики π-электронной делокализации в хелатных фрагментах [OCCCO] и эфирной группе [C(O)O] β-дикарбонильных лигандов в модельных комплексах использован индекс HOMA (harmonic oscillator measure of aromaticity) — геометрический параметр ароматичности:

HOMA = 1 - {
$$\alpha(CC)\sum[R_{ont}(CC) - R_i(CC)]^2$$
 + $\alpha(CO)\sum[R_{ont}(CO) - R_i(CO)]^2$ }/n

где R_i и R_{ont} — рассчитанные и "оптимальные" длины связей ($R_{ont}(CC) = 1.397$ Å, $R_{ont}(CO) = 1.265$ Å); α — эмпирические константы ($\alpha(CC) = 98.89$ Å⁻², $\alpha(CO) = 157.38$ Å⁻²), подобранные таким образом, чтобы HOMA = 1 для системы с полностью делокализованными π -связями ($R_i = R_{ont}$); n — количество связей в сопряженном фрагменте (n = 4 для [OCCCO] и n = 2 для [C(O)O]) [23].

Результаты и их обсуждение. За исключением высокочастотных валентных колебаний С–Н, большинство полос колебаний β -кетоэстератных лигандов расположены в области <1700 см⁻¹, поэтому в данной работе ИК спектры соединений исследованы в диапазоне 400—1700 см⁻¹. Частоты максимумов основных полос поглощения и их отнесение для гидроксокомплексов Ln(III) с meacac, еtacac и alacac представлены в табл. 1—3. Поскольку ИК спектры комплексов с одним и тем же лигандом сходны и отличаются в основном только энергией отдельных колебаний, на рис. 1 в качестве примера приведены спектры β -кетоэстератов La(III).

В ИК спектрах изучаемых комплексов в диапазоне 1500—1650 см⁻¹ наблюдаются две интенсивные полосы, соответствующие валентным колебаниям $v_s(CO)$ и $v_{as}(CC)$ в сопряженной системе [OCCCO] бидентатно координированных лигандов. Обе полосы расщеплены, причем в случае $v_{as}(CC)$ отчетливо проявляются три отдельные компоненты (рис. 1), что, вероятнее всего, вызвано структурной неравноценностью отдельных хелатных колец [1—3].

			Расчет для Ln(meacac)(OH) ₂							
эксперимент			La		Lu		Отнесение			
La	Gd	Lu	Ι	II	Ι	II				
1642	1642	1643	1600	1610	1694	1612				
1617	1619	1620	1090	1019	1084	1015	v _s (CO)			
1548	1550	1555								
1530	1532	1533	1585	1518	1593	1526	$v_{as}(CC)$			
1518	1520	1520								
1408	1408	1409	1472	1410	1473	1411	$v_{as}(CO) + \delta(CH_3)$			
1248	1268	1277	1346	1289	1358	1301	ν (C–OCH ₃) + ν (C–CH ₃)			
1166	1170	1171	1217	1166	1221	1170	$v(C-OCH_3) + \delta(CH) + \rho_r(CH_3)$			
1062	1062	1062	1122	1075	1120	1073	$v(O-CH_3) + v(CC)$			
1001	1004	1006	1042	998	1047	1003	$v(O-CH_3) + v(CO) + \rho_r(CH_3)$			
966	970	976				_	δ(LnOH)			
910	914	915	966	925	971	930	$v_{s}(C-O-CH_{3}) + v(C-CH_{3})$			
778	788	786	800	766	802	768	$\pi(OCO) + \pi(CH)$			
734	738	740	761	729	762	730	δ (OCO) + δ _{кольца} +ν(C-CH ₃)			
629,	624,	616,					S (Lar O)			
611	600	608					$o_{\text{кольца}} + V(\text{Ln}-\text{O})$			
422	420	419					$\delta_{\kappa o \pi b \mu a} + \nu (Ln - O)$			

Таблица 1. Основные колебательные частоты (см⁻¹) в ИК спектрах комплексов Ln(meacac)₂OH · H₂O и их отнесение

П р и м е ч а н и е. I — без масштабирования, II — с масштабирующим коэффициентом 0.958; v — валентное, δ — деформационное, π — деформационное внеплоскостное, ρ_r — маятниковое, s — симметричное, as — асимметричное колебание.

Эксперимент			Расчет				
			La		Lu		Отнесение
La	Gd	Lu	Ι	II	Ι	II	
1642, 1616	1644, 1616	1640, 1620	1686	1615	1679	1609	$v_s(CO)$
1549,	1550,	1548,	1503	1526	1500	1523	
1532, 1520	1532, 1520	1530, 1520	1393	1520	1390	1323	V _{as} (CC)
1415	1416	1420	1466	1404	1467	1405	$v_{as}(CO) + \delta(CH_3)$
1261	1268	1274	1336	1280	1347	1290	ν (C–OC ₂ H ₅)
1170	1172	1172	1221	1170	1220	1169	$v(C-OC_2H_5) + \delta(CH)$
1098	1097	1092	1149	1101	1151	1103	$\delta(OC_2H_5)$
1063	1062	1064	1124	1077	1120	1073	$v(O-C_2H_5) + v(CC)$
1016	1014	1018	1055	1011	1061	1016	$v(C-C) + v(C-OC_2H_5)$
965	968	970	1014	971	1019	976	$v(C-CH_3) + v(CO) + v(C-OC_2H_5)$
861	858	859	900	862	899	861	$v_{s}(C-O-C_{2}H_{5}) + v(C-CH_{3})$
787	785	786	803	769	804	770	$\pi(OCO) + \pi(CH)$
736	736	737	777	744	786	753	$\delta(OCO) + \delta_{KOJILLA} + ν(C-CH_3)$
629, 618	627, 615	621					$\delta_{\kappa o \pi b u a} + \nu (Ln - O)$
456	459	466			—	—	v(Ln–O)
412	407	410	—		—	—	$\delta_{\text{кольца}} + \nu(\text{Ln-O})$

Таблица 2. Основные колебательные частоты (см⁻¹) в ИК спектрах комплексов Ln(etacac)₂OH · H₂O и их отнесение

Примечание. Как в табл. 1.

Таблица 3. Основные колебательные частоты (см⁻¹) в ИК спектрах комплексов Ln(alacac)₂OH · H₂O и их отнесение

Эконоримент				Расче	ЭТ				
	La		Lu		Отнесение				
La	Gd	id Lu		II	Ι	II			
1642, 1618	1642, 1620	1640, 1622	1688	1617	1685	1614	v _s (CO)		
1548,	1548,	1548,	1585	1510	1502	1525			
1532, 1518	1530, 1519	1530, 1519	1365	1310	1392	1525	$v_{as}(CC)$		
1412	1414	1416	1473	1411	1473	1411	$v_{as}(CO) + \delta(CH_3)$		
1254	1260	1264	1342	1286	1349	1292	$v(C-OC_3H_5)$		
1167	1168	1170	1208	1157	1211	1160	$v(C-OC_3H_5) + \delta(CH)$		
1058	1060	1061	1124	1077	1122	1075	$v(O-C_3H_5)$		
996	998	998	1052	1008	1052	1008	$\nu(O-C_3H_5) + \nu(CO)$		
938	935	934	986	945	988	947	$v(CC) + \rho_r(CH_2) + \delta_{\kappa o \pi b \mu a}$		
785	784	784	798	764	797	764	$\pi(OCO) + \pi(CH)$		
736	740	742	778	745	775	742	δ (OCO) + δ _{кольца} +ν(C-CH ₃)		

Примечание. Как в табл. 1.

По сравнению с ИК спектрами соответствующих ацетилацетонатов Ln(III) [24, 25] в спектрах исследуемых β -кетоэстератов барицентры полос $v_s(CO)$ и $v_{as}(CC)$ смещены в более высокочастотную область на 80—100 см⁻¹. Это указывает на меньшее сопряжение в β -кетоэстератных хелатах и согласуется с результатами расчета индексов НОМА для фрагмента [OCCCO] в модельных комплексах LnL(OH)₂ (табл. 4). Из табл. 4 также видно, что при замене метильной группы в ацетилацетонатном лиганде на алкоксильную наблюдается увеличение силовых постоянных K_f формально двойных связей C=O и C=C в хелатном цикле. Это приводит к возрастанию частот соответствующих валентных колебаний, что и наблюдается в спектрах комплексов Ln(III) с β -кетоэфирами, поскольку частота колебания, как известно, пропорциональна $K_f^{1/2}$ [26].

Рис. 1. ИК спектры комплексов LaL₂OH · H₂O, L = meacac (1), etacac (2), alacac (3)

По результатам нормально-координатного анализа полоса с максимумом при ~1410 см⁻¹ обусловлена преимущественно асимметричным колебанием $v_{as}(CO)$ донорных карбонильных групп и деформационным колебанием метильных групп лигандов. Интенсивная полоса в диапазоне 1250—1280 см⁻¹ отнесена к валентному колебанию v(C–OR), где R — радикал алкоксильной группы. Указанная полоса чувствительна к замене иона металла (рис. 2): в ряду La < Gd < Lu наблюдается смещение ее максимума в высокочастотную область на 29 (meacac), 13 (etacac) и 10 см⁻¹ (alacac), что обусловлено возрастанием K_f (C–OR) при увеличении порядкового номера лантанида (табл. 4). Одновременно с этим в ряду металлов уменьшается силовая постоянная соседней формально двойной связи С=О. Таким образом, в ряду лантанидов π -электронная делокализация в эфирной C(O)O-группе лигандов возрастает. Это можно объяснить усилением поляризующего действия катиона Ln(III) при уменьшении его ионного радиуса, что приводит к перераспределению электронной плотности в молекулах комплексов по схеме:

Вместе с тем положение максимумов и расщепление полос колебаний $v_s(CO)$, $v_{as}(CC)$ и $v_{as}(CO)$ практически не зависят ни от лантанида, ни от радикала алкоксильного заместителя, что указывает на их незначительное влияние на общее распределение электронной плотности в сопряженной системе хелатного фрагмента лиганда. Полученные результаты подтверждаются расчетами модельных комплексов: при переходе от соединений La(III) к Lu(III) индекс HOMA для эфирной группы увеличивается на 10 %, в то время как для фрагмента [OCCCO] изменяется менее чем на 0.5 % (табл. 4).

Согласно результатам нормально-координатного анализа, четыре (meacac, etacac) или три (alacac) полосы средней интенсивности, которые наблюдаются в диапазоне 900—1200 см⁻¹, обусловлены преимущественно валентными колебаниями связей С–О в алкоксильных заместителях. В случае координационных соединений этилацетоацетата (рис. 1, кривая 2) в этой спектральной области присутствует еще одна полоса ~1100 см⁻¹, отвечающая деформации угла О–С–С в этоксильной группе лиганда. В ИК спектрах комплексов метилацетоацетата (кривая 1) при ~970 см⁻¹ появляется полоса деформационного колебания Ln–O–H, характерного для гидроксокомплексов металлов [27]. Его частота возрастает на 10 см⁻¹ при увеличении массы иона Ln(III) в ряду La < Gd < Lu (табл. 1). В спектрах гидроксокомплексов этил- и аллилацетоацетата это колебание маскируется более интенсивными полосами v(C–O) β -кетоэстератных лигандов.

Рис. 2. ИК спектры комплексов $Ln(etacac)_2OH \cdot H_2O$ в области колебаний v(C-OC₂H₅): Ln = La (1), Gd (2), Lu (3)

Таблица 4. Силовые постоянны	ie K _f (мдин/Å) и индексы делокализации НОМА	۱,
рассчитанные для монолигандных	β-дикарбонильных комплексов La(III) и Lu(III)

LaL(OH) ₂					LuL(OH) ₂					
L	acac	meacac	etacac	alacac	L	acac	meacac	etacac	alacac	
K_f (C=O)	8.50	8.89	8.81	8.88	K_f (C=O)	8.40	8.71	8.67	8.74	
K_f (C=C)	5.71	6.17	6.32	6.13	K_f (C=C)	5.71	6.28	6.21	6.26	
K_f (C–O)	8.46	8.02	8.03	8.05	K_f (C–O)	8.38	7.97	7.94	7.99	
$K_f(C-C)$	5.63	5.41	5.32	5.44	$K_f(C-C)$	5.67	5.38	5.40	5.44	
K_f (C–OR)	_	5.72	5.71	5.68	K_f (C–OR)	_	5.93	5.96	5.90	
K_f (La–O)*	0.92	0.92	1.00	1.02	K_f (Lu–O)*	1.29	1.30	1.33	1.26	
HOMA(OCCCO)	0.982	0.972	0.969	0.976	HOMA(OCCCO)	0.980	0.969	0.968	0.972	
HOMA(C(O)O)		0.544	0.557	0.545	HOMA(C(O)O)		0.603	0.625	0.603	

* Усредненное значение по двум связям Ln-O.

В низкочастотной области ИК спектров (400—700 см⁻¹) β-дикарбонильных комплексов металлов проявляются полосы, связанные с деформациями хелатных колец (бкольца) и валентными колебаниями v(Ln–O). Положение указанных полос очень чувствительно как к природе металла, так и к геометрии хелатного кольца [24, 25]. Однако, поскольку точные структурные параметры металлоциклов в исследуемых гидроксокомплексах неизвестны, на основании результатов нормально-координатного анализа модельных монолигандных комплексов провести точное отнесение полос в экспериментальных ИК спектрах не удалось. Так как геометрическое строение фрагмента [ОСССО] В-кетоэстератного лиганда практически не зависит от центрального иона, можно предположить, что частоты деформационных колебаний также должны слабо отличаться для комплексов разных лантанидов. Это позволяет отнести к $\delta_{\text{кольца}}$ две полосы, которые в спектрах комплексов meacac и etacac наблюдаются при ~415 и ~620 см⁻¹ (рис. 1, кривые 1 и 2). При этом более высокочастотная полоса расщеплена как минимум на две компоненты, что очевидно обусловлено несимметричностью хелатных колец. С другой стороны, при переходе от La(III) к Lu(III) силовые постоянные связей Ln–O увеличиваются в среднем на 25—40 % (табл. 4), а приведенная масса системы [Lu-O] (14.66 а.е.м.) лишь на 2 % больше, чем для системы [La–O] (14.35 а.е.м.), поэтому при увеличении порядкового номера лантанида частота валентного колебания связи Ln-O должна возрастать [26]. В спектрах комплексов этилацетоацетата полоса с частотой ~460 см⁻¹ при переходе от La(etacac)₂OH·H₂O к Lu(etacac)₂OH · H₂O смещается в высокочастотную область на 10 см⁻¹ (табл. 2), на основании чего ее можно отнести к колебанию v(Ln-O).

Заключение. На основании расчета частот и форм нормальных колебаний в модельных монолигандных комплексах проведено отнесение основных полос поглощения, которые наблюдаются в ИК спектрах гидроксокомплексов La(III), Gd(III) и Lu(III) с метил-, этил- и аллилацетоацетатом в диапазоне частот 400—1700 см⁻¹. Показано, что в ряду лантанидов вследствие усиления поляризующего действия катиона Ln(III) возрастает величина π-электронной делокализации в эфирной C(O)O-группе лигандов за счет упрочнения связи C–OR с одновременным ослаблением соседней связи C=O. Результаты проведенного исследования могут быть использованы при интерпретации ИК спектров комплексов лантанидов с другими алифатическими эфирами ацетоуксусной кислоты.

[1] **Z. Zheng.** In "Handbook on the Physics and Chemistry or Rare Earth", Eds. K. A. Gschneidner, Jr., J.-C. G. Bünzli, V. K. Pecharsky, **40**, ch. 245, Amsterdam, Elsevier North-Holland (2010) 109–239

[2] A. T. Wagner, P. W. Roesky. Eur. J. Inorg. Chem. (2016) 782-791

[3] P. C. Andrews, W. J. Gee, P. C. Junk, M. Massi. New J. Chem., 37 (2013) 35-48

[4] N. K. Dutt, S. Rahut. J. Inorg. Nucl. Chem., 32 (1970) 2905–2909

[5] L. G. Hubert-Pfalzgraf, N. Miele-Pajot, R. Papiernik, J. Vaissermann. J. Chem. Soc., Dalton Trans. (1999) 4127-4130

[6] A. P. Souza, F. A. Almeida Paz, R. O. Freire, L. D. Carlos, O. L. Malta, S. Alves, Jr., G. F. de Sa. J. Phys. Chem. B, 111 (2007) 9228—9238

[7] A. P. Souza, S. Alves, Jr., O. L. Malta. Opt. Mater., 33 (2011) 402-407

[8] I. A. Savchenko, A. S. Berezhnytska, N. B. Ivakha, E. K. Trunova. In "Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications", Eds. O. Fesenko, L. Yatsenko, Cham, Springer International Publishing (2015) 85—94

[9] И. И. Желтвай, Н. С. Новикова, Е. Д. Килименчук, Е. В. Малинка. Укр. хим. журн., 84, № 5 (2018) 56—63

[10] В. В. Слизнев, С. Б. Лапшина, Г. В. Гиричев. Журн. структ. химии, 48 (2007) 857—870 [V. V. Sliznev, S. B. Lapshina, G. V. Girichev. J. Struct. Chem., 48 (2007) 796—810]

[11] **K. Babić-Samardžija, S. P. Sovilj, V. M. Jovanović.** In "The Chemistry of Metal Enolates. Part 1", Ed. J. Zabicky, Chichester, John Wiley & Sons (2009) 81–130

[12] M. M. Schiavoni, H. E. Di Loreto, A. Hermann, H.-G. Mack, S. E. Ulic, C. O. Della Védova. J. Raman Spectrosc., **32** (2001) 319–329

[13] S. F. Tayyari, F. Naghavi, S. Pojhan, R. W. McClurg, R. E. Sammelson. J. Mol. Struct., 987 (2011) 241-254

[14] А. М. Мищенко. Укр. хим. журн., 82, № 5 (2016) 15—28

[15] **А. М. Мищенко.** Влияние природы заместителей и электронного строения металла на состав, устойчивость и свойства β-дикарбонильных комплексов лантанидов: автореф. дис. ... канд. хим. наук, Киев (2018)

[16] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, Jr. J. Comput. Chem., 14 (1993) 1347—1363

[17] C. Adamo, V. Barone. J. Chem. Phys., 110 (1999) 6158-6170

[18] **T. H. J. Dunning, P. J. Hay.** In "Methods of Electronic Structure Theory", Ed. H. F. Schaefer, New York, Plenum Press (1977) 1—27

[19] M. Dolg, H. Stoll, A. Savin, H. Preuss. Theor. Chim. Acta, 75 (1989) 173-194

[20] M. Dolg, H. Stoll, H. Preuss. Theor. Chim. Acta, 85 (1993) 441-450

[21] А. Л. Головинский, А. Л. Маленко, И. В. Сергиенко, В. Г. Тульчинский. Вісн. НАН України, № 2 (2013) 50—59

[22] К. В. Березин, В. В. Нечаев, О. Д. Зиганшина. Журн. структ. химии, 45 (2004) 232—239 [K. V. Berezin, V. V. Nechaev, O. D. Ziganshina. J. Struct. Chem., 45 (2004) 217—224]

[23] **T. M. Krygowski.** J. Chem. Inf. Comput. Sci., **33** (1993) 70–78

[24] S. Misuresi, N. Lengelsi, Dull Cham. Sec. Jap. 40 (1975) 70—78

[24] S. Misumi, N. Iwasaki. Bull. Chem. Soc. Jpn., 40 (1967) 550–554

[25] Л. А. Грибов, Ю. А. Золотов, М. П. Носкова. Журн. структ. химии, 9 (1968) 448—457 [L. A. Gribov, Yu. A. Zolotov, M. P. Noskova. J. Struct. Chem., 9 (1968) 378—386]

[26] Ю. А. Пентин, Л. В. Вилков. Физические методы исследования в химии, Москва, Мир (2012) 200—209

[27] Н. А. Костромина, В. Н. Кумок, Н. А. Скорик. Химия координационных соединений, Москва, Высшая школа (1990) 276—280