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This study focuses on the feasibility of nondestructive discrimination of high-quality watermelon seeds 
with a multispectral imaging system combined with chemometrics. Principal component analysis (PCA), 
least squares-support vector machines (LS-SVM), back propagation neural network (BPNN), and random 
forest (RF) were applied to determine the seed quality. The results demonstrate that both the spectral and 
the morphological features are essential for discrimination of the quality of watermelon seeds. Clear differ-
ences between high-quality watermelon seeds and other watermelon seeds including dead seeds and low-
vigor seeds were visualized, and an excellent classification (with accuracies of 92% in the LS-SVM model 
for Julong and 91% in the RF model for Xiali, respectively) was achieved. These results indicate that multis-
pectral imaging could be used for rapid and efficient non-destructive quality control of watermelon seeds. 
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Рассмотрена возможность осуществления неразрушающего контроля качества семян арбуза, 
основанного на использовании их мультиспектральной визуализации в сочетании с хемометрикой. 
Для определения качества семян предложено использовать анализ основных компонент (PCA), ме-
тод наименьших квадратов – опорных векторов (LS-SVM), алгоритм нейронной сети с обратным 
распространением ошибки (BPNN) и модель случайного леса (RF). Показано, что как спектральные, 
так и морфологические данные являются ключевыми факторами для определения качества семян 
арбуза. Различие между высоко- и низкокачественными (мертвыми, со слабой всхожестью) семе-
нами арбуза может быть визуализировано и достаточно точно идентифицировано (до 92% с по-
мощью модели LS-SVM для сорта Julong и 91% с помощью метода RF для сорта Xiali).  

Ключевые слова: семена арбуза, мультиспектральное представление, неразрушающий кон-
троль. 
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Introduction. Watermelon (Citrullus lanatus) is a crop accounting for 7% of the worldwide area related 
to vegetable production [1], highly important due to its nutritional value and taste [2, 3]. The quality of wa-
termelon seeds, especially their purity and viability, affects all the production stages, such as sowing, grow-
ing, and harvesting. Low-quality seeds can include seeds of other varieties affected by cross-pollination and 
nonviable seeds influenced by poor storage conditions [4]. Thus, the discrimination of high-quality water-
melon seeds has become critical to the development of the watermelon seed market. 

A few methods have been developed to discriminate high-quality seeds, namely grow-out-trail (GOT) to 
assess the seed purity and the viability in a crop variety [5, 6]; isozyme electrophoresis technologies for seed 
genetic purity testing [7]; and tetrazolium or electrical conductivity tests to evaluate the seed viability [8]. 
However, these methods are destructive, time-consuming, costly, and often influenced by the environment, 
which may affect the accuracy of discrimination [9]. Recently, some rapid and nondestructive methods have 
been proposed to resolve this problem, such as near infrared reflectance spectroscopy and Raman spectros-
copy in the estimation of components and seed viability [10, 11], LED-induced hyperspectral reflectance 
imaging to determine the germination quality of cucumber seeds [12], hyperspectral imaging to measure the 
seed viability of corn [13], and the multispectral fluorescence imaging technique to discriminate the cucum-
ber seed viability [14]. 

Multispectral imaging is a developing nondestructive technology that integrates the benefits of conven-
tional imaging and spectroscopy to simultaneously achieve both spatial and spectral information from the 
target object. Analysis from multispectral imaging is simple, rapid, nondestructive, and does not require 
sample pre-treatment, so this technique is well suited for on-line process monitoring and quality cont- 
rol [15, 16]. Recently, multispectral imaging has been applied to predict the quality and maturity of fruit and 
vegetables [17–19], detect the fungi infection in corn kernels [20], detect food adulteration [21, 22], and dis-
criminate transgenic rice seeds [23]. However, there are no published data on multispectral imaging for dis-
crimination of high-quality watermelon seeds. Therefore, the aim of this research is to assess the potential of 
the multispectral imaging technique for determining high-quality watermelon seeds used in combination 
with chemometrics methods, including least squares-support vector machines (LS-SVM), back propagation 
neural network (BPNN), and random forest (RF).  

Calculation. The two varieties of hybrid watermelon seeds (Xiali and Julong, 500 samples for each va-
riety) used in the experiment were provided by the Anhui Jianghuai Horticulture Seeds Co., Ltd, Hefei, 
China. All the samples were labeled and stored in sealed plastic bags at 4°C until use. 

Image acquisition and analysis. A VideometerLab (Videometer A/S, Hørsholm, Denmark) was used to 
collect the multispectral image, which included 19 different wavelengths (405, 435, 450, 470, 505, 525, 570, 
590, 630, 645, 660, 700, 780, 850, 870, 890, 910, 940, and 970 nm). The principal setup of the system was 
composed of a point-grey scorpion camera, light emitting diodes (LEDs), and an integrating sphere with a 
matte white coating used to guarantee that the light is uniform, diffuse, and evenly scattered. At the rim of 
the sphere, LEDs were positioned side by side so as to distribute the LEDs at the specific wavelength uni-
formly around the entire rim. The LEDs were strobing successively, resulting in an image of 1280×960 for 
each LED. 

The multispectral system was firstly calibrated with both a diffuse white and a dark target to ensure 
pixel correspondence for all spectral bands. The object was placed inside the integrating sphere, and then a 
multispectral image consisting of 19 separate images was recorded. The spectra in the range 405–970 nm, 
including the visible and the lower wavelengths of the NIR region, were collected from each sample image. 
Each multispectral image was processed with VideometerLab software (version 2.12.23). The image back-
ground was removed by canonical discriminant analysis (CDA) and segmented using a simple threshold. 
The important morphological features of each watermelon seed, including area (mm2), length (mm), width 
(mm), and Hunter L*, a*, b* values, were all extracted from the image analysis and processing.  

After recording the multispectral images, the samples were transported to the breeding base for seeds in 
Hainan, South China, to determine their quality by the GOT method. 

Principle component analysis (PCA). As a common unsupervised recognition method, PCA could re-
duce the original reflectance spectra to a smaller number of variables, called principal components (PC). 
In this study the dimensions of the data matrix from the seed samples were reduced and the main information 
was extracted. The final results of PCA, consisting of score plots, could be used to visualize the contrast be-
tween the watermelon seeds and provide essential information about differentiating the samples. 

LS-SVM was used as a learning algorithm for classification and regression tasks [24]. A radial basis 
function (RBF) with the Gaussian function was selected as the kernel function to reduce the computational 
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complexity of the training procedure and give good performance under the general smoothness assumptions. 
Two crucial parameters (γ, σ2) were needed for LS-SVM, and higher performance of the model can be ob-
tained by adjusting the value of the parameters. The details of the LS-SVM algorithm can be found in the 
previously reported researches. Here, to find the optimum parameters of the model with the best discrimina-
tion results, leave-one-out cross-validation was performed during the calibration step, and the selection 
ranges of γ and σ2 were defined from 2–10 to 210 [25]. 

BPNN can solve complex problems more accurately than the linear techniques, so it has been widely 
used for pattern recognition in many fields. A three-layer structure BPNN (an input layer, a hidden layer, and 
an output layer) was selected. Leave-one-out cross-validation was performed during the calibration step. 
Several network architectures were tested by varying the number of neurons in the hidden layer with differ-
ent initial weights. The optimal parameters (hidden nodes, the goal error, and iteration times) were deter-
mined by the least prediction error. 

RF, as a combination of tree predictors, is one of the most successful classifiers based on the ensemble 
learning algorithm, which shows high resistance to noisy variables and can handle a large number of vari-
ables [26, 27]. RF is an ensemble classification algorithm that consists of many classification and regression 
trees. The leaves of classification trees represent class labels, and the branches represent conjunctions of the 
features that lead to class labels. Here, ensemble B trees are presented as {T1(x), ..., TB(x)}, where x  {x1,

 ..., xm} 
is the m-dimensional vector of the variables of a classified object, which is the m-dimensional vector of the 
features obtained from the multispectral image of the samples. The outputs of ensemble B are produced as 
{ŷ1 = T1(x), ..., ŷB = TB(x)}, where ŷb, b  {1, 2, ..., B} is the prediction for a classified object by the bth tree. 
The outputs of all trees are aggregated to produce one final prediction ŷ. 

Results and discussion. Analysis of reflectance spectra. From the results of the GOT method, all the 
seed samples were divided into four classes, which were pure seeds, seeds of other varieties, dead seeds, and 
low-vigor seeds. For 500 Julong seeds, 291 were pure seeds, 109 were seeds of other varieties, 40 were dead 
seeds, and 60 were low-vigor seeds. For 500 Xiali seeds, 278 were pure seeds, 111 were seeds of other varie-
ties, 53 were dead seeds, and 58 were low-vigor seeds. The spectral images of the four classes of watermelon 
seeds are shown in Fig. 1. 
 

          Pure   Other varieties  Low vigor   Dead 

Julong 
 
 
 

Xiali 

 
 

Fig. 1. Images of four classes of watermelon seeds. 
 

The average reflectance spectra of two varieties of watermelon seeds (Julong and Xiali) in the wave-
length range 405–970 nm are shown in Fig. 2. The spectral reflectance curves of the samples were smooth, 
and the general trend of all spectra was similar between the two varieties of watermelon seeds. There was 
some subtle difference between pure seeds and the other three classes of seeds, especially from 600 to 
900 nm, which may be due to the differences of the color or chemical components of the seed samples. But 
as for the low-vigor seeds, it was not easy to distinguish them from the other classes, which may be due to 
the uncertainty in seed variety.  

Here, all the pure and high-vigor seeds were regarded as high-quality seeds, and to simplify the problem 
of high-quality seed discrimination, all the seed samples were divided into two classes: high-quality seeds 
and other seeds (including seeds of other varieties, dead seeds, and low-vigor seeds). A total of 200 high-
quality seeds and 100 other seeds was randomly selected from the samples and then divided into the calibra-
tion set (including 140 high-quality seeds and 60 other seeds) and the prediction set (including 60 high-
quality seeds and 40 other seeds). The average morphological values of watermelon seeds, including 
area (mm2), length (mm)/width (mm), roundness, and Hunter L*, a*, b*, are shown in Table 1. From Table 1, 
we can see that there is clear difference between the high-quality seeds and other seeds in such morphologi-
cal parameters as roundness, CIE a*, and area. 
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Fig. 2. Average spectra from the multispectral images of high-quality and other watermelon seeds.  
(a) Julong variety; (b) Xiali variety. 

 
TABLE 1. Morphological Features of Watermelon Seeds of Two Varieties 

 

Variety Class Area, mm2 Length/Width, mm Roundness, mm CIE L* CIE а* CIE b*

Julong High-quality 60.573 11.189 7.093 2.083 49.089 5.930 
 Other 69.302 11.676 7.864 2.042 45.113 6.072 

Xiali High-quality 61.267 11.245 7.125 2.151 48.578 6.164 
 Other 65.426 11.538 7.493 2.096 47.724 6.257 

 
PCA was performed initially to examine the qualitative difference of the high-quality seeds and other 

seeds in the PC space with the combined spectral and morphological features data, and the results can be 
found in Fig. 3. The three-dimensional principal component (PC) score plot was obtained with the first three 
score vectors (PC1, PC2, PC3) derived from the combined spectral and morphological features data. From 
the PCA plot, the first three PCs, accounting for the most variation, were 99.64% and 98.85% for Julong and 
Xiali, respectively. However, there was no apparent differentiation between the high-quality seeds and other 
seeds in both watermelon varieties with the combined spectral and morphological features data. Thus, it is 
difficult to discriminate the high-quality watermelon seeds with simple linear methods, so other nonlinear 
methods, including LS-SVM, BPNN, and RF, were utilized for improved separation. 
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Fig. 3. Three-dimensional score plot of the first three principal components for the high-quality (*)  
and  other  (○) watermelon  seeds  with  the combined  spectral  and  morphological  features  data.  

(a) Julong variety; (b) Xiali variety. 
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Discrimination of high-quality watermelon seeds. Discrimination models for the two varieties of wa-
termelon seeds based on the spectral features data or the combined spectral and morphological features data 
were established using LS-SVM, BPNN, and RF, respectively. The results can be found in Table 2. For the 
Julong variety samples, all the models with the combined spectral and morphological features data were bet-
ter than the models with the spectral features only. At the model development stage using LS-SVM with the 
RBF kernel, the key parameters (γ, σ2) that determined the boundary complexity and the prediction perform-
ance were found to be (64, 0.00515433) in the combined spectral and morphological features data using 
cross validation, which is shown in Fig. 4a. The accuracies of the developed model were 94% in the calibra-
tion set and 92% in the prediction set, respectively. In the process of the model development with BPNN 
using the combined spectral and morphological features data, the parameters including hidden nodes, the 
goal error, and iteration times, were determined to be 20, 1×10–8, and 800, respectively. The results showed 
that the accuracies of the model in the calibration and prediction sets were 88.5% and 84%, respectively. In 
the process of the model development with RF using the combined spectral and morphological features data, 
the number of classification trees desired (ntree) was defined as 25, and the number of variables (mtry) used in 
each tree to make the tree grow was also 25. The accuracies in the calibration and prediction sets were 98% 
and 87%, respectively.  
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Fig. 4. Plot of tuning of γ and σ2 for LS-SVM model of Julong variety samples (a)  
and Xiali variety samples (b). 

 
TABLE 2. Comparison of Discrimination Performance Obtained with LS-SVM, BPNN, and RF methods, 

with the Spectral Data and the Combined Spectral and Morphological Features Data 
 

Calibration set Prediction set 
Sample 

Chemometric 
methods 

Features 
MS Accuracy, % MS Accuracy, % 

92 13 87 LS-SVM Spectral 
Spectral + morphology 

16 
12 94 8 92 
31 84.5 24 76 BPNN 

 
Spectral 

Spectral + morphology 23 88.5 16 84 
Julong 

RF Spectral 8 96 21 79 
  Spectral + morphology 4 98 13 87 

92.5 21 79 LS-SVM 
 

Spectral 
Spectral + morphology 

15 
17 91.5 17 83 
17 91.5 28 72 BPNN Spectral 

Spectral + morphology 12 94 25 75 
Xiali 

RF Spectral 8 96 19 81 
  Spectral + morphology 9 95.5 9 91 

   N o t e.  MS is misclassified samples. 
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Similar to the Julong variety, the models with the combined spectral and morphological features data 
were also better than the models only with the spectral features for Xiali variety samples. The optimal results 
were obtained by the LS-SVM model with the parameters (γ, σ2) at (337.794, 0.000976563), which can be 
seen in Fig. 4b. The accuracies of the developed model were 91.5% and 83% in the calibration and predic-
tion sets, respectively. In the BPNN model, the optimal parameters were the same as the Julong samples. 
Compared to the LS-SVM method, the results were worse in the prediction set with an accuracy of only 
75%. In the model development with RF, the parameters were also the same as with the Julong samples. The 
accuracies in the calibration and prediction sets were 95.5% and 91%. 

From Table 2, the discrimination performances with different chemometric methods were also com-
pared, and the accuracy results obtained from the calibration and prediction sets were summarized accord-
ingly. Detailed comparison based on the accuracies showed that LS-SVM and RF were the best chemometric 
methods for determining high-quality watermelon seeds with the combined spectral and morphological fea-
tures data for the Julong and Xiali varieties, respectively. The results in the prediction set can be found in 
Fig. 5. In the prediction set, the misclassified numbers were only 8 for Julong and 9 for Xiali, and the respec-
tive accuracies were 92% and 91% with the LS-SVM and RF methods, respectively.  
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Fig. 5. The results of quality discrimination obtained using different chemometrics in the prediction set.  
(a) LS-SVM for Julong variety; (b) RF for Xiali variety. 

 
Conclusion. The spectral reflectance and morphological features obtained from a multispectral imaging 

system have been considered as important features for determining high-quality watermelon seeds.  
The LS-SVM model using the combined spectral and morphological features data is shown to have the best 
prediction ability, with an accuracy of 92% in the Julong variety. Meanwhile, in the Xiali variety, the best 
model is obtained using the RF method and the combined spectral and morphological features data, with an 
accuracy of 91%. The encouraging results demonstrate that the use of the multispectral imaging technique 
combined with chemometric methods has the potential to be widely used for rapid and on-site determination 
of high-quality watermelon seeds. 
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