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In this study, we used eight millet varieties and took visible-near infrared hyperspectral images of 480 
millet samples. Spectral and image characteristics, including texture and color features, of the millet sam-
ples, were extracted from the hyperspectral images. Support vector machine (SVM) models for millet variety 
identification were established using the extracted spectral and image characteristics. An attention-Convo-
lutional recurrent neural network (attention-CRNN) model with attention mechanism was introduced for the 
identification of millet varieties, and the SVM and attention-CRNN models for millet variety identification 
were established using an image and spectral features fusion method. We found that the highest mathemati-
cal transformation method was the reciprocal logarithmic method. The identification accuracy of the SVM 
cultivar classification model with the reciprocal logarithmic spectral characteristics curve was 73.13%. The 
overall identification accuracy of the SVM model for the eight millet varieties using the image features was 
only 61.25%. The identification accuracy of the SVM model using the image and spectral information fusion 
method greatly improved the overall accuracy rate to 77.5%, and the minimum discrimination accuracy of 
the millet varieties increased from 50 to 65%. The overall identification accuracy of the attention-CRNN 
model was 87.50%, which is 10% higher than that of the SVM model, and the minimum discrimination accu-
racy of the millet varieties increased from 65 to 90%. The results show that the attention-CRNN model im-
proved the overall identification accuracy of the eight millet varieties and greatly improved the minimum 
identification accuracy. The attention-CRNN model shows great potential for the nondestructive identifica-
tion of millet and possibly other small grain varieties. 
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Изучены гиперспектральные изображения 480 образцов проса восьми сортов в видимой и ближ-

ней инфракрасной областях спектра. В результате анализа изображений получены спектральные и 
графические характеристики образцов проса, выявлены особенности текстуры и цвета. На основе 
полученных характеристик созданы модели опорных векторов (SVM) для идентификации сортов 
проса. Идентификация сортов проса проведена на основе конволюционной рекуррентной нейронной 
сети (attention-CRNN), включающей в себя механизм внимания, а также с помощью моделей SVM и 
attention-CRNN методом слияния изображений и спектральных признаков. Определено, что лучшим 
методом преобразования является обратно-логарифмический метод. Точность идентификации 
сортов проса на базе классификационной модели SVM с обратно-логарифмической кривой спек-
тральных характеристик 73.13%. Средняя точность идентификации восьми сортов проса по моде-
ли SVM с помощью признаков изображения 61.25%. Точность идентификации по модели SVM с ис-
пользованием метода слияния изображения и спектральной информации значительно повышает 
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общий показатель точности до 77.5%, а минимальная точность распознавания сортов проса увели-
чивается с 50 до 65%. Средняя точность идентификации по модели attention-CRNN 87.50%, что 
на 10% выше, чем у модели SVM, а минимальная точность распознавания сортов проса увеличива-
ется с 65 до 90%. Использование модели attention-CRNN улучшает общую точность идентификации 
восьми сортов проса и значительно увеличивает минимальную точность идентификации. Модель 
attention-CRNN представляет большой интерес для неразрушающей идентификации проса и, воз-
можно, других мелких сортов зерна.  

Ключевые слова: гиперспектральная визуализация, просо, конволюционная рекуррентная 
нейронная сеть, механизм внимания. 

 
Introduction. Millet is one of the “five grains” (millet, rice, wheat, soybean, and sorghum) that were 

important in ancient China and it remains one of the largest crops in China. Millet is rich in vitamins, miner-
als, and dietary fiber and because of its high nutritional value is a very popular crop [1]. Traditional seed 
detection methods include artificial detection, protein electrophoresis identification, DNA molecular mar-
kers, and field identification [2]. However, these methods have many shortcomings, such as long identifica-
tion times, low accuracy, and the need to destroy the seed. Therefore, the realization of a rapid nondestruc-
tive method for identifying millet varieties has become an important research target. 

Hyperspectral imaging technology is a new nondestructive testing technology that combines image and 
spectral information, and it has been widely used in the identification and quality nondestructive testing of 
agricultural products [3, 4]. Ding et al. [5] used hyperspectral technology and a Bayes discriminant analysis 
method to establish a discriminant model for wheat grain; the accuracy of the model was 98%. Wu et al. [6] 
established a new model with a discriminant accuracy of 70.8% by collecting hyperspectral reflectance im-
ages of four varieties of maize seeds and combining them with a partial least square method. Ten kinds of 
hyperspectral images of rice seed were collected by Deng et al. [7], and a discriminant model with 96% ac-
curacy was established by fusing spectral and image feature information. The hyperspectral data of normal 
and imperfect wheat grains were collected by Yu et al. [8], and a convolutional neural network (CNN) clas-
sification model was established, with the recognition rate for a test set of 99.98%. 

Most of the current research is focused on the classification of large grain varieties, so small-grain cere-
als such as millet have been somewhat overlooked. Most classification methods are based on original spec-
tral information and its mathematical transformation, whereas classification methods based on spectral and 
image characteristics are limited. The main modeling methods are CNN and recurrent neural network (RNN), 
and attention-convolutional recurrent neural network (attention-CRNN) models have been used less. 

In this study, we used eight millet varieties and obtained hyperspectral images of 480 millet samples us-
ing visible-near infrared hyperspectral imaging technology. The spectral and image characteristics, which 
included texture and color features of the millet samples, were extracted from the hyperspectral images. 
A support vector machine (SVM) millet cultivar identification model was established using the spectral and 
image characteristics, and SVM and attention-CRNN millet cultivar identification models were established 
using an image and spectral features fusion method. The aim of the study was to find a rapid and nondestruc-
tive identification method for small grain cereals such as millet. 

Experimental. Experimental samples. Millet samples were obtained from the Millet Research Institute 
of the Shanxi Provincial Academy of Agricultural Sciences, China. The eight varieties were: Hongruan mil-
let, Jin millet 28, Ji millet 39, Changnong 0301, Changnong 40, Dun millet 1, Jin millet 56, and Chang-
nong 35. Sixty seeds were selected for each millet variety. The selection criteria were: seeds with intact ap-
pearance, full grain, and even head. Forty seeds were selected randomly as the modeling set, and the remain-
ing 20 seeds were used as the prediction set. The total number of seed samples was 480; 320 were the mod-
eling set and the remaining 160 were the prediction set. 

Acquisition of hyperspectral images. We used a Starter Kit indoor mobile scanning platform (Headwall 
Photonics, USA) to take visible-near infrared hyperspectral images. The hyperspectral imaging system had 
an indoor moving scanning platform, a miniature near infrared hyperspectral imager (aperture 1.4, focal 
length 25 mm), a halogen lamp source, a controller, and a dedicated computer. 

The acquisition parameters of the hyperspectral image data were: spectral range 380–1000 nm, incident 
slit width 30 μm, and spectral resolution 0.727 nm; the band number was 854. Because the spectral reflec-
tance was disturbed by the equipment noise at both sides of the range (380 and 1000 nm), the bands at both 
sides were removed before modeling, so the spectral range used for modeling was 412.368–972.004 nm, and 
the band number were 771. 
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To reduce the interference of the noise caused by uneven distribution of the light source and the dark 
current noise [9], the system was calibrated before the experiment. The correction formula was as follows: 

 0( ) ( ) 100,I I B W B             (1) 

where I is the corrected hyperspectral image, I0 is the original hyperspectral image, W is the white back-
ground image captured by scanning a standard white correction board, and B is the dark background image 
captured by covering the lens. During the experiment, the acquisition system corrected the hyperspectral 
image automatically using the correction formula. 

Hyperspectral image processing method. The hyperspectral image contained both spectral and image 
information of the millet samples, so we divided the hyperspectral image processing into two parts: spectral 
feature extraction and image feature extraction. The image area of the millet seed was picked from the ima-
ge, and for each pixel in the millet region there was a corresponding diffuse reflectance spectrum curve. The 
spectral information of a sample was obtained using a statistical average method on the diffuse reflectance 
spectral curves of all the pixels in the image of the millet seed. 

Extraction of image features. The image features that we selected were texture and color. The texture 
features reflect the gray-level properties in the image and the spatial topological relationship. Compared with 
morphological features, texture features contain more information on the physical and chemical properties of 
a sample. The color feature reflects the surface properties of the millet samples. 

The regions of interest of the grains were selected from the hyperspectral images and the images of sin-
gle grains using ENVI 5.0 software. The texture and color features of a single millet grain were extracted 
using MATLAB 2007. The texture information of a millet hyperspectral image was extracted using a gray 
level co-occurrence matrix (GLCM) [10], the mathematical significance of which is the probability matrix 
of pixels with distance d in θ direction and gray scale i, j: 

P(i,j,d,) = (x,y),(x + x, y + y)f(x,y) = i,f(x + x, y + y) = j,    (2) 

where i, j = {0, 1, 2, 3, ..., k – 1} and θ = 45, 90, 270, and 360°. 
We set the gray gradation of the images to 16 and extracted seven common texture features: energy, en-

tropy, moment of inertia, correlation, mean, standard deviation, and consistency. The RGB color system was 
used to extract six color features, namely, the mean and variance of the red, green, and blue components. 
Overall, the image features of the whole millet sample consisted of 13 parameters; 7 texture features and 6 
color features. 

Extraction and transformation of spectral features. We extracted the diffuse reflectance spectra of all 
pixels within the range of the single millet grain image using ENVI 5.0 software, and the average diffuse 
reflectance spectra were obtained using a statistical averaging method. Every millet grain sample corre-
sponded to an average spectral curve. The average spectral curves of each millet variety were obtained using 
a mathematical average method. 

To fully extract the effective information in the hyperspectral data, better highlight the reflection and 
absorption characteristics of the spectrum, and achieve better classification effects, we used four mathemati-
cal transformation methods to transform the spectral characteristic curves. The four mathematical transfor-
mation methods were reciprocal transformation, logarithmic transformation, logarithmic transformation of 
reciprocal, and first-order differential. 

Spectral and image features fusion method. To fully use the acquired hyperspectral imaging data, the 
spectral, texture, and color features were mixed together. The data dimension after fusion was 784; the im-
age information dimension was 13, and the spectral information dimension was 771. In the SVM model, be-
cause of the large differences in properties and values between the spectral and image features, if the extract-
ed features are fused directly, the classification effect of the model may be affected by the heavy weight of 
some features or the less use of some other features. Therefore, we performed a principal component analy-
sis (PCA) to extract the first 13 principal components (rate of cumulative contribution was >99%) from the 
771-dimension spectroscopic data. For the first eight principal components (rate of cumulative contribution 
was >99%) extracted from the 13-dimensional image data, the 13-dimensional spectroscopic features and 8-
dimensional image features after PCA dimensionality reduction were normalized followed by fusion in se-
ries. Finally, the fused feature vector of the 21 dimensions was taken as the input data for the SVM classifi-
cation model. The CRNN model [11] can compress and dimension the data automatically, and the attention 
mechanism provided an intuitive explanation of the contribution of each feature to the classification results. 
Therefore, the 784-dimensional data after fusion were used directly to establish the attention-CRNN classifi-
cation model. 
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Classification models. SVM and attention-CRNN were used to establish the classification model re-
ported in this study. 

SVM model. SVM [12] is a nonparametric classifier for finite samples. It is based on the principles of 
statistical learning and structural risk minimization and has good generalization and robustness. The basic 
idea is the mapping of the training data set to a high-dimensional space, then finding the optimal hyperplane 
in the high-dimensional space for the separation of sample set. SVM is used to solve the optimization pro-
cess as 
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where i is a Slack variable and c is a penalty. Lagrangian duality is applied to get the optimal solution by 
solving the dual problem. The function in the SVM algorithm for classification is as follows: 
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where i is a Lagrangian multiplier and K(xi, xj) is a kernel function. 
The selection of the kernel function is the key to improving the performance of the SVM model. The 

radial basis function (RBF) is used. The penalty factor c and the kernel function parameter g are the two key 
parameters of the RBF, and there is no unified optimal parameter in the SVM model for different training 
sets. Therefore, we applied cross-validation to optimize the selection of different training sets c and g. 

Attention-CRNN model. The CNN and RNN have significant effects in classification models [13], but 
they also have some shortcomings: less intuitive and poor interpretability. The attention mechanism is a 
commonly used long-term memory mechanism that has been used in modeling in natural language pro-
cessing. It can intuitively show the contribution of each piece of feature information to the results. We used 
the attention mechanism to establish the attention-CRNN classification model shown in Fig. 1. 
 

 
 

Fig. 1. Attention-CRNN structure. 
 

The attention-CRNN model mainly comprises an input layer, convolution layer, sequence layer, and at-
tention model. The input layer is a matrix X, which comprises np hyperspectral data, with n as the sample 
number and P as the spectral dimension. The convolution layer is the sample feature extraction layer. The 
input sample matrix X is convoluted by the convolution kernel with size of md to obtain the characteristic 
value gi 

gi = f(wXi:i+h–1 + b),         (6) 

where f is the activation function, b is the bias item, and Xi:i+h–1 is the feature extracted from line i to i+h–1 
of X and expressed as G = [g1, g2, …, gn]. The sample eigenvector expressed as K = [k1, k2, …, kn] is ob-
tained by the maximum pooling treatment of the next sampling layer. The eigenvector k1, k2, …, kn is the 
input value of the third-level RNN. After iterations, the hidden layer vectors h1, h2, …, hn are obtained. 
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We introduced the attention mechanism [14] to better explain the importance of each sample feature. 
In this model, each hidden node in the RNN layer was assigned an attention weight [15], where the greater 
the weight, the more important is the influence of the feature on the classification of millet varieties. The 
formula was as follows 

ut = tanh(Wwhi + bw),         (7) 
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where hi is the implicit vector that corresponds to node i in the RNN layer, ui is the implicit vector in the at-
tention layer, Ww and bw are the coefficient matrix and bias vector, respectively and ai is the attention weight 

of node i in the RNN and satisfies 
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 , where n is the number of millet samples and uw is initialized 

randomly and continuously changes in the training process. 
The attention weight matrix and the corresponding hidden layer vector in the RNN layer are dotted with 

each other to complete the weighting to get the final feature vector R: 
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The eigenvector R of sample X is used as the final eigenvector to be input into the soft-max layer. A 
dropout strategy was used to prevent overfitting. 

By mining the features of the sample data using a depth neural network, the attention mechanism was 
introduced to obtain the attention-CRNN model. This model with the attention mechanism should be adap-
tive to perceive the features related to specific tasks, explain the importance of features of classification intu-
itively, and effectively improve the accuracy of the classification. 

Results and discussion. Results of hyperspectral image processing. The image features and spectral 
characteristics of the millet samples were obtained by processing the hyperspectral images. The image fea-
tures of the samples of the eight millet varieties are shown in Fig. 2a. The abscissa coordinates expressed in 
order from small to large were energy, entropy, moment of inertia, correlation, mean, standard deviation, 
consistency, and mean and variance of the red, green, and blue components. The average spectral curve is 
shown in Fig. 2b. 

As shown in Fig. 2a, the trend of image characteristics of Hongruan millet was different from that of the 
other varieties. Compared with the other millet varieties, Hongruan millet was obviously lower in average 
value, standard deviation, green mean value, blue mean value, green variance, and blue variance. Therefore, 
the accuracy of classification of Hongruan millet using the image features is likely to be high. Jin millet 56 
and Changnong 35 had the same trend and several overlaps, indicating they might interfere with each other’s 
classification and influence the classification effect. The overlaps of some eigenvalues were detected among 
other cultivars, so it might be difficult to easily distinguish them. These results indicate that the accuracy of 
classification using only image features may be low. 

The visible/near infrared band used in this study reflected mainly the absorption of O–H, C–H, and oth-
er chemical bonds in millet. It was the main band that reflected the differences of chemical composition and 
physical state of the seeds. The average spectral curve showed the difference of the eight millet varieties in 
these bands (Fig. 2b). Within the range 476–550 nm, the change of Hongruan millet was obviously different 
from those of the other varieties, and the spectral reflectance was lower than that of the other varieties; in the 
range 620–1000 nm, the reflectance of Jin millet 28 was significantly lower than that of the other varieties. 
This suggested that the correct rate of identification of Hongruan millet and Jin millet 28 would be high us-
ing spectral information, whereas the spectral curves of Changnong 0301 and Dun millet 1 were basically 
the same. There was obvious overlap between 720 and 900 nm, which resulted in mutual interference in the 
classification process, and the identification accuracy might be low. 

SVM model with spectral characteristic curve transformation. We used the original spectral characteris-
tic curve and its spectral data after the four mathematical transformations to establish the SVM discriminant 
model. By cross-validation, when the values of c and g were determined to be 16 and 0.25 respectively, the 
discriminant results of the SVM model for the prediction set are shown in Table 1. 
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Fig. 2. Image features (a) and average spectral curves (b) of 8 kinds of millet. 
 

TABLE 1. Results of the SVM Model in the Spectral Feature Curve Transformation Methods 
 

Spectral transformation Accuracy, % 
Original spectrum 70.63
Reciprocal spectrum 65
The logarithmic spectrum 65.63 
Reciprocal logarithmic spectrum 73.13
The first derivative spectrum 66.25

 
Compared with other models, the SVM classification model based on the reciprocal logarithmic spec-

tral characteristic curve had the highest discrimination accuracy (73.13%). This may be because the spectral 
reflectance, which was transformed by the reciprocal logarithm, improved the resolution of overlapping 
spectral bands, enhanced spectral differences, reduced the influence of multiplicative factors caused by illu-
mination changes and improved the discrimination rate of the model. Therefore, the reciprocal logarithmic 
spectral characteristic curves were used in the follow-up study. 

SVM model with image features. We established the SVM classification model based on seven texture 
features and six color features of the millet grains. We obtained the discriminant results of the prediction set 
using cross-validation with values of c and g determined to be 32 and 1 respectively, as shown in Table 2. 

 
TABLE 2. Results from the SVM Model Using Image Features 

 

Species 
Sample 
number

Correct 
number

Erroneous 
number

Correct 
rate, % 

Hongruan millet 20 15 5 75 
Jin millet 28 20 12 8 60 
Ji millet 39 20 11 9 55 
Chang Nong 0301 20 14 6 70 
Chang Nong 40 20 11 9 55 
Dun millet 1 20 12 8 60 
Jin millet 56 20 10 10 50 
Chang Nong 35 20 13 7 65 

Total 160 98 62 61.25 
 
As shown in Table 2, the highest classification accuracy of the SVM classification model based on im-

age features was 75%. Because Hongruan millet showed large differences from the other millet varieties 
(Fig. 2, a), the classification accuracy was highest for this variety. The identification accuracy for the other 
millet varieties was <70%, and the identification accuracy for Jin millet 56 was lowest at only 50%. This 
may be because of the similarity of texture and color features among the millet varieties, which affected the 
discrimination accuracy. The average classification accuracy of SVM classification model on the eight millet 
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varieties was only 61.25%. Although hyperspectral image features could reflect the differences among millet 
varieties, the accuracy was low when only image information was used to establish the classification model. 
Therefore, the fusion of image and spectral information for modeling might give better classification and 
identification results. 

Attention-CRNN model with the fusion of image and spectral features. The fusion of spectral infor-
mation and image information data were input into the attention-CRNN model to classify the millet varieties. 
The specific parameters of the model were set up with two convolution layers in the convolution neural net-
work. The first layer contained 18 convolution kernels with a size of 5×5, and the second layer contained 24 
convolution kernels with a size of 3×3. Different convolution kernels were used to convolute all the feature 
maps in the former layer, then the corresponding elements were accumulated and biased and each output 
feature map was activated using the ReLu function. ReLu was activated by the zero-threshold matrix, which 
to some extent prevented gradient disappearance and expedited the convergence speed of the network as fol-
lows: 

0, ( )
( ) max( ,0), .

0, ( ) 0

x f x x
f x x

x f x

 
   

           (10) 

The size of pooling layer was 2×2; the dimension of hidden layer vectors and attention layer eigenvec-
tors in the third-layer RNN were both set to 100. To prevent overfitting, the dropout layer was inserted in the 
soft-max layer with a parameter of 0.5. The mini-batch gradient descent method was used in the model. The 
network learning rate was 0.5, the batch was 20, and the maximum number of iterations was set to 6000. The 
loss function curve and accuracy value were used as the basis of convergence. The overall discriminating 
accuracy of the model for the 160 prediction sets was 87.5%. The 21-dimension feature fusion data  
(13-dimensional spectral data and 8-dimensional image data) processed by PCA were used as the input data 
to establish the SVM model after the cross-validation, when the final values of c and g were 32 and 0.5. 

The identification results of the attention-CRNN and SVM models for the prediction set are shown in 
Table 3. The results in Table 3 show that the overall accuracy of the SVM model based on image and spec-
tral information fusion was 77.50%. The overall accuracy of the SVM model increased by about 4.37% 
compared with the SVM model using only the spectral information, and by 16.25% compared with the SVM 
model using only the image information. The minimum discrimination accuracy of millet varieties increased 
from 50 to 65%, which indicates that using the image and spectral information fusion method improved the 
identification accuracy of millet varieties. 
 

TABLE 3. Sample Recognition Rate of the Attention-CRNN and SVM Models 
 

Species Attention-CRNN model, % SVM model, % 
Hongruan millet 95 90
Jin millet 28 90 80 
Ji millet 39 80 70
Chang nong 0301 85 75
Chang nong 40 95 80
Dun millet 1 80 75
Jin millet 56 90 65 
Chang nong 35 85 85

Total 87.50 77.50
 
The overall accuracy of the attention-CRNN model was 87.50%, which was 10% higher than that of the 

SVM model. The identification accuracy of Jin millet 56 using the attention-CRNN model was 90%, an in-
crease of about 25% compared with the SVM model. The identification accuracies of Changnong 40 in-
creased by 15%, and those of Jin millet 28, Ji millet 39, and Changnong 0301 increased by 10% using the 
attention-CRNN model, and the minimum discrimination accuracy of millet varieties increased from 65% to 
90%. These results show that the attention-CRNN model could better highlight important features, alleviate 
the loss of information, and had good feature extraction ability. We expect that the attention-CRNN model 
could improve the overall identification accuracy of cereal varieties and greatly improve the minimum iden-
tification accuracy. 
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Conclusion. Eight millet varieties were selected, and visible-near infrared hyperspectral images of 480 
millet samples were taken. Spectral and image characteristics, including texture and color features, of the 
millet samples were extracted from the hyperspectral images. SVM millet variety identification models were 
established using spectral and image features. SVM and attention-CRNN millet variety identification models 
were established using an image and spectral features fusion method. The identification results of the various 
modeling methods were analyzed in this study. The conclusions were as follows. 

The identification accuracy of the SVM classification model based on a reciprocal logarithmic spectral 
characteristic curve was 73.13%, which was the highest value among the four mathematical transformation 
methods. The overall identification accuracy of the eight millet varieties with the SVM classification model 
using image features was only 61.25%. The identification accuracy of the SVM model using image and 
spectral information fusion was 77.50%, enhancements of about 4.37% compared with the SVM model us-
ing only spectral information and 16.25% compared with the SVM model using only image information. The 
minimum discrimination accuracy of the millet varieties increased from 50 to 65%. 

The attention-CRNN model with attention mechanism was developed to accurately identify millet vari-
eties. The overall accuracy of the attention-CRNN model was 87.50%, which is 10% higher than the overall 
accuracy of the SVM model. The minimum discrimination accuracy of millet varieties increased from 65 to 
90%. The attention-CRNN model has good feature extraction ability and improved the identification accura-
cy of millet varieties. The attention-CRNN model shows great potential for the nondestructive identification 
of millet and possibly other small grain varieties. To meet the needs of practical applications, the further de-
velopment of models with higher discrimination accuracy and with fewer bands and a band selection algo-
rithm are required. 
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