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Near-infrared spectroscopy (NIRS) is an effective and efficient technique for evaluating coal quality.
The original spectra might be contaminated by scattering interference and random noise. We propose a nov-
el artifact removal framework to recover the buried information and to overcome limitations of currently
available pre-processing techniques, such as the multiplicative scatter correction (MSC), as well as a
smoothing process. The two-step framework is mainly constructed by MSC and Savitzky-Golay convolution
(S-SGC). Moreover, a particle swarm optimization (PSO) algorithm is used to search the optimal parame-
ters within the framework. In addition, the spectra are collected from coal samples with different particle
sizes (i.e., 0.2 and 3 mm), which may carry different characteristics and interfering information. We have
analyzed seven kinds of coal properties, such as moisture (%), ash (%), volatile matter (%), and heating val-
ue (MJ/kg) via partial least square regression (PLSR) models in order to verify the effectiveness of the pro-
posed method. The results show that the proposed two-step method provides superior performances for
zooming in the spectral characteristic peaks and filtering the random noise simultaneously, which mainly
benefits from the appropriate combination of MSC and S-SGC.

Keywords: near infrared spectroscopy, coal quality analysis, multiplicative scatter correction, smooth-
ing processing, fusion mode.
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Ilpeonacaemes cucmema ycmpanenus apme@daxmos Oasi 80CCMAHOBNEHUST CKPbIMOU UH@OpMayuy u
paAcCUUpenst B03MOACHOCHEN CYWECMBYIOUWUX MEMO008 NPed8apumenbHoll 00pabomKu OaHHbIX, MAKUX KAK
mynemunaukamugnasn koppexyus pacceanusn (MSC) u cenancusanue. Cucmema exnrouaem 6 cebs 0a smana
u nocmpoena 8 ochosHom Ha ceepmke Casuykoco—Il ones (S-SGC) u MSC. /[na onmumusayuu napamempos
6 cucmeme ucnoab308an memoo pos yacmuy (PSO). Cnexmpwl nonyuenvl 0151 06pasyos yeusi ¢ pasiuiHbiMu
pazmepamu yacmuy (0.2 u 3.0 mm) u mozym cooepsicamo ungopmayuro, 00yCI061eHHYI0 PASHLIMU XAPAK-
mepucmuxamu u nomexamu. /[na nposepku s¢hgpexmusHocmu npediazaemozo cnocoda ¢ nomoubio mooenel
yacmuyHou pezpeccuu HaumeHbuux keaopamos (PLSR) npoananuzuposamsl ceoticmea yeisi, 6 mom uucie
enasichocms (%), cooeparcanue 306t (%) u remyuux sewecms (%), meniomeopuas cnocoornocmo (M{owc/xe).
Hannviii memoo obecneuusaem npegocxoOHvle XAPAKMEPUCTHUKU O MACUMAOUPOBAHUS NUKO8 CHeK-
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MPAnLHOU  XAPAKMEPUCIUKU U  OOHOBDEMEHHOU Quibmpayuy CiydauHozo wyma, 4mo O0ocmueaemcs
6 ocHogHOM coomeemcmeyrowell komounayueti aneopummos MSC u S-SGC.

Knrwouesvle cnosa: cnexmpockonus oaudcrnezo UK ouanazona, ananusz xaiecmea yns, MyibmuniuKad-
MUBHASI KOPPEKYUSL PACCEAHUS, CNANACUBAHUE OAHHDIX, PENCUM COBMEUJeHUSL.

Introduction. It is highly desired to develop online analyses, which are able to rapidly provide repre-
sentative information about coal properties, especially in the field of coal production, power generation, and
steelmaking [1-3]. Traditional ways, which consist of laboratory evaluation using standards methods, are
time consuming and not suitable for rapid multi-parameter analysis of coal properties. Recently, near infra-
red spectroscopy (NIRS) has become an effective technique, which can provide rapid and online analysis of
coal without using any reagent [4, 5]. It is increasingly used to infer several properties of coals, such as
moisture, ash, volatile matter, and heating value [6, 7].

The first step in analyzing the spectra is to pre-process the acquired data. The main reason is that the
near-infrared (NIR) spectra are often contaminated by systematic noises, such as light scattering and base-
line variation [8—10]. These noises are uncorrelated with the coal properties and overlapped with the coal
spectra, which may make the spectral characteristic peaks not obvious. In addition, considering the fact that
the composition and structure of coal are complex, the analyte of interest may absorb only in small parts of
the spectral region. These unwanted noises may disturb the multivariate analysis and cause inaccurate pre-
dictions. In order to remove the undesired variations and improve the signal-to-noise ration (SNR), pre-
processing of the collected spectral data is the most important step before the subsequent analysis, such as
multivariate regression and classification [11-13].

Three types of pre-processing methods are commonly used for NIRS, including data enhancement, scat-
tering correction, and smoothing filters. Popular methods of data enhancement include mean centralization,
normalization, and the first/second derivative, which are commonly reported for enhancing the data variation
of different spectra [14, 15]. However, these methods may amplify the random noise of spectra. As to the
scattering correction, the multiplicative scatter correction (MSC) is often employed to revise the original
spectra and eliminate the scatter effect [16, 17]. After being corrected, the spectral characteristic peaks can
be enhanced significantly. However, it is ineffective for removing the random noise. Smoothing filters, such
as smoothing by moving window average (S-MWA) and smoothing by Savitzky-Golay convolution (S-SGC),
are employed to filter the random noise [18, 19]. However, at the same time, this kind of smoothing tech-
nique will inevitably smooth the tiny characteristic peaks, which may remove part of the useful information.

Each of the previous methods was specified for one kind of noise. For instance, the multiplicative scat-
ter correction was designed for removing scattering interferences, and the smoothing processing was de-
signed to eliminate random noise. Given these concerns, in this paper we propose a novel framework for
removing more artifacts by combining MSC with the smoothing process. However, it is difficult to find the
best way to remove the undesired physical phenomena in the spectra for the random setting of the frame-
work parameter. To address this problem, prior to the smoothing processing, we employ the particle swarm
optimization algorithm (PSO) to search the optimal parameters. The proposed method is able to enhance the
spectral peaks and reduce the random noise at the same time. We predicted seven properties for evaluating
coal quality with the partial least square regression (PLSR) model. The predicting accuracy of the analytical
model was effectively improved with the processed spectra via the proposed method.

Experimental data and method. Background. According to the Kubelka-Munk theory [20], the ab-
sorbance of coal spectra mainly depends on the absorption coefficient K¢ and scattering coefficient Sc;
Kc reflects the composition as well as structure of coal (useful information), and Sc is related to the physical
state of coal samples such as particle sizes, distribution, and so on (interfering information) [21, 22]. Even
for the same sample, the coal spectra acquired at different particle sizes carry various characteristic infor-
mation, as well as scatting interference [23]. In view of this, spectral recovery methods are studied to deal
with the collected spectra from coal samples of different particle sizes, 0.2 and 3 mm.

Material and instrument. One hundred and seventeen samples of coal were collected from several min-
ing areas in Inner Mongolia Province, Shanxi Province, Guizhou Province, and Northeast regions of China.
All of them were sampled and analyzed by the traditional laboratory evaluations. Every coal was pulverized
into two kinds of samples of particle size 0.2 and 3 mm. All samples were stored in an air drying chamber
where temperature was set to 20°C and humidity was 10%. Each sample was divided into two parts: one for
analyzing coal properties and the other one for obtaining the spectra.
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Seven coal properties were analyzed in this paper, including total moisture M; (%), air-dry moisture Maq (%),
air-dry ash Aaq (%), dry ash 44 (%), air-dry volatile matter Vaq (%), dry-ash-free Viar (%), and heating value
QOgrad (MJ/Kg). Therefore, the dimension of the output vector y is 7 in the analytical model. In this experi-
ment, the properties were analyzed by a FD115 electric thermostatic dry oven, an AAF12/18 ash muffle fur-
nace, a VMF volatile muffle furnace, a C5000 calorimeter, a BS124S electronic analytical balance and so on.
All of the experimental operations were executed according to the standards GB/T211-2007, GB/T212-2008,
and GB/T 213-2008.

The spectra were acquired by an Antaris I Fourier transform NIR spectrometer. The instrument settings
were given as follows: scanning number 64; wavelength point range 3799.08-10001.03 cm™!; spectral reso-
lution 4 cm™!; dimension of the spectra 1609. Two kinds of spectral data sets were acquired on the basis
of two particle sizes, 0.2 and 3 mm, to study the correlation of between coal properties and the spectra with
different noise and scatter interference.

Methods. In this paper, a novel two-step spectral recovery framework was proposed based on the com-
bination of MSC and the smoothing processing method with the optimal key parameters by PSO. The goal
of the proposed method includes three parts: (1) enhance the unnoticeable characteristic peaks; (2) remove
scattering interference and random noise from coal spectra; (3) obtain a stronger relation between the pro-
cessed spectra and coal qualities.

The acquired spectrum x; is processed by the following steps:

Step 1: Estimating the correlation between the original spectrum x; and the reference spectrum x,

X = ;imﬂ-b,-. (D

Step 2: Describing the scatter-corrected spectrum  x;,
;,' = (xi - b,)/m, (2)

Step 3: Selecting a suitable smoothing function.
a) In S-MWA, defining the center point of the spectral data X, ; In the window as

X, = kZ_()?,-,ﬁij,k ;_ Sj,,J, X ok €% 3 (3)
b) In S-SGC, defining the filtered spectrum &; ;,, using a polynomial function as

')%i,jth = I{Z_‘b(ai,nkd)(AWjH’k)) = ¢;,j+tai,j . “4)

Step 4: Establishing the quantitative analytical model by the PLSR method to verify the effectiveness of the
mentioned methods, where the input is the processed spectrum x; and the output is the predicting value of

the coal properties y;,, .

Step 5: Optimizing the degree of the polynomial function » and the window width » using PSO.

a) Firstly, setting an average absolute error of the predicting results Eqy. as a fitness function ffimess.
b) Then repeating steps 3—4 until ffimess 1S reduced to a minimum.

Step 6: Obtaining the final processed spectrum x; with the optimized parameters.

Here the reference spectrum x is defined by the average value of the original spectra, i is the samples
number of the coal spectra, j is the spectrum dimension, the smoothing operator s;x = 1, m; and b; are scalar
parameters, ¢;;+1 is the polynomial basis matrix, and a;; is the coefficient vector calculated by the least
square estimation method.

Results and discussion. Multiplicative scatter correction. MSC can eliminate the scatter inference
caused by the particle size and distribution of coal samples. As shown in Fig. 1, both the characteristic peaks
and random noise were enhanced. This means that MSC can eliminate the scatter interference of spectra ef-
fectively, but it is not effective for filtering the random noise.

Smoothing processing. S-MWA method filters the spectra by using the weighted arithmetic average
several times in the window. It can effectively eliminate the random noise, whose mean approximately
equals 0. As shown in Fig. 2, the characteristic peaks are unnoticeable and the spectral curvature changes
rapidly in the region of 6000—4000 cm™'. The characteristic peaks are highly similar to the random noise and
hard to distinguish. Therefore, the processed spectra are easily over-smoothed by S-MWA. This may lead to
the loss of unnoticeable characteristic peaks, which actually contain useful information.
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Fig. 1. Correction of coal spectra by MSC.
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Fig. 2. Smoothing process by S-MWA and S-SGC.

With the PSO algorithm we can get the best possible combinations of the polynomial degree »n and win-
dow length 7 to describe the characteristics of the coal spectra and to filter useless information more exactly.
The whole searching process is supervised by the PLSR model to find the minimum of Eave as the final ob-
jective. Inspired by information from the literature and considering the difference between the targeted sam-
ples, we heuristically set the searching range of the polynomial degree n as 1-10 and that of the window
width r as 17-100 [24, 25]. In PSO, the main parameters are set as follows: dimension size 2, population size
20, iteration number 100.

For the 0.2 mm spectral data sets, the optimal polynomial degree n = 2, window width » = 17; for 3 mm
spectral data sets, the optimal n = 6, » = 57. As shown in Fig. 2, the spectra were filtered with a high resolu-
tion by S-SGC. The characteristic peaks by S-SGC in the region of 6000-4000 cm™! are reserved much more
than by S-MWA. The unnoticeable peaks are still overlooked.

Two-step spectral recovery framework. The parameters are optimized by the PSO algorithm. For the
0.2 mm spectral data sets n = 3, » = 63; for the 3 mm spectral data sets, n = 7, » = 39. As shown in Fig. 3,
AA represents the absorbance error between the final-processed spectrum and the MSC-processed spectrum.
Compared to the MSC-processed spectrum, both of the spectra processed by the proposed method contain
a less high-frequency random noise in the 0.2 and 3 mm spectral data sets. Meanwhile the unnoticeable
characteristic peaks are enhanced and can be clearly distinguished from random noise comparing to Fig. 2
(processed by S-SGC). The SNR is significantly increased. This means that this method is more effective
to get the recovered spectra with stronger peaks and lower random noise.
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Result of quantitative analysis model. As shown in Fig. 3, the proposed method is able to reduce both
random noise and scatter inference. We process two kinds of spectral data sets by three recovery methods,
including MSC, S-SGC (PSO optimized), the proposed method, as well as the raw spectra. The average ab-
solute error FEave, correlation coefficient R, and root-mean-square error RMSE obtained by the PLSR model
have been considered for comparison of the mentioned methods, where the desired results are Euve—0, R—1,
and RMSE—0.
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Fig. 3. Spectrum recovered by the proposed method.

The results are shown in Table 1. The spectra processed by the proposed framework give the best per-
formance, with the smallest value of E,.. and RMSE as well as the highest R (most approximates to 1). This
shows that the correlation between the combined-framework-processed spectra and coal properties is much
stronger than for the spectra processed by the other two methods.

TABLE 1. Performance Comparison of Different Pre-processing Methods

0.2 mm 3 mm

Eave R RMSE | Euve R RMSE
Raw 1.1825 | 0.8924 | 1.5327 | 1.9414 | 0.7650 | 2.4334
MSC 1.1014 | 0.8947 | 1.4042 | 1.9561 | 0.7758 | 2.4341

S-SGC | 1.2157 | 0.8887 | 1.5764 | 1.8632 | 0.7978 | 2.2004

Proposed | 1.0048 | 0.9272 | 1.2722 | 1.5372 | 0.8161 | 1.8407

Method

Conclusion. In order to recover spectra with higher SNR, we analyzed the characteristics of interfer-
ence and noise in the coal spectra with different particle size. We processed the spectra with the common
recovery methods, such as MSC, S-MWA, and S-SGC. Considering the complexity of the coal spectra and
the shortcoming of current available methods, a novel two-step spectral recovery framework was proposed
to enhance the spectral characteristic peaks and to filter the random noise simultaneously. The prediction
performance of the PLSR model shows that the proposed method improved the accuracy and reliability
of the spectra. It also facilitates the subsequent analysis of near infrared spectra for evaluating coal qualities.
In addition, the proposed spectral recovery strategy does not rely on the special characters of the targeted
samples and therefore can be applied to a wide class of spectral signals from other samples.
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