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To promote the use of imaging spectroscopy to assess the nutritional status of apple trees, the models to
estimate the chlorophyll content of apple leaves were explored. Spectral data for apple leaves were collected
with an imaging spectrometer and then preprocessed with the nine-point moving weighted average method.
Correlation analyses were conducted between chlorophyll content and mathematically transformed spectral
data. Wavelengths sensitive to chlorophyll content were selected on the basis of the highest correlation
coefficients, and partial least squares (PLS), support vector machine (SVM), and random forest (RF) models
to estimate chlorophyll content were established and tested. The wavelengths sensitive to chlorophyll content
were 414, 424, 429, 439, and 577 nm. The best model was the SVM model with wavelength data subjected to
a second order differential of the logarithm transformation (IgR414) " (1gR424)7" (IgR429) " (IgR439) 7, (IgR577)”
as the independent variables. For this model, the coefficient of determination V-R’ was 0.7372, the root
mean square error V-RMSE was 0.4477, and the residual predictive deviation V-RPD was 1.8810. Among
all the models, this SVM model had the highest V-R’ and V-RPD values and the lowest V-RMSE value.
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s noomeepoicoeHust 803MONCHOCHIU UCHOIb308AHUS SUNEPCNEKMPATIbHBIX U300PAdCeHUll OISl OYeHKU
COCMOsIHUSL NUMAaKUsl A0TO0Hb UCCTEO08AHO COOEpA’CanUue XA0poPuina 8 ux aucmosax. Cnekmpanvhvle OanHbie
noayueHvl ¢ NOMOWbIO CHeKmpomMempa U npeodeapumenvHo ob6pabamvleanucy MemoooM 636EUEHHO20
CKOMb35UWe20 cpedne2o no oegamu mouxkam. C nomMoupio KOppersyuoHHo20 AHAU3A YCMAHOBNEHA CB53b
MednHcOy cooepiHcanuemM XA0po@uina U mMamemMamuyecky npeodpa’08anHbiMy CReKMPATbHbIMU OAHHBIMU.
Lnunvl 6oam, uyscmeumenvHvle K cOOEPAHCAHUIO XA0POPUING, 8bl6panbl HA OCHOBE CAMbIX 8bICOKUX KOIQ-
Puyuenmos Kkoppersyuy, 01 OYeHKU COOEePAHCAHUS XI0POPUNNA UCHONLI0BAHBI MEMOObL YACTHBIX HAUMEHb-
wux keadpamos (PLS), onopuvix eéexmopos (SVM) u cryuaiinoeo aeca (RF). [Jnunvl 601H, yygcmeumenbHole
K codepacanuio xnopoguina: 414, 424, 429, 439 u 577 um. Jhyuweii modenvro oxazanace SVM ¢ nezagucu-
MbIMU NEePEMEHHbIMU, NPedCmassiowumu coboll emopuvle npouszsodrvie aocapupma (IgRy14)” (1gR424) 7
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(I1gR129) 7, (12R439) 7 (IgR577) " [Ina smoii modenu kodghgpuyuenm demepmurayuu R =0.7372, cpedHexeaopa-
muueckas outuboka RMSE = 0.4477, ocmamounoe npozrosnoe omxionenue RPD = 1.8810. Mooenv SVM
umena camvie vicokue R’ u RPD u camoe nusxoe RMSE no CPABHEHUIO C OPYUMU MOOETSIMU.

Knrueswie cnosa: suzyanuzayus, 1ucmovs S0J10HU, COOePAHCAHUE XTOPOPUILLA, OYEeHOUHbIEe MOOET.

Introduction. Chlorophyll content is an indicator of crop photosynthesis and crop growth [1, 2]. The
traditional method to determine chlorophyll content is spectrophotometry. Although this method is very
accurate, the experimental procedure is long and complicated, and so it is not wellsuited to meet the needs of
rapid, real-time, nondestructive monitoring.

In recent years, imaging spectroscopy has been developed as a technique to estimate plant growth status
rapidly and nondestructively. It has wide applications in fast, real-time, and nondestructive testing of crop
growth and nutrition. For example, Maccioni et al.[3] used single-leaf directional reflectance normalized by
the green band and red edge to create a new vegetation index to predict chlorophyll content. Ciganda et al.
[4] constructed a red-edge chlorophyll index based on red edge (720-730 nm) and near-infrared (770-800
nm) reflectance to predict the chlorophyll content of the corn canopy. Schlemmer et al. [5, 6] constructed
leaf- and canopy-scale vegetation indexes such as EVI2, REP, MTCI, CI green, and CI red edge, which were
used to create models for estimating chlorophyll content. Gong et al. [7] constructed models to estimate
chlorophyll content by creating “three sides” parameters, a ratio spectral index, and a normalized difference
spectral index. Zhu et al. [8] combined spectral parameters, the red edge area, and certain wavelength bands
to monitor the chlorophyll content of apple leaves and obtained the best predictive effect with a model
incorporating Rgoo/Rss0 and the red edge area. Yue et al. [9] used the original spectrum subjected to various
mathematical transformations as independent variables in models for predicting the chlorophyll content of
citrus leaves. The models were based on principal component analysis for dimensionality reduction by an
support vector machine (SVM) regression algorithm, wavelet de-noising, and partial least squares (PLS)
regression. Wang et al. [10] established univariate and multivariable regression models to predict the canopy
nitrogen content in maize at the seedling stage with a normalized vegetation index, a normalized spectral
vegetation index, a ratio-based spectral index, and a difference vegetation index based on imaging
spectroscopy data.

Many studies have focused on the inversion of biochemical components of vegetation using non-
imaging hyperspectral techniques. However, relatively few studies have established models based on
imaging spectroscopy data. In this study, the spectral data of apple leaves were collected using an imaging
spectrometer. The average spectral reflectance of the leaves was determined, and the spectral data were
preprocessed with the nine-point moving weighted average method. The correlations between chlorophyll
content and spectral data subjected to 11 kinds of mathematical transformation were determined. The
wavelengths most sensitive to chlorophyll content (those with the highest correlation coefficients) were
selected as the independent variables for the models. Then partial least squares (PLS), support vector
machine (SVM), and random forest (RF) models to predict chlorophyll content were established and tested.
The aims of this study were to explore models for estimating chlorophyll content based on transformed
spectral data and to provide technical support for the application of imaging spectroscopy to monitor crop
nutrition.

Experimental. Sample collection. Sampling was conducted in September 2016 at apple (cultivar, Red
Fuji) orchards in the village of Xia Tan Bu Lin, Gao Du Town, Meng Yin County, Shandong Province,
China. Based on the distribution map of the orchards, sampling points were selected and 100 healthy apple
trees were chosen for sampling. Three healthy mature leaves without pest or disease damage were collected
from vegetative shoots in the middle of each apple tree. The leaves were quickly placed in bags, and then the
bags were sealed, labelled, placed in a black bag filled with ice packs, and brought back to the laboratory.

Acquisition of spectral data. Imaging spectral data were obtained from apple leaves using an
SOC710VP imaging spectrometer. The spectral range was 400-1000 nm; the spectral resolution was
4.68 nm, and there were 128 bands. Data were acquired under fine weather conditions to meet the signal-to-
noise ratio accuracy required for imaging spectrometry. The measurement time was 9:00-15:00 and
measurements were conducted without moving objects nearby. ENVI 5.1 was applied to view the images of
apple leaves. A suitable area of apple leaves was selected as the region of interest. The spectral average
reflectance was extracted from each region of interest without leaf veins, petiole segments, or shaded or
wrinkled regions. The average spectral reflectance for all regions of interest represented the spectral
reflectance of each entire leaf. This operation was repeated to extract the average spectral reflectance of 100
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apple leaf samples. Radiometric calibration of the spectrometer was performed using a reference radiation
source (i.e., a white board with reflectance = 1). Reflectance has no unit.

Determination of chlorophyll content. The chlorophyll content of leaves was determined by spectro-
photometry [11]. The main source of error in leaf chlorophyll content was losses caused by leaf grinding.
The 100 apple leaf samples were ranked in order based on their chlorophyll content. The sample calibration
set (75 samples) and verification set (25 samples) were selected by an isometric sampling method (Table 1).

TABLE 1. Statistical Information for Apple Leaf Chlorophyll Content (mg/g)

Sample Sample number Maximum | Minimum Mean Standard deviation
Total sample 100 4.83 0.87 3.53 0.81
Calibration set 75 4.81 0.88 3.51 0.83
Verification set 25 4.83 0.87 3.56 0.84

Data preprocessing. The spectral curves required smoothing to reduce noise. A previous comparative
study found that the nine-point weighted moving average method [12] was effective to smooth spectral
curves for noise reduction. This method is summarized by formula:

R/ =0.04R; 4+ 0.08R; 3+ 0.12R; , + 0.16R; | + 0.20R; + 0.16R;1| + 0.12R;1, + 0.08R;43 + 0.04R; 14, (1)

where R; is the spectral reflectance of each wavelength from the 5t wavelength to the 124" wavelength
before smoothing, i is the number of the spectral channel, and R/ is the spectral reflectance after smoothing.

Spectral data transformations. The original spectral reflectance data of apple leaves were subjected to
smoothing and then 11 different mathematical transformations, as follows: first-order differential R’, second-
order differential R”, reciprocal 1/R, logarithm IgR, square root R"?, first-order differential of the reciprocal
(1/R)', first-order differential of the logarithm (IgR)’, first-order differential of the square root (R"?)’, second-
order differential (1/R)", second-order differential of the logarithm (IgR)"”, and second-order differential of
the square root (R”z)”. The R'and R" transformations can eliminate background interference, while 1/R, IgR,
and R"? can highlight spectral features [13].

Models for estimating chlorophyll content. We established and tested PLS, SVM, and RF models for
estimating the chlorophyll content of apple leaves. The first method, PLS, is an important method for
multivariate statistical analysis [13]. It combines basic functions of multiple linear regression analysis,
canonical correlation analysis, and principal component analysis. It can effectively overcome the one-line
problem of a general multicomponent linear regression.

The SVM model is currently the fastest-growing method of machine learning. Based on the least
structural risk, it solves the practical problems of nonlinearity, over-learning, dimensional disaster, local
minimum, and small sample size. It has excellent generalization and promotion abilities [14, 15].

The RF model is a method of machine learning that consists of multiple decision trees. The decision
maker combination consists of a bagging (boot-strap aggregating) algorithm and a randomization algorithm.
This model is widely used in classification and regression analysis, and it produces good results for both
linear and nonlinear data. Only two parameters are set in the RF model: the number of decision trees, and the
number of input features when each node of the decision tree splits [16, 17].

Tests of accuracy of models. The coefficient of determination (C-R?), root mean square error
(C-RMSE), slope (C-S), and residual predictive deviation (C-RPD) were calculated and used to evaluate the
accuracy of each model in predicting the chlorophyll content. The coefficient of determination (V-R?), root
mean square error (V-RMSE), slope (V-S), and residual predictive deviation (V-RPD) were calculated and
used to evaluate the results of verification. The larger the Rz, the smaller the RMSE, and the closer the S to 1,
the greater the accuracy of the estimation. The residual predictive deviation (RPD) is the ratio of sample
standard deviation (SD) to root mean square error (RMSE). When RPD > 2, the model works very well and
can be used for quantitative analysis; when 1.8 < RPD < 2.0, the model is good and can be used for
quantitative estimation; when 1.4 < RPD < 1.8, the model can be used to make rough estimates; when RPD
<1.4, the model is less effective [7]. The formulas below show the calculations for these indicators:

R’ = %(yi_xi)z/ %(xi_f)z’ )
i=I i=1
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RMSE = /iﬁ(x— ) (3)
Ni:l i yi >

§=ir1 = y)/(xen — X2), “4)
RPD = SD/RMSE, %)

among which
SD = \/—Z(x (6)

where x; is the measured value of chlorophyll content, y; is the predictive value of chlorophyll content, x is
the average measured value, and N is the sample quantity, and / is the number of samples.

Results and discussion. Apple leaves with different chlorophyll contents have different spectral
characteristics. The apple leaves were divided into three groups on the basis of their chlorophyll content.
The average spectral reflectance curves of each group were obtained (Fig. 1). In all groups, the spectral
reflectance first increased with increasing wavelength, then decreased as the wavelength increased in the
green part of the spectrum (500-600 nm). Because of the strong absorption of blue-violet light and red light
by chlorophyll, a reflection peak formed by reflection of the green light band. The spectral reflectance
gradually decreased with increasing chlorophyll content. Because of the strong absorption of red light by
chlorophyll and the strong reflection of the near infrared, the spectral reflectance increased sharply at 700—
800 nm (from red to near infrared). In the near infrared region of 800-900 nm, the spectral reflectance
changed little with increasing wavelength. At the wavelengths of 900-1000 nm, the spectral reflectance
decreased as the wavelength increased.
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Fig. 1. Hyperspectral characteristics of apple leaves with chlorophyll content 23 (1), 3—4 (2), and 4-5 mg/g (3).

Correlation analyses between spectral data and chlorophyll content. The spectral data were subjected to
preprocessing and various mathematical transformations, and then correlation analyses between chlorophyll
content and the transformed data were conducted. As shown in Table 2, in each transformed dataset, the five
wavelengths with the largest absolute correlation coefficient values were selected as the wavelengths most
sensitive to chlorophyll content. In the table, these wavelengths are listed in the order from the highest to the
lowest correlation coefficient with chlorophyll content.

Establishment of PLS model. We constructed PLS models with the five wavelengths with the largest
correlation coefficients as the independent variables and chlorophyll content as the dependent variable. The
results are shown in Table 2.

As shown in Table 3, the PLS models based on data transformed with R’, R”, (1/R)', (1gR)’, (R"?), and
(IgR)" as the independent variables had C-R? Values of 0.6971, 0.6984, 0.6466, 0.6944, 0.7144, and 0.7003,
res?ectlvely, significantly higher than the C-R* values of models based on data transformed with 1/R, I1gR,

, (1/R)", and (R")" as the independent variables. The C-RMSE values of the PLS models based on data
transformed with R, R", (1/R)', (IgR), (R"?Y, and (IgR)" were 0.4529, 0.7043, 0.5200, 0.4594, 0.4397, and
0.4564, respectively, significantly lower than those of the models with data transformed with 1/R, 1gR, R” 2
(1/R)", and (R")" as the independent variables. The C-S values of the PLS models based on data
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transformed with R, R", (1/R), (1gR)’, (Rl/z)’, and (IgR)" were 0.6947, 0.4518, 0.4758, 0.6263, 0.7012, and
0.6240, respectively, significantly higher than those of PLS models based on data transformed with 1/R, 1gR,
R"2, (1/R)", and (R")". All the PLS models based on data transformed with R', R", (R"?), and (IgR)" as
independent variables had C-RPD values >1.80.

In summary, among all the PLS models, the one based on data transformed with (R"?)" as the
independent variables had the highest C-R* and C-RPD values of 0.7144 and 1.8808, respectively, and the
lowest C-RMSE value of 0.4397.

TABLE 2. Wavelengths Sensitive to Chlorophyll Content in Transformed Spectral Datasets

Mathematical A, nm Mathematical A, nm
transformation Transformation
R 541, 536, 530, 525, 587 (IgRY 525, 561, 551, 520, 459
R" 454,424, 429, 434, 546 (R"?Y 444,525, 618, 566, 530
1/R 713,707, 718, 702, 723 (1/R)" 419, 697, 639, 424, 629
IgR 713,707, 718, 556, 702 (IgR)" 577,424, 414, 429, 439
R 707,713, 556, 718, 551 (R 449, 439, 490, 454, 434
(1/RY 744, 676, 505, 541, 572

TABLE 3. PLS Model and its Accuracy Parameters (n = 75)

Independent variables Estimating model C-R° |C-RMSE| C-S [C-RPD
R541,, R536’, R530’, R525', y :5006 — 368263R541 — 280.892R536/ — 06971 04529 06947 18258
Rss7' —234.810Rs530' —213.441R5p5" + 468.075R557"

Rysq", Ryps", Ry, y=4.809+2952.426R 54" +1628.961 Ryp4" + 0.6984 | 0.4518 |0.7043 | 1.8300
Raz4", Rsag" + 1454.955R 429" — 1525.094R 434" + 543.849R 544"

1/R713, 1/R707, 1/R718, |y =1.679+ 0.096/R713+0.069/R797 + 0.125/R715 | 0.2401 | 0.7190 |0.2053 | 1.1501
1/R702, 1/R723 + 0.046/R702+ 0.151/R733

1gR713, IgR707, 1gR718, |y =0.326 — 1.0391gR713— 0.9541gR7¢7— 0.2946| 0.6917 |0.2705|1.1955
1gR702, 1gR723 10911gR713 — 0.7371gR702— 08401gR723

\/R707 , \/R713, \/R556’ y=7.790 — 1.968 \/[R,,; — 1.908 \/R, ; — 0.3223 | 0.6775 |0.3062|1.2205
N R1g5 A Rss —2.056 \|Rs5c — 1.808 \/R, ¢ —2.047 \/Rs5,

(1/R744)', (1/Rg76), y =4.090 — 1.240(1/R744)' — 16.767(1/R¢76)' — 0.6466 | 0.5200 |0.4758|1.5902
(1/Rs05)’, (1/Rs41)', 0.366(1/Rs05)" + 0.356(1/Rs41)" + 0.338(1/R57,)’

(1/Rs7)’

(lgR525)’, (1gR561),, y= 4.907 + 16892(1gR525), + 18232(1gR561)’ — 10.6944| 0.4594 |0.6263|1.7997
(1gRss51)", (1gRs20)’, 17.724(1gRss1)" + 16.607(1gRs20)" +

(IgR4s9)' 229.849(1gR4s9)

(JRus) > ( /Rszs Y, |y=4.872+758.450( /R444 ) + 0.7144| 0.4397 |0.7012|1.8808
(JRe1s) > (WRses) s |[156.904 (/Rsy5 ) + 79.663 ({ Ry ) +

(JRs3) +65.006 (| Rs¢6 )+ 59.492 (\/Rs3 )’

(1/R419)', (1/Re97)', y=4.076 + 2.666(1/R419)' + 6.863(1/R¢97) — 0.1150 | 0.7842 |0.1598|1.0544
(1/R639)', (1/R424)', —5.204(1/R639)" + 1.323(1/R424)" + 4.652(1/Re29)’

(1/Rg20)’

(IgRs7)", (IgRs4)", |y =4.683—257.491(IgRs77)"+168.002(1gR424)"— | 0.7003 | 0.4564 [0.6240|1.8117
(1gR414)", (1gR420)", |~ 86.439(1gR414)" — 86.420(IgR429)" +

(IgR430)" + 163.494(1gR430)"
(/R449 )" (JRizo)"s |y =3.792+254.015( /R449)"— 0.1239| 0.7613 |0.1085 | 1.0035

(JRioo)"» (JRuss)" s |-251.768 (JRyzo )" — 113.554 (\[Rygy )" +
(JRi31)" +195.224 ([Rys,)" — 116.968 (R, '
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Establishment of SVM model. To construct the SVM model for leaf chlorophyll content, the transformed
data for the five wavelengths most sensitive to chlorophyll content were the independent variables, and
chlorophyll content was the dependent variable. The parameters were optimized and regression models were
made. After multiple verification tests and comparisons, v-SVR was determined as the SVM type and radial
basis function (RBF) was selected as the kernel function type. The parameters of the model are follows: 3°,
y=0.5, Coef0 =0.001, v=10.5,¢&=0.001, cache size 100, cost 1, shrinking 1, prob 1, P =0.01.

Table 4 shows the verification results for SVM models based on data transformed with (IgR)” and (R"?)"
as the independent variables: the C-R” values were 0.7411 and 0.7308, respectively, significantly higher than
those of models based on data transformed with R', R”, (1/R)', (IgR)’, (R” 2)’, 1/R, IgR, R and (1/R)" as the
independent variables. The C-RMSE values for the SVM models based on data transformed with (IgR)" and
(R")" as the independent variables were 0.4196 and 0.4286, respectively, significantly lower than those of
the models based on data transformed with R', R", (1/R), (IgR), (R"?Y, 1/R, IgR, R"?, and (1/R)" as in-
dependent variables. The C-S values of the SVM models based on data transformed with (IgR)” and (Rl/ 2y
as the independent variables were 0.7577 and 0.6975, respectively, significantly higher than those of the
models based on data transformed with R, R", (1/R), (IgR), (R'), 1/R, IgR, R"?, and (1/R)" as the
independent variables. The SVM models based on data transformed with (IgR)” and (R"?)” as the
independent variables had C-RPD values >1.90.

In summary, among all the SVM models, the one based on data transformed with (IgR)” as the
independent variables had the highest C-R* and C-RPD values of 0.7411 and 1.9705 and the lowest C-RMSE
value of 0.4196.

TABLE 4. SVM Model and its Accuracy Parameters (n = 75)

Independent variable C-R° |C-RMSE| C-S C-RPD
Rs41', Rsz6’, Rs30', Rsos', Rsg7' 0.2365 0.7325 |0.1578 |1.1288
Russ”, Raza”, Razo”, Razd”, Rsas” 0.1512 0.7761 |0.1152 |1.0654
1/R713, 1/R797, 1/R713, 1/R702, 1/R723 0.07914 |0.7955 |0.0589 |1.0394
1gR713, 1gR707, 1gR718, 18R702, 1gR723 0.04851 (0.8093 |0.0559 [1.0217
\/R707 , \/Rm , \/R556 , \/R718 , \/R551 0.0619 0.8038 |0.0705 |1.0287
(1/R744), (1/Rg76)', (1/R505)", (1/Rs41)', (1/Rs72)’ 0.1485 0.7704 10.1123 |1.0733
(lgRSZS)I, (lgRsm),, (lgRSSI),, (1gR520)', (lgR459)' 0.1441 0.7657 0.1371 1.0799
Re) . (R s (Rers)'+ ((Rega)» ([Rerg) 02245 [0.7373  |0.1800  |L.1215
(1/R419)"", (1/R697)", (1/Rg39)"", (1/R424)"", (1/R¢29)"" 0.5757 0.54871 |0.4828 |1.5070
(IgRs577)", (1gR424)", (1gR414)", (1gR429)", (1gR439)" 0.7411 0.4196 |0.7577 |1.9705
(\/R449 )" (\/R439 )" (\/R490 )" (\/}3454 ), (\/R434 )" |0.7308 0.4286 |0.6975 |1.9292

TABLE 5. RF Models and their Accuracy Parameters (n = 75)

Independent variable C-R* |C-RMSE C-S C-RPD
Rs41', Rs36', Rs3o', Rsps', Rsg7' 0.9153 ]0.2560 ]0.8087 3.2303
Rusq", Rupg”, Rano”", Ryzq”", Risss” 0.9094 ]0.2653 ]0.7981 3.1172
1/R713, 1/R707, 1/R718, 1/R702, 1/R723 0.8523 ]0.3533 |0.6754 2.3407
1gR713, 1gR707, 1gR718, 1gR702, 1gR723 0.8521 0.3541 0.6726 2.3351
\/R7o7 ) \/Rm , \/RS%’ \/Rm’ \/RSSI 0.8519 ]0.3523 |0.6798 2.3474
(1/R744)', (1/R676)"s (1/Rs05)", (1/Rs41)", (1/Rs72)’ 0.9279 (0.2549 |0.778 3.2438
(IgRs25)", (12Rs61)", (1gRs51)", (12Rs20)", (1gR4s0)" 0.9187 0.2526 10.8104  |3.2735
(\/R444 ) (\/Rszs ) (\/Rms ) (\/R566 ) (\/R530 ) 0.9248 102388 10.8318 3.4623
(1/R419)', (1/R697)", (1/R639)", (1/R424)", (1/R629)' 0.8654 10.3492 10.6655  |2.3680
(IgRs77)", (1gR424)", (1gR414)", (1gR420)", (IgRa30)"  |0.9274 102379 |0.8254  13.4763
(VRuss)" s (YRiso)" > (Rago )" (YRusy )" (YRysg)" 09157 ]0-2534 10.8160 13.2630
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Construction of RF model. To construct the RF model to estimate chlorophyll content, the transformed
spectral data for the five wavelengths with larger absolute correlation coefficient values were the
independent variables, and chlorophyll content was the dependent variable. The proportion of training
samples was 50%; the number of trees in the random forest was 300, and the number of variable trees
randomly sampled at nodes was 2. The results are shown in Table 5.

Several RF models were constructed with various spectral reflectance transformations as the indepen-
dent variables. For all the RF models, the C-R? values were >(.800, the C-RMSE values were <0.400, the
C-S values were >0.600, and the C-RPD values were >2.0 (Table 5). The RF model with (IgR)" as the
independent variable had the highest C-RPD value of 3.4763 and the lowest C-RMSE value of 0.2379.

Model verification. To test the reliability of the models, the chlorophyll content and spectral reflectance
data of 25 samples were used to test the PLS model with data transformed with (R"?)" as the independent
variables, and the SVM and RF models with data transformed with (IgR)" as the independent variables. The
results are shown in Fig. 2. As illustrated in Fig. 2, among the tested PLS, SVM and RF models, the SVM
model with data transformed with (IgR)" as the independent variables had the highest V-R* and V-RPD
values of 0.7372 and 1.8810, respectively, and the lowest V-RMSE value (0.4477). Therefore, the SVM
model with (I1gRs577)", (I1gR424)", (1gR414)", (1gR429)", (1gR439)" as the independent variables was the most
accurate for predicting the chlorophyll content of apple leaves.

Cpreducteda mg/ g PLS SVM RF
y=0.9072x + 0.3162 - »=0.7895x + 0.2018 . ~y=0.849x + 0.3213

[V-R*=0.6573 o S| VR =0.7372 . S [ V-R*=0.5428 L &

V-RMSE =0.5572 | V-RMSE =0.4477 ary | V-RMSE =0.7024 o

4 Fv-5=09072 4 [ v-5=0.7895 ; 41 v-5=0.849 *E
V-RPD = 1.5111 V-RPD = 1.8810 V-RPD=1.1989

3r 37 31 . 54

2t 21 2t : ’
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12 3 4 5 12 3 4 5 12 3 4 5

Cmeasured: mg/ g

Fig. 2. Scatter plot of measured and predicted chlorophyll contents based
on PLS, SVM, and RF models (rn = 25).

Conclusion. The wavelengths sensitive to chlorophyll content were identified as 577, 424, 414, 429,
and 439 nm by the maximum correlation coefficient method. Transformed data for these sensitive wave-
lengths were used as independent variables in the models. An SVM model was constructed with (IgRs77)",
(IgR424)", (1gR414)", (1gR429)", (1gR439)" as independent variables, and its V—RZ, V-RMSE, and V-RPD values
were 0.7372, 0.4477, and 1.8810, respectively. Among all the models, this SVM model had the highest V-R*
and V-RPD values and the lowest V-RMSE value. Therefore, this SVM model was suitable for the
quantitative estimation of chlorophyll content in apple leaves.
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