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To promote the use of imaging spectroscopy to assess the nutritional status of apple trees, the models to 
estimate the chlorophyll content of apple leaves were explored. Spectral data for apple leaves were collected 
with an imaging spectrometer and then preprocessed with the nine-point moving weighted average method. 
Correlation analyses were conducted between chlorophyll content and mathematically transformed spectral 
data. Wavelengths sensitive to chlorophyll content were selected on the basis of the highest correlation 
coefficients, and partial least squares (PLS), support vector machine (SVM), and random forest (RF) models 
to estimate chlorophyll content were established and tested. The wavelengths sensitive to chlorophyll content 
were 414, 424, 429, 439, and 577 nm. The best model was the SVM model with wavelength data subjected to 
a second order differential of the logarithm transformation (lgR414), (lgR424), (lgR429), (lgR439), (lgR577) 
as the independent variables. For this model, the coefficient of determination V-R2 was 0.7372, the root 
mean square error V-RMSE was 0.4477, and the residual predictive deviation V-RPD was 1.8810. Among 
all the models, this SVM model had the highest V-R2 and V-RPD values and the lowest V-RMSE value.  
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Для подтверждения возможности использования гиперспектральных изображений для оценки 

состояния питания яблонь исследовано содержание хлорофилла в их листьях. Спектральные данные 
получены с помощью спектрометра и предварительно обрабатывались методом взвешенного 
скользящего среднего по девяти точкам. С помощью корреляционного анализа установлена связь 
между содержанием хлорофилла и математически преобразованными спектральными данными. 
Длины волн, чувствительные к содержанию хлорофилла, выбраны на основе самых высоких коэф-
фициентов корреляции; для оценки содержания хлорофилла использованы методы частных наимень-
ших квадратов (PLS), опорных векторов (SVM) и случайного леса (RF). Длины волн, чувствительные 
к содержанию хлорофилла: 414, 424, 429, 439 и 577 нм. Лучшей моделью оказалась SVM с независи-
мыми переменными, представляющими собой вторые производные логарифма (lgR414), (lgR424), 
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(lgR429), (lgR439), (lgR577). Для этой модели коэффициент детерминации R2 = 0.7372, среднеквадра-
тическая ошибка RMSE = 0.4477, остаточное прогнозное отклонение RPD = 1.8810. Модель SVM 
имела самые высокие R2 и RPD и самое низкое RMSE по сравнению с другими моделями.  
 Ключевые слова: визуализация, листья яблони, содержание хлорофилла, оценочные модели. 

 
Introduction. Chlorophyll content is an indicator of crop photosynthesis and crop growth [1, 2]. The 

traditional method to determine chlorophyll content is spectrophotometry. Although this method is very 
accurate, the experimental procedure is long and complicated, and so it is not wellsuited to meet the needs of 
rapid, real-time, nondestructive monitoring. 

In recent years, imaging spectroscopy has been developed as a technique to estimate plant growth status 
rapidly and nondestructively. It has wide applications in fast, real-time, and nondestructive testing of crop 
growth and nutrition. For example, Maccioni et al.[3] used single-leaf directional reflectance normalized by 
the green band and red edge to create a new vegetation index to predict chlorophyll content. Ciganda et al. 
[4] constructed a red-edge chlorophyll index based on red edge (720–730 nm) and near-infrared (770–800 
nm) reflectance to predict the chlorophyll content of the corn canopy. Schlemmer et al. [5, 6] constructed 
leaf- and canopy-scale vegetation indexes such as EVI2, REP, MTCI, CI green, and CI red edge, which were 
used to create models for estimating chlorophyll content. Gong et al. [7] constructed models to estimate 
chlorophyll content by creating “three sides” parameters, a ratio spectral index, and a normalized difference 
spectral index. Zhu et al. [8] combined spectral parameters, the red edge area, and certain wavelength bands 
to monitor the chlorophyll content of apple leaves and obtained the best predictive effect with a model 
incorporating R800/R550 and the red edge area. Yue et al. [9] used the original spectrum subjected to various 
mathematical transformations as independent variables in models for predicting the chlorophyll content of 
citrus leaves. The models were based on principal component analysis for dimensionality reduction by an 
support vector machine (SVM) regression algorithm, wavelet de-noising, and partial least squares (PLS) 
regression. Wang et al. [10] established univariate and multivariable regression models to predict the canopy 
nitrogen content in maize at the seedling stage with a normalized vegetation index, a normalized spectral 
vegetation index, a ratio-based spectral index, and a difference vegetation index based on imaging 
spectroscopy data. 

Many studies have focused on the inversion of biochemical components of vegetation using non-
imaging hyperspectral techniques. However, relatively few studies have established models based on 
imaging spectroscopy data. In this study, the spectral data of apple leaves were collected using an imaging 
spectrometer. The average spectral reflectance of the leaves was determined, and the spectral data were 
preprocessed with the nine-point moving weighted average method. The correlations between chlorophyll 
content and spectral data subjected to 11 kinds of mathematical transformation were determined. The 
wavelengths most sensitive to chlorophyll content (those with the highest correlation coefficients) were 
selected as the independent variables for the models. Then partial least squares (PLS), support vector 
machine (SVM), and random forest (RF) models to predict chlorophyll content were established and tested. 
The aims of this study were to explore models for estimating chlorophyll content based on transformed 
spectral data and to provide technical support for the application of imaging spectroscopy to monitor crop 
nutrition. 

Experimental. Sample collection. Sampling was conducted in September 2016 at apple (cultivar, Red 
Fuji) orchards in the village of Xia Tan Bu Lin, Gao Du Town, Meng Yin County, Shandong Province, 
China. Based on the distribution map of the orchards, sampling points were selected and 100 healthy apple 
trees were chosen for sampling. Three healthy mature leaves without pest or disease damage were collected 
from vegetative shoots in the middle of each apple tree. The leaves were quickly placed in bags, and then the 
bags were sealed, labelled, placed in a black bag filled with ice packs, and brought back to the laboratory. 

Acquisition of spectral data. Imaging spectral data were obtained from apple leaves using an 
SOC710VP imaging spectrometer. The spectral range was 400–1000 nm; the spectral resolution was 
4.68 nm, and there were 128 bands. Data were acquired under fine weather conditions to meet the signal-to-
noise ratio accuracy required for imaging spectrometry. The measurement time was 9:00–15:00 and 
measurements were conducted without moving objects nearby. ENVI 5.1 was applied to view the images of 
apple leaves. A suitable area of apple leaves was selected as the region of interest. The spectral average 
reflectance was extracted from each region of interest without leaf veins, petiole segments, or shaded or 
wrinkled regions. The average spectral reflectance for all regions of interest represented the spectral 
reflectance of each entire leaf. This operation was repeated to extract the average spectral reflectance of 100 
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apple leaf samples. Radiometric calibration of the spectrometer was performed using a reference radiation 
source (i.e., a white board with reflectance = 1). Reflectance has no unit. 

Determination of chlorophyll content. The chlorophyll content of leaves was determined by spectro-
photometry [11]. The main source of error in leaf chlorophyll content was losses caused by leaf grinding. 
The 100 apple leaf samples were ranked in order based on their chlorophyll content. The sample calibration 
set (75 samples) and verification set (25 samples) were selected by an isometric sampling method (Table 1). 
 

TABLE 1. Statistical Information for Apple Leaf Chlorophyll Content (mg/g) 
 

Sample Sample number Maximum Minimum  Mean Standard deviation 
Total sample 100 4.83 0.87 3.53 0.81 
Calibration set 75 4.81 0.88 3.51 0.83 
Verification set 25 4.83 0.87 3.56 0.84 

 
Data preprocessing. The spectral curves required smoothing to reduce noise. A previous comparative 

study found that the nine-point weighted moving average method [12] was effective to smooth spectral 
curves for noise reduction. This method is summarized by formula: 

Ri = 0.04Ri–4 + 0.08Ri–3 + 0.12Ri–2 + 0.16Ri–1 + 0.20Ri + 0.16Ri+1 + 0.12Ri+2 + 0.08Ri+3 + 0.04Ri+4,    (1) 

where Ri is the spectral reflectance of each wavelength from the 5th wavelength to the 124th wavelength 
before smoothing, i is the number of the spectral channel, and Ri is the spectral reflectance after smoothing. 

Spectral data transformations. The original spectral reflectance data of apple leaves were subjected to 
smoothing and then 11 different mathematical transformations, as follows: first-order differential R', second-
order differential R′′, reciprocal 1/R, logarithm lgR, square root R1/2, first-order differential of the reciprocal 
(1/R)', first-order differential of the logarithm (lgR)', first-order differential of the square root (R1/2)′, second-
order differential (1/R), second-order differential of the logarithm (lgR), and second-order differential of 
the square root (R1/2). The R' and R′′ transformations can eliminate background interference, while 1/R, lgR, 
and R1/2 can highlight spectral features [13]. 

Models for estimating chlorophyll content. We established and tested PLS, SVM, and RF models for 
estimating the chlorophyll content of apple leaves. The first method, PLS, is an important method for 
multivariate statistical analysis [13]. It combines basic functions of multiple linear regression analysis, 
canonical correlation analysis, and principal component analysis. It can effectively overcome the one-line 
problem of a general multicomponent linear regression. 

The SVM model is currently the fastest-growing method of machine learning. Based on the least 
structural risk, it solves the practical problems of nonlinearity, over-learning, dimensional disaster, local 
minimum, and small sample size. It has excellent generalization and promotion abilities [14, 15]. 

The RF model is a method of machine learning that consists of multiple decision trees. The decision 
maker combination consists of a bagging (boot-strap aggregating) algorithm and a randomization algorithm. 
This model is widely used in classification and regression analysis, and it produces good results for both 
linear and nonlinear data. Only two parameters are set in the RF model: the number of decision trees, and the 
number of input features when each node of the decision tree splits [16, 17]. 

Tests of accuracy of models. The coefficient of determination (C-R2), root mean square error  
(C-RMSE), slope (C-S), and residual predictive deviation (C-RPD) were calculated and used to evaluate the 
accuracy of each model in predicting the chlorophyll content. The coefficient of determination (V-R2), root 
mean square error (V-RMSE), slope (V-S), and residual predictive deviation (V-RPD) were calculated and 
used to evaluate the results of verification. The larger the R2, the smaller the RMSE, and the closer the S to 1, 
the greater the accuracy of the estimation. The residual predictive deviation (RPD) is the ratio of sample 
standard deviation (SD) to root mean square error (RMSE). When RPD > 2, the model works very well and 
can be used for quantitative analysis; when 1.8 < RPD < 2.0, the model is good and can be used for 
quantitative estimation; when 1.4 < RPD < 1.8, the model can be used to make rough estimates; when RPD 
<1.4, the model is less effective [7]. The formulas below show the calculations for these indicators: 

R2 = 2 2

1 1
( ) ( ) ,

N N

i i i
i i

y x x x
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          (2) 
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S = (yi+1 – yi)/(xi+1 – xi),             (4) 

RPD = SD/RMSE,               (5) 
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where xi is the measured value of chlorophyll content, yi is the predictive value of chlorophyll content,x is 
the average measured value, and N is the sample quantity, and I is the number of samples. 

Results and discussion. Apple leaves with different chlorophyll contents have different spectral 
characteristics. The apple leaves were divided into three groups on the basis of their chlorophyll content. 
The average spectral reflectance curves of each group were obtained (Fig. 1). In all groups, the spectral 
reflectance first increased with increasing wavelength, then decreased as the wavelength increased in the 
green part of the spectrum (500–600 nm). Because of the strong absorption of blue-violet light and red light 
by chlorophyll, a reflection peak formed by reflection of the green light band. The spectral reflectance 
gradually decreased with increasing chlorophyll content. Because of the strong absorption of red light by 
chlorophyll and the strong reflection of the near infrared, the spectral reflectance increased sharply at 700–
800 nm (from red to near infrared). In the near infrared region of 800–900 nm, the spectral reflectance 
changed little with increasing wavelength. At the wavelengths of 900–1000 nm, the spectral reflectance 
decreased as the wavelength increased. 
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Fig. 1. Hyperspectral characteristics of apple leaves with chlorophyll content 2–3 (1), 3–4 (2), and 4–5 mg/g (3). 
 

Correlation analyses between spectral data and chlorophyll content. The spectral data were subjected to 
preprocessing and various mathematical transformations, and then correlation analyses between chlorophyll 
content and the transformed data were conducted. As shown in Table 2, in each transformed dataset, the five 
wavelengths with the largest absolute correlation coefficient values were selected as the wavelengths most 
sensitive to chlorophyll content. In the table, these wavelengths are listed in the order from the highest to the 
lowest correlation coefficient with chlorophyll content. 

Establishment of PLS model. We constructed PLS models with the five wavelengths with the largest 
correlation coefficients as the independent variables and chlorophyll content as the dependent variable. The 
results are shown in Table 2. 

As shown in Table 3, the PLS models based on data transformed with R′, R′′, (1/R)′, (lgR)′, (R1/2)′, and 
(lgR)′′ as the independent variables had C-R2 values of 0.6971, 0.6984, 0.6466, 0.6944, 0.7144, and 0.7003, 
respectively, significantly higher than the C-R2 values of models based on data transformed with 1/R, lgR, 
R1/2, (1/R)′′, and (R1/2)′′ as the independent variables. The C-RMSE values of the PLS models based on data 
transformed with R′, R′′, (1/R)′, (lgR)′, (R1/2)′, and (lgR)′′ were 0.4529, 0.7043, 0.5200, 0.4594, 0.4397, and 
0.4564, respectively, significantly lower than those of the models with data transformed with 1/R, lgR, R1/2, 
(1/R)′′, and (R1/2)′′ as the independent variables. The C-S values of the PLS models based on data 
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transformed with R′, R′′, (1/R)′, (lgR)′, (R1/2)′, and (lgR)′′ were 0.6947, 0.4518, 0.4758, 0.6263, 0.7012, and 
0.6240, respectively, significantly higher than those of PLS models based on data transformed with 1/R, lgR, 
R1/2, (1/R)′′, and (R1/2)′′. All the PLS models based on data transformed with R′, R′′, (R1/2)′, and (lgR)′′ as 
independent variables had C-RPD values >1.80. 

In summary, among all the PLS models, the one based on data transformed with (R1/2)' as the 
independent variables had the highest C-R2 and C-RPD values of 0.7144 and 1.8808, respectively, and the 
lowest C-RMSE value of 0.4397. 

 

TABLE 2. Wavelengths Sensitive to Chlorophyll Content in Transformed Spectral Datasets 
 

Mathematical 
transformation 

, nm Mathematical 
Transformation 

, nm 

R 541, 536, 530, 525, 587 (lgR) 525, 561, 551, 520, 459 
R 454, 424, 429, 434, 546 (R1/2) 444, 525, 618, 566, 530 
1/R 713, 707, 718, 702, 723 (1/R) 419, 697, 639, 424, 629 
lgR 713, 707, 718, 556, 702 (lgR) 577, 424, 414, 429, 439 
R1/2 707, 713, 556, 718, 551 (R1/2) 449, 439, 490, 454, 434 

(1/R) 744, 676, 505, 541, 572   
 

TABLE 3. PLS Model and its Accuracy Parameters (n = 75) 
 

Independent variables Estimating model C-R2 C-RMSE C-S C-RPD
R541, R536, R530, R525, 
R587 

y =5.006 – 368.263R541 – 280.892R536 –  
– 234.810R530 –213.441R525 + 468.075R587 

0.6971 0.4529 0.6947 1.8258

R454, R424, R429, 
R434, R546 

y = 4.809+2952.426R454 +1628.961R424 +  
+ 1454.955R429

 – 1525.094R434 + 543.849R546
0.6984 0.4518 0.7043 1.8300

1/R713, 1/R707, 1/R718, 
1/R702, 1/R723 

y = 1.679 + 0.096/R713 +0.069/R707 + 0.125/R718 
+ 0.046/R702 + 0.151/R733 

0.2401 0.7190 0.2053 1.1501

lgR713, lgR707, lgR718, 
lgR702, lgR723 

y = 0.326 – 1.039lgR713 – 0.954lgR707 – 
1.091lgR718 – 0.737lgR702 – 0.840lgR723 

0.2946 0.6917 0.2705 1.1955

707 ,R 713 ,R 556 ,R

718 ,R 551R  

y = 7.790 – 1.968 707R – 1.908 713R –  

– 2.056 556R – 1.808 718R – 2.047 551R  

0.3223 0.6775 0.3062 1.2205

(1/R744),
 (1/R676), 

(1/R505),
 (1/R541), 

(1/R572)  

y = 4.090 – 1.240(1/R744) – 16.767(1/R676) – 
0.366(1/R505) + 0.356(1/R541) + 0.338(1/R572)  

0.6466 0.5200 0.4758 1.5902

(lgR525), (lgR561), 
(lgR551), (lgR520), 
(lgR459)  

y = 4.907 + 16.892(lgR525) + 18.232(lgR561) – 
17.724(lgR551) + 16.607(lgR520) + 
229.849(lgR459)  

0.6944 0.4594 0.6263 1.7997

444( )R  , 525( )R  , 

618( )R  , 566( )R  , 

530( )R   

y = 4.872 + 758.450 444( )R  + 

+56.904 525( )R + 79.663 618( )R + 

+65.006 566( )R + 59.492 530( )R   

0.7144 0.4397 0.7012 1.8808

(1/R419), (1/R697), 
(1/R639), (1/R424), 
(1/R629) 

y = 4.076 + 2.666(1/R419) + 6.863(1/R697) – 
–5.204(1/R639) + 1.323(1/R424) + 4.652(1/R629)

0.1150 0.7842 0.1598 1.0544

(lgR577), (lgR424), 
(lgR414), (lgR429), 
(lgR439) 

y = 4.683– 257.491(lgR577)+168.002(lgR424)– 
– 86.439(lgR414) – 86.420(lgR429) +  
+ 163.494(lgR439)  

0.7003 0.4564 0.6240 1.8117

449( )R  , 439( )R  ,

490( )R  , 454( )R  ,

434( )R   

y = 3.792+254.015 449( )R  –  

– 251.768 439( )R  – 113.554 490( )R + 

+ 195.224 454( )R – 116.968 434( )R   

0.1239 0.7613 0.1085 1.0035
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Establishment of SVM model. To construct the SVM model for leaf chlorophyll content, the transformed 
data for the five wavelengths most sensitive to chlorophyll content were the independent variables, and 
chlorophyll content was the dependent variable. The parameters were optimized and regression models were 
made. After multiple verification tests and comparisons, v-SVR was determined as the SVM type and radial 
basis function (RBF) was selected as the kernel function type. The parameters of the model are follows: 3, 
 = 0.5, Coef0 = 0.001,  = 0.5,  = 0.001, cache size 100, cost 1, shrinking 1, prob 1, P = 0.01. 

Table 4 shows the verification results for SVM models based on data transformed with (lgR) and (R1/2) 
as the independent variables: the C-R2 values were 0.7411 and 0.7308, respectively, significantly higher than 
those of models based on data transformed with R′, R′′, (1/R)′, (lgR)′, (R1/2)′, 1/R, lgR, R1/2, and (1/R)′′ as the 
independent variables. The C-RMSE values for the SVM models based on data transformed with (lgR) and 
(R1/2) as the independent variables were 0.4196 and 0.4286, respectively, significantly lower than those of 
the models based on data transformed with R′, R′′, (1/R)′, (lgR)′, (R1/2)′, 1/R, lgR, R1/2, and (1/R)′′ as in-
dependent variables. The C-S values of the SVM models based on data transformed with (lgR) and (R1/2) 
as the independent variables were 0.7577 and 0.6975, respectively, significantly higher than those of the 
models based on data transformed with R′, R′′, (1/R)′, (lgR)′, (R1/2)′, 1/R, lgR, R1/2, and (1/R)′′ as the 
independent variables. The SVM models based on data transformed with (lgR) and (R1/2) as the 
independent variables had C-RPD values >1.90. 

In summary, among all the SVM models, the one based on data transformed with (lgR) as the 
independent variables had the highest C-R2 and C-RPD values of 0.7411 and 1.9705 and the lowest C-RMSE 
value of 0.4196. 

 
TABLE 4. SVM Model and its Accuracy Parameters (n = 75) 

 
Independent variable C-R2 C-RMSE C-S C-RPD 

R541, R536, R530, R525, R587 0.2365 0.7325 0.1578 1.1288 

R454, R424, R429, R434, R546 0.1512 0.7761 0.1152 1.0654 
1/R713, 1/R707, 1/R718, 1/R702, 1/R723 0.07914 0.7955 0.0589 1.0394 
lgR713, lgR707, lgR718, lgR702, lgR723 0.04851 0.8093 0.0559 1.0217 

707 ,R 713 ,R 556 ,R 718 ,R 551R  0.0619 0.8038 0.0705 1.0287 

(1/R744), (1/R676), (1/R505), (1/R541), (1/R572) 0.1485 0.7704 0.1123 1.0733 
(lgR525), (lgR561), (lgR551), (lgR520), (lgR459)  0.1441 0.7657 0.1371 1.0799 

444( )R  , 525( )R  , 618( )R  , 566( )R  , 530( )R   0.2245 0.7373 0.1800 1.1215 

(1/R419), (1/R697), (1/R639), (1/R424), (1/R629) 0.5757 0.54871 0.4828 1.5070 
(lgR577), (lgR424), (lgR414), (lgR429), (lgR439) 0.7411 0.4196 0.7577 1.9705 

449( )R  , 439( )R  , 490( )R  , 454( )R  , 434( )R   0.7308 0.4286 0.6975 1.9292 

 
TABLE 5. RF Models and their Accuracy Parameters (n = 75) 

 
Independent variable C-R2 C-RMSE C-S C-RPD 

R541, R536, R530, R525, R587 0.9153 0.2560 0.8087 3.2303 
R454, R424, R429, R434, R546 0.9094 0.2653 0.7981 3.1172 
1/R713, 1/R707, 1/R718, 1/R702, 1/R723 0.8523 0.3533 0.6754 2.3407 
lgR713, lgR707, lgR718, lgR702, lgR723 0.8521 0.3541 0.6726 2.3351 

707 ,R 713 ,R 556 ,R 718 ,R 551R  0.8519 0.3523 0.6798 2.3474 

(1/R744), (1/R676), (1/R505), (1/R541), (1/R572) 0.9279 0.2549 0.778 3.2438 
(lgR525), (lgR561), (lgR551), (lgR520), (lgR459)  0.9187 0.2526 0.8104 3.2735 

444( )R  , 525( )R  , 618( )R  , 566( )R  , 530( )R   0.9248 0.2388 0.8318 3.4623 

(1/R419), (1/R697), (1/R639), (1/R424), (1/R629) 0.8654 0.3492 0.6655 2.3680 
(lgR577), (lgR424), (lgR414), (lgR429), (lgR439) 0.9274 0.2379 0.8254 3.4763 

449( )R  , 439( )R  , 490( )R  , 454( )R  , 434( )R   0.9157 0.2534 0.8160 3.2630 
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Construction of RF model. To construct the RF model to estimate chlorophyll content, the transformed 
spectral data for the five wavelengths with larger absolute correlation coefficient values were the 
independent variables, and chlorophyll content was the dependent variable. The proportion of training 
samples was 50%; the number of trees in the random forest was 300, and the number of variable trees 
randomly sampled at nodes was 2. The results are shown in Table 5. 

Several RF models were constructed with various spectral reflectance transformations as the indepen-
dent variables. For all the RF models, the C-R2 values were >0.800, the C-RMSE values were <0.400, the  
C-S values were >0.600, and the C-RPD values were >2.0 (Table 5). The RF model with (lgR) as the 
independent variable had the highest C-RPD value of 3.4763 and the lowest C-RMSE value of 0.2379. 

Model verification. To test the reliability of the models, the chlorophyll content and spectral reflectance 
data of 25 samples were used to test the PLS model with data transformed with (R1/2) as the independent 
variables, and the SVM and RF models with data transformed with (lgR)′′ as the independent variables. The 
results are shown in Fig. 2. As illustrated in Fig. 2, among the tested PLS, SVM and RF models, the SVM 
model with data transformed with (lgR)′′ as the independent variables had the highest V-R2 and V-RPD 
values of 0.7372 and 1.8810, respectively, and the lowest V-RMSE value (0.4477). Therefore, the SVM 
model with (lgR577), (lgR424), (lgR414), (lgR429), (lgR439) as the independent variables was the most 
accurate for predicting the chlorophyll content of apple leaves. 

 

Cpreducted, mg/g          PLS                                               SVM                                             RF 
y = 0.9072x + 0.3162 
V-R2 = 0.6573 
V-RMSE = 0.5572 
V-S = 0.9072 
V-RPD = 1.5111 
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0
            1       2      3      4      5                     1       2       3       4       5                      1       2      3       4      5 
                                                                         Cmeasured, mg/g                          

y = 0.7895x + 0.2018 
V-R2 = 0.7372 
V-RMSE = 0.4477 
V-S = 0.7895 
V-RPD = 1.8810 

y = 0.849x + 0.3213 
V-R2 = 0.5428 
V-RMSE = 0.7024 
V-S = 0.849 
V-RPD = 1.1989 
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Fig. 2. Scatter plot of measured and predicted chlorophyll contents based  
on PLS, SVM, and RF models (n = 25). 

 
Conclusion. The wavelengths sensitive to chlorophyll content were identified as 577, 424, 414, 429, 

and 439 nm by the maximum correlation coefficient method. Transformed data for these sensitive wave-
lengths were used as independent variables in the models. An SVM model was constructed with (lgR577), 
(lgR424), (lgR414), (lgR429), (lgR439) as independent variables, and its V-R2, V-RMSE, and V-RPD values 
were 0.7372, 0.4477, and 1.8810, respectively. Among all the models, this SVM model had the highest V-R2 
and V-RPD values and the lowest V-RMSE value. Therefore, this SVM model was suitable for the 
quantitative estimation of chlorophyll content in apple leaves. 
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