V. 87, N 2

MARCH — APRIL 2020

JOURNAL OF APPLIED SPECTROSCOPY

ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ШИРИНЫ ЗАПРЕЩЕННОЙ ЗОНЫ МОНОКРИСТАЛЛОВ Mn1.5AgIn8.0S14

И. В. Боднарь ¹, Ч. Б. Тхан ¹, В. Н. Павловский ², И. Е. Свитенков ², Г. П. Яблонский ^{2*}

УДК 535.34;548.0

 Белорусский государственный университет информатики и радиоэлектроники, 220013, Минск, Беларусь
Институт физики НАН Беларуси, 220072, Минск, Беларусь; e-mail: chemzav@bsuir.by

(Поступила 5 декабря 2019)

С помощью вертикального метода Бриджмена выращены монокристаллы $Mn_{1.5}AgIn_{8.0}S_{14}$, определены их состав и кристаллическая структура. Установлено, что монокристаллы кристаллизуются в кубической структуре шпинели с постоянной решетки $a = 10.765 \pm 0.005$ Å. По спектрам пропускания в области края собственного поглощения в интервале температур 10—320 К оценена ширина запрещенной зоны монокристаллов $Mn_{1.5}AgIn_{8.0}S_{14}$, установлено ее уменьшение с ростом температуры и найдена функциональная аппроксимация этой зависимости.

Ключевые слова: метод Бриджмена, кристаллическая структура, спектр пропускания, коэффициент поглощения, ширина запрещенной зоны.

 $Mn_{1.5}AgIn_{8.0}S_{14}$ single crystals were grown by the Bridgman directed melt crystallization method. Crystals composition and structure were determined. It was found that these single crystals crystallize in a cubic spinel structure with a lattice constant $a = 10.765 \pm 0.005$ Å. The width of the band gap of $Mn_{1.5}AgIn_{8.0}S_{14}$ single crystals was estimated from the transmission spectra in the region of the edge of its intrinsic absorption in the temperature range of 10-320 K. The band gap width decreases with the temperature increasing and a functional approximation of this dependence was obtained.

Keywords: Bridgman method, crystal structure, transmission spectra, absorption coefficient, band gap.

Введение. Развитие микро- и наноэлектроники ставит задачу разработки и исследования новых эффективных полупроводниковых материалов с физическими свойствами, на основе которых могут быть созданы полупроводниковые приборы с новыми функциональными возможностями. В последние годы большое внимание уделяется изучению магнитных и дефектных полупроводников типа $MB^{III}_{2}C^{VI}_{4}$ (M — Mn, Fe, Co, Ni; B^{III} — Al, Ga, In; C^{VI} — S, Se, Te) и $MB^{III}_{5}C^{VI}_{8}$ (M — Cu, Ag; B^{III} — Al, Ga, In; C^{VI} — S, Se, Te) и $MB^{III}_{5}C_{8}$, которые являются перспективным материалом для создания на их основе лазеров, фотопреобразователей солнечного излучения и других функциональных устройств [4—9].

В настоящей работе исследованы кристаллическая структура и спектры пропускания в интервале температур 10—320 К выращенных монокристаллов Mn_{1.5}AgIn_{8.0}S₁₄.

Эксперимент. Монокристаллы Mn_{1.5}AgIn_{8.0}S₁₄ выращены методом Бриджмена (вертикальный вариант) из предварительно синтезированных двухтемпературным методом поликристаллических слитков. Для синтеза использованы элементарные компоненты чистотой ~99.999 %. Полученные двухтемпературным методом слитки загружались в двойные кварцевые ампулы, из которых внутренняя ампула заканчивалась цилиндрическим капилляром, обеспечивающим формирование монокри-

TEMPERATURE DEPENDENCE OF THE BAND GAP WIDTH OF MONOCRYSTALS $Mn_{1.5}AgIn_{8.0}S_{14}$

I. V. Bodnar¹, Ch. B. Than¹, V. N. Pavlovskii², I. E. Svitsiankou², G. P. Yablonskii^{2*} (¹ Belarusian State University of Informatics and Radioelectronics, Minsk, 220013, Belarus; ² B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, 220072, Belarus; e-mail: chemzav@bsuir.by)

сталлической затравки. После вакуумирования к наружной ампуле снизу приваривали кварцевый стержень, служивший держателем.

Выращивание монокристаллов проводили в вертикальной однозонной печи с заданным температурным градиентом. Температуру в печи повышали со скоростью ~250 К/ч до 1420 К и выдерживали в течение 2 ч, после чего проводили направленную кристаллизацию расплава путем понижения температуры печи со скоростью ~ 2 К/ч до полного затвердевания расплава. Для гомогенизации полученные монокристаллы отжигали при 1000 К в течение 400 ч. В таких условиях выращены монокристаллы диаметром 16 мм и длиной 40 мм однородные и гомогенные, что установлено методами микрорентгеноспектрального и рентгеновского анализа.

Состав монокристаллов Mn_{1.5}AgIn_{8.0}S₁₄ определен с помощью микрозондового рентгеноспектрального анализа на установке Cameca-SX100. Погрешность определения компонентов ± 5 %. Структура монокристаллов Mn_{1.5}AgIn_{8.0}S₁₄ установлена рентгеновским методом. Угловые положения линий дифракционного спектра записывали на рентгеновском аппарате ДРОН-3М в CuK_α-излучении с графитовым монохроматором. Образцы для измерений готовили путем измельчения кристаллов и последующей их запрессовкой в специальном держателе. Для снятия напряжений, возникающих при растирании кристаллов, проводился отжиг в вакууме при температуре 700 К в течение 2 ч.

Спектры пропускания в области температур 10—320 К измерены на установке, состоящей из гелиевого рефрижератора замкнутого цикла, монохроматора, кремниевой ПЗС-линейки, галогеновой лампы в качестве источника излучения и персонального компьютера. Из выращенных монокристаллов вырезали плоскопараллельные пластинки перпендикулярно оси роста, которые шлифовали и полировали с двух сторон. Для снятия нарушенного слоя, образовавшегося при обработке монокристаллов, непосредственно перед измерениями спектров образцы подвергали обработке в травителе состава [Br₂]:[C₂H₅OH] = 1:3. Толщина образцов ~20 мкм.

Результаты и их обсуждение. Результаты микрозондового рентгеноспектрального анализа показывают, что содержание элементов в выращенных монокристаллах [Mn]:[Ag]:[In]:[S] = = 5.92:4.22:32.48:57.38 хорошо согласуется с заданным составом в исходной шихте [Mn]:[Ag]:[In]:[S] = 6.12:4.08:32.65:57.14. Углы отражения (2 θ), межплоскостные расстояния (d), относительные интенсивности рефлексов (I/I_0), индексы Миллера (hkl) для монокристаллов Mn_{1.5}AgIn_{8.0}S₁₄ представлены в табл. 1. Дифрактограмма монокристаллов (рис. 1) содержит систему линий, характерную для кубической структуры шпинели. Параметр элементарной ячейки, рассчитанный методом наименьших квадратов: $a = 10.765 \pm 0.005$ Å.

Рис. 1. Дифрактограмма монокристаллов Mn_{1.5}AgIn_{8.0}S₁₄

N⁰	20, град		<i>d</i> , Å		I/I_ 0/	1.1.1
	эксперимент	расчет	эксперимент	расчет	1/10, 70	пкі
1	14.24	14.24	6.21	6.21	21	111
2	23.35	23.35	3.8063	3.8063	25	220
3	27.45	27.45	3.2464	3.2464	100	311
4	28.71	28.70	3.1067	3.1077	8	222
5	33.28	33.26	2.6898	2.6837	51	400
6	36.35	36.34	2.4694	2.4700	3	331
7	41.04	41.04	2.1974	2.1974	10	422
8	43.67	43.65	2.0709	2.0723	51	333
9	47.75	47.75	1.9031	1.9031	64	440
10	50.09	50.08	1.8195	1.8198	6	531
11	53.81	53.81	1.7022	1.7022	6	620
12	55.97	55.96	1.6415	1.6417	12	533
13	56.66	56.66	1.6231	1.6231	5	622
14	59.43	59.43	1.5539	1.5539	8.4	444
15	61.46	61.45	1.5074	1.5076	3.8	551
16	64.76	64.74	1.4383	1.4386	3.7	642
17	66.68	66.67	1.4015	1.4016	19	731
18	69.84	69.83	1.3456	1.3457	15	800
19	74.78	74.77	1.2685	1.2686	3	822
20	76.59	76.57	1.2429	1.2432	14	751
21	79.57	79.57	1.2037	1.2037	10	840
22	86.10	86.08	1.1283	1.1286	16	931
23	89.03	89.03	1 0986	1 0986	12	844

Таблица 1. Результаты рентгеновского анализа монокристаллов Mn_{1.5}AgIn_{8.0}S₁₄

Рис. 2. Спектры пропускания (*a*) и зависимости (αħω)² от ħω (б) для монокристаллов Mn_{1.5}AgIn_{8.0}S₁₄ при температурах 10 (*1*), 20 (2), 40 (3), 60 (4), 80 (5), 100 (6), 120 (7), 140 (8), 160 (9), 180 (*10*), 00 (*11*), 220 (*12*), 240 (*13*), 260 (*14*), 280 (*15*), 300 (*16*) и 320 К (*17*)

Спектры пропускания монокристаллов $Mn_{1.5}AgIn_{8.0}S_{14}$ в области края собственного поглощения в интервале температур 10—320 К представлены на рис. 2, *а*. С понижением температуры спектры смещаются в коротковолновую область. Из спектров пропускания (T_{opt}) рассчитан коэффициент поглощения по формуле, учитывающей многократное внутреннее отражение в плоскопараллельном образце [10—12]:

$$\alpha_{\rm opt} = \frac{1}{d} \ln \left\{ \frac{\left(1 - R\right)^2}{2T_{\rm opt}} + \sqrt{\left[\frac{\left(1 - R\right)^2}{2T_{\rm opt}}\right]^2 + R^2} \right\},\tag{1}$$

где *d* — толщина образца; *R* — коэффициент отражения.

Ширина запрещенной зоны монокристаллов Mn_{1.5}AgIn_{8.0}S₁₄ определена экстраполяцией прямолинейного участка зависимости ($\alpha\hbar\omega$)² от энергии фотона ($\hbar\omega$) (рис. 2, δ) до пересечения с осью абсцисс. Ширины запрещенной зоны монокристаллов Mn_{1.5}AgIn_{8.0}S₁₄: $E_g = 2.101$, 2.205 и 2.220 эВ при 300, 80 и 10 К соответственно.

На рис. 3 представлена температурная зависимость ширины запрещенной зоны $E_g(T)$ монокристалла Mn_{1.5}AgIn_{8.0}S₁₄, полученная на основе экспериментальных данных по измерениям коэффициента пропускания в интервале температур 10—320 К (экспериментальные результаты представлены точками). Указанная зависимость имеет вид, характерный для большинства полупроводниковых материалов, с понижением температуры E_g возрастает [13—15]. Температурная зависимость ширины запрещенной зоны описывается выражением [16]:

$$E_g(T) = E_g(0)\frac{\chi\Theta}{2}\left(\sqrt[4]{1 + \frac{\pi^2}{6}\left(\frac{2T}{\Theta}\right)^2 + \left(\frac{2T}{\Theta}\right)^4 - 1}\right),\tag{2}$$

где $E_g(0)$ — ширина запрещенной зоны при T = 0 К; Θ — эффективная фононная температура (предполагается, что она меньше температуры Дебая Θ_D : $\Theta \approx 3/4 \Theta_D^{\alpha}$); χ — параметр, определяющий тангенс угла наклона касательной к кривой $E_g(T)$, $\chi = -dE(T)/dT|_{T\to\infty}$, χ определена путем нахождения зависимости, наилучшим образом удовлетворяющей экспериментальным данным $E_g(T)$ в интервале температур 10—320 К. Рассчитанная по соотношению (2) зависимость $E_g(T)$ представлена на рис. 3 сплошной линией. Видно, что экспериментальные результаты хорошо согласуются с расчетными.

Рис. 3. Температурная зависимость ширины запрещенной зоны $E_g(T)$ для монокристалла Mn_{1.5}AgIn_{8.0}S₁₄

Заключение. Методом Бриджмена (вертикальный вариант) выращены монокристаллы $Mn_{1.5}AgIn_{8.0}S_{14}$. Рентгеновским методом определены состав и кристаллическая структура полученных монокристаллов. Показано, что монокристаллы $Mn_{1.5}AgIn_{8.0}S_{14}$ кристаллизуются в кубической структуре шпинели. Установлено, что с ростом температуры от 10 до 320 К ширина запрещенной зоны указанных кристаллов уменьшается от 2.22 до 2.09 эВ.

- [1] Р. Н. Бекимбетов, Ю. В. Рудь, М. А. Таиров. ФТП, 21, № 8 (1987) 1051—1053
- [2] **Н. Н. Нифтиев, О. Б. Тагиев.** Письма в ЖТФ, **31**, № 19 (2005) 72—75
- [3] Н. Н. Нифтиев, О. Б. Тагиев, А. Г. Рустамов. ФТП, 24, № 4 (1990) 758—760
- [4] И. В. Боднарь, В. Ю. Рудь, Ю. В. Рудь. ФТП, 43, № 11 (2009) 1549—1552
- [5] В. Ю. Рудь, Ю. В. Рудь, М. А. Осипова, И. В. Боднарь. ФТП, 44, № 1 (2010) 48—52
- [6] Н. Н. Нифтиев, О. Б. Тагиев. ФТП, 38, № 2 (2004) 164—165

- [7] И. В. Боднарь, Е. А. Кудрицкая, И. К. Полушина, В. Ю. Рудь, Ю. В. Рудь. ФТП, **32**, № 9 (1998) 1043—1046
- [8] И. В. Боднарь, В. Ф. Гременок, В. Ю. Рудь, Ю. В. Рудь. ФТП, 33, № 7 (1999) 805—809
- [9] I. V. Bodnar, I. A. Victorov, V. M. Dabranski, M. A. Osipova. Phys. Status Solidi (c), 6, N 5 (2009) 1130-1132
- [10] Ю. И. Уханов. Оптические свойства полупроводников, Москва, Наука (1977)
- [11] С. И. Рембеза. Методы измерения основных параметров полупроводников, Воронеж, ВГУ (1989)
- [12] Р. Уиллардсон. Оптические свойства полупроводников, Москва, Мир (1970)
- [13] И. В. Боднарь. ФТП, 49, № 5 (2015) 596—598

[14] S. Levchenko, D. Dumcenco, Y. P. Wang, Y.S. Huang, C. H. Ho, E. Arushanov, V. Tezlevan, K. K. Tiong. Opt. Mater., 34, N 8 (2012) 1362—1365

- [15] I. V. Bodnar, I. T. Bodnar, V. F. Gremenok, A. M. Kovalchuk, M. Leon. J. Cryst. Growth, 293, N 2 (2006) 324—329
- [16] R. Passler. J. Appl. Phys., 90, N 8 (2001) 3956-3964