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NEW INDUCED MUTATION GENETIC ALGORITHM FOR SPECTRAL VARIABLES
SELECTION IN NEAR INFRARED SPECTROSCOPY
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In this paper, a new spectral variables selection method, induced mutation genetic algorithm (IMGA),
is proposed for near-infrared (NIR) spectroscopy. Based on the idea of genetic algorithm (GA), the IMGA
greatly simplifies the process of biological evolution, which not only inherits the advantages of global opti-
mization of the GA, but also effectively improves the convergence speed. In this study, the IMGA is applied
to the selection of characteristic spectral variables for green tea origin identification. After five times of ge-
netic evolutions, 11 characteristic spectral variables are selected from 156 spectral variables. Based on the
11 characteristic spectral variables, the classification model is built by partial least squares (PLS), and both
the sensitivity and specificity of classification model are raised to 1 for prediction set. The overall results
indicate that the IMGA can be well applied to the selection of characteristic spectral variables and effective-
ly improve the prediction accuracy and calculation speed of the near-infrared model.
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Ilpeonazaemcsa HOBbLIL MeMOO 6b100pPA CNEKMPATLHBIX nepemMeHHbiX 0 Onudxchell UK cnexmpockonuu
— aneopumm uHOYYuposanuvix eenemuyeckux mymayuti (IMGA). Ochosbiéasicy Ha ceHemuueckom anco-
pumme (GA), IMGA s3nawumenvho ynpowaem npoyecc OUOIOSUHECKOU H80JI0YUU, KOMOpAsi He MOIbKO
Hacnedyem npeumywecmea enooanvroi onmumusayuu GA, Ho u 3¢pghexmueno yayumaem ckopocms KOHEep-
eenyuu. IMGA npumenern 011 6v100pa XAPAKMEPHLIX CHEKMPATbHLIX NEPEMEHHbIX Ol UOeHmupurayuu
npoucxoxcoeHus: 3enenoco was. Ilocie namu cepuil eenemuueckux seomoyuil U3 156 cnekmpanvhvix nepe-
MeHHbIX 8b10panbl 11 Xxapakmepuvix CHeKMPATbHBIX NHEPEMEHHBIX, HA OCHO8E KOMOPBIX C NOMOWBIO Memood
YACMUYHBIX HauMeHbux keaopamos (PLS) nocmpoena xnaccughuxayuonnas modenv, npu smom 01 Habo-
Pa NPOSHO3UPOBAHUSL UYECMEUMETbHOCHb U ONPEOeIeHHOCMb KIACCUDUKAYUOHHOU MOOeTU NOGLIUATOMCS
00 edunuywl. Iloxazano, umo IMGA mooicho ucnonv3oeams 015 8bIOOPA XAPAKMEPUCMUYECKUX CREKMPATb-
HbIX NEPEMEHHBIX U CYUJeCMBEHHO VIYYUUMb MOYHOCHb NPOSHO3UPOBAHUS U CKOPOCHbL pacyema Mooenu
ons bnudcnetl UK obracmu.

Knrueevle cnosa: ancopumm uHOYYUPOBAHHBIX 2eHemuyeckux mymayui, onudxcnas UK cnexmpocko-
nus, CneKmpaivbHvie nepemenHble, 3eAeHblll Yall.
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Introduction. Near-infrared (NIR) spectroscopy has been one of the fastest developing analytical tech-
niques in recent years. It is a simple, fast and accurate method for nondestructive testing of material compo-
nents. NIR spectroscopy has been widely applied in quality inspection and geographical origin identification
of agricultural products [1-5]. The most intensive bands in the NIR spectral region belong to the fundamen-
tal frequency and overtone vibration of hydrogen-containing functional groups. While identifying agricultur-
al products, it is difficult to determine their geographical origin. If the full spectrum data are applied to build
identification model, unrelated spectral variables will be introduced into it. In previous study, the calibration
models were mainly built by characteristic spectral variables for both qualitative identification and quantita-
tive detection, which not only improves the prediction accuracy, but also improves the calculation speed [6—8].

The commonly used methods for spectral variables selection are mainly genetic algorithm (GA) [9],
simulated annealing algorithm (SA) [10], successive projection algorithm (SPA) [11] and the methods based
on moving window [12, 13]. It is worth noting that GA has attracted much attention due to their global opti-
mization capabilities. Combining GA with partial least squares (PLS), R. Leardi, et al. [14] first proposed
genetic algorithm-partial least squares (GA-PLS) to select characteristic spectral variables. The main draw-
back of GA-PLS is that the spectral variables cannot be too many, otherwise the algorithm converges with
difficulty. To solve this problem, interval partial least square with genetic algorithm (iPLS—GA) is presented
by Chen et al. [15]. The spectrum is firstly divided into several spectral intervals, and the characteristic in-
tervals and variables are selected by iPLS—GA and GA-PLS, respectively. This method is suitable for large
numbers of spectral variables, but easily causes mis-selection. All the above methods are based on the GA
proposed by J. Holland [16] in 1975. The traditional GA mainly consists of three steps: selection, crossover
and mutation, which has obvious shortcomings in convergence speed [17].

Inspired by mutation breeding, induced mutation genetic algorithm (IMGA), a new genetic algorithm, is
proposed to select characteristic spectral variables. The new method consists of five steps: gene coding, gene
decoding, individual fitness evaluation, gene mutation, and reproductive isolation. The IMGA gives full play
to the advantages of the GA and effectively improves the convergence speed of the algorithm. In this paper,
the IMGA is applied to select characteristic spectral variables for origin identification of green tea.

Theory. Compared with natural evolution, induced mutation is a random process, but it can produce
new species in a short time by artificial selection. Mutation breeding is to artificially expose seeds to chemi-
cal or high radiation environment to produce mutants with desirable traits, which is commonly used to obtain
new varieties with higher yield, larger size and higher quality. Based on the idea of mutation breeding,
IMGA is proposed, but it is quite different from the traditional GA in the process of genetic evolution.
By regarding each spectrum as a chromosome, the spectral variables are genes on the chromosomes. The
genes carrying green tea origins information are called origin gene, and the others are irrelevant genes. Each
gene might be dominant or recessive, and only dominant genes show their traits. Hence, the IMGA is the
process of randomly changing each spectral variable from dominant to recessive, or from recessive to domi-
nant. The mutation process and methods will be given detailed description in the following paragraphs.
When most of the origin genes become dominant genes and others become recessive genes, a satisfactory
mutation results will be got. So far, all the variables corresponding to dominant genes are called characteris-
tic spectral variable, which can be well applied to identify green tea origins. The new spectrum consist of
only characteristic spectral variables is called a new species.

The evolution of new species involves three processes: gene mutation, natural selection and reproduc-
tive isolation. Gene mutation provides the only raw information for species evolution. In the process of natu-
ral selection, the dominant gene is retained in the mutant gene, and the recessive gene will be discarded by
reproductive isolation. Up to this point, new species will come into being. After several times of gene muta-
tion, natural selection and reproductive isolation, the new species will only contain origin genes, which has
the highest environment adaptability. In this study, genetic evolution is the process of selecting dominant
genes related to origin. Genetic inheritance only exists between adjacent species, and there is no inheritance
in gene mutation. Therefore, it greatly simplifies the genetic complexity of genetic algorithm and improves
the convergence speed. Figure 1 presents the specific process of IMGA, which mainly includes the following
steps: gene coding, gene decoding, individual fitness evaluation, gene mutation and reproductive isolation.

Gene coding. In this study, all genes are divided into dominant and recessive ones. Before the genetic
evolutionary process, the raw genes are coded by binary numbers to judge the genetic traits. In the genetic
evolutionary process, the gene frequency is set to P (0<P<1). After the gene mutation, each gene will be giv-
en a random number between 0 and 1. If the random number is greater than P, it is regarded as dominant
gene, marked with 1; otherwise, it is recessive gene, labeled with 0. The genes labeled with numbers 1 and 0
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indicate that they are selected and not selected, respectively. For example, the genetic code 11010010 indi-
cates that the first, second, fourth, and seventh genes are selected, while the other genes are not selected.
Therefore, the probability of a gene being selected can be adjusted by changing the value of gene frequency
P. The lager the value of P, the fewer the number of dominant genes. In particular, all genes default to domi-
nant genes when they are firstly encoded.

Set gene frequency

Gene decoding

Individual fitness
assessment

Gene mutation

Achieve
mutation No

Yes

Reproductive
Isolation

New species

ompleté
evolution

Yes

Fig. 1. The program flow chart of IMGA.

Gene decoding. The purpose of gene decoding is to pick out the spectral variables corresponding to
dominant genes by referring to the values of random number and gene frequency (P). The selected spectral
variables will be used for individual fitness evaluation in the next step. Instead, the spectra variables corre-
sponding to recessive genes are considered as irrelevant variables.

Individual fitness evaluation. After gene decoding, we will get a new spectral matrix corresponding to
dominant gene. Then it is the time to evaluate the fitness value of the selected spectral variables. All samples
are randomly divided into the calibration set and the prediction set in proportion 7:3. After that, the calibra-
tion set is applied to build a classification model by PLS to identify the green tea origins. In the process of
spectra variables selection, the average values of sensitivity and specificity are used as individual fitness val-
ues.

Gene mutation. Gene mutation provides the only raw material for species evolution. By using a random
function, a one-dimensional array with the same length as the chromosome is created. Then the genes are
encoded by binary encode according to the value of gene frequency. Therefore, each gene has the same
probability of being selected as the dominant gene. With each mutation, the new gene are recoded and de-
coded to calculate the individual fitness value. After a complete optimization cycle, the gene combination
with the highest fitness value is passed on to the next generation.
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Reproductive isolation. According to the optimized gene combination, the characteristic spectrum vari-
ables are selected, and other spectrum variables corresponding to recessive genes are eliminated. As a result,
a new spectral matrix is generated, which is considered a new species. The next genetic evolution will take
place in new species.

Let us repeat the steps above until the evolution is completed. Finally, the best spectral variable related
to the origin of green tea is obtained, which is called characteristic spectral variables.

Materials and methods. Two hundred representative Shandong green tea samples (100 Laoshan green
tea samples and 100 Rizhao green tea samples) were collected directly from the origins. All spectra of green
tea were collected shortly after production to exclude the effects of storage. For each sample, 30 + 0.1 g tea
leaf was filled into a 200 ml beaker, and the spectrum was collected with a standard diffuse reflection optical
fiber probe. The distance between probe and tea leaf was kept at 10 mm. The spectra in the range
1050-2500 nm was collected by an AvaSpec-NIR256/2.5TEC spectrometer (Avantes, Netherlands) in the
reflectance. Three spectra were collected for each sample from different places, and each spectrum was the
average of 100 scans. For each sample, the average of the three spectra was used in the subsequent analysis.
Considering the influence of noise in the edge of spectra, the region of 1300-2300 nm was selected for fur-
ther analysis. The room temperature was kept at 25°C, and the humidity was kept at an ambient level.
The raw spectra are presented in Fig. 2.
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Fig. 2. The NIR spectra of green tea.

In order to identify the origin of green tea, Laoshan and Rizhao Green tea samples were labeled with la-
bel 1 (positive) and 2 (negative), respectively. Two hundred samples were randomly divided into the calibra-
tion set and the prediction set at a 7:3 ratio.

For the spectra collection, AvaSoft (AvaSpecNIR256/2.5TEC systems) was used. All data analysis was
done using self-developed NIR analysis software (ARCO-NIR), which was developed in the MATLAB pro-
gramming language by MATLAB 2010a (The math works Inc., Natick, MA).

Results and discussion. For the 200 green tea samples, the raw spectrum in the range of 1300-2300 nm
has 156 spectral variables at an interval of 6.4 nm. Therefore, the dataset is a spectral matrix with 156 rows
and 200 columns. The process of gene coding and decoding is presented in Table 1, which include three
spectra and eight variables. First, eight random numbers between 0 and 1 are generated by random function.
Then, eight variables are coded according to the dominant gene frequency P (P = 0.5). For the eight random
numbers, only four numbers (the second, third, fourth, and seventh) are greater than 0.5. Therefore, the four
genes are considered as dominant genes and labeled with 1. After that, the four spectral variables corre-
sponding to dominant genes are selected as a new spectral matrix to build classification models. The decod-
ed spectral matrix is collected in Table 1.

Following the results of gene decoding, a new spectral matrix is created. Then the 200 spectra in the
new matrix are randomly divided into calibration set and the prediction set with a ratio of 7:3. Based on the
calibration set, the classification model is built by PLS to identify the origins of green tea samples in the pre-
diction set. The average value of sensitivity and specificity is used as the individual fitness value.
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TABLE 1. The Process of Gene Coding and Decoding

No. Ir{lilrf‘t?;? Gene A (nm) Spectra
1 0.012 0 1301.844 0.356 0.338 | 0.428
2 0.722 1 1308.733 0.359 0.337 | 0431
3 0.942 1 1315.618 0.359 0.337 | 0.432
4 0.845 1 1322.499 0.358 0.337 | 0.435
5 0.041 0 1329.375 0.362 0.342 | 0.434
6 0.215 0 1336.248 0.370 0.347 | 0.443
7 0.671 1 1343.116 0.379 0.351 | 0.446
8 0.277 0 1363.695 0.399 0.369 | 0.471

No. lzirrﬁ;:? Gene A (nm) Spectra
1 0.722 1 1308.733 0.359 | 0.337 | 0431
2 0.942 1 1315.618 0.359 | 0.337 | 0.432
3 0.845 1 1322.499 0.358 | 0.337 | 0.435
4 0.671 1 1343.116 0.379 | 0.351 | 0.446

Every time the fitness value is calculated, the process of gene mutation, coding, and decoding is repeat-
ed until the mutation number is reached. In this study, the number of mutations is set at 1000 for a full genet-
ic evolution process. Figure 3 shows the individual fitness evaluation results of 1000 gene mutations during
the first genetic evolution. The results show that the 473rd mutant had the highest fitness value, as shown in
Fig. 3. Therefore, the spectral variables corresponding to the dominant gene of the 473rd mutant are regard-
ed as the characteristic spectral variables. After reproductive isolation, the selected characteristic spectral
variables will be considered as new species and other unrelated variables will be discarded. The next genetic
evolution will be based on the new species.

Seventy-three spectral variables are selected in first generation of genetic evolution, as show in Fig. 4a.
Based on the above methods, 11 characteristic spectral variables are selected after five genetic evolutions.
All the evolution results are collected in Fig. 4. On the basis of the fifth generation of species, further genetic
variation did not generate recessive genes, which means that the evolution is over. The 11 characteristic
spectral variables are 1472.76, 1499.835, 1513.342, 1540.295, 1785.308, 1856.495, 1977.446, 1996.298,
2033.792, 2120.156, and 2287.833 nm.

The number of PLS components is the most important parameter for the PLS model. In general, too few
PLS components cannot sufficiently reflect the relationship between the spectral data and the samples. In
turn, too many PLS components will introduce more noise and uncorrelated spectral variables into the mod-
el, which will easily lead to overfitting.
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Fig. 3. The individual fitness assessment value of 1000 gene mutations.
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Fig. 4. The selection results of characteristic spectral variables.

In this study, the optimal number of PLS components is determined by K-fold cross-validation [18].
Figure 5 presents the value of root mean square error of cross validation (RMSECV) plotted as a function of
PLS components. Generally, the smaller the value of RMSECYV, the better the calibration model. It can be
seen from Fig. 5 that the value of RMSECYV decreased significantly with increase in the initial PLS compo-
nents but slowly began to flatten and climbed up when more components are included. Finally, the optimal
number of PLS components is set to 8 when RMSECYV gets the minimum value.
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Fig. 5. Effect of PLS components on RMSECV. Fig. 6. The prediction results of PLS model.

All the evolution parameters, the number of spectral variables, and modeling results are collected in Ta-
ble 2, which is the best result of 1000 genetic mutations. Compared with the model before and after evolu-
tion, the model variables are reduced from 156 to 11, and the sensitivity and specificity of prediction set are
increased from 0.967 and 0.933 to 1, respectively, and kept constant. After selecting the characteristic spec-
trum variables, the calculation amount is reduced and the modeling speed is greatly improved. Experiments
show that most of the characteristic spectral variables can be selected by 1000 gene mutations.
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TABLE 2. The Modeling Results and Parameters in the Process of Gene Evolution

N Gene Mutation Number PLS Prediction set
o frequency times of variables | components | Sensitivity | Specificity
Original - - 156 13 0.967 0.933

Ist 0.5 1000 71 15 1 1
2st 0.5 1000 38 12 1 1
3st 0.5 1000 19 10 1 1
4st 0.5 1000 13 8 1 1
Sst 0.5 1000 11 10 1 1

Based on the 11 characteristic spectral variables, the calibration model is built by PLS, and the number
of PLS components is 10. Figure 6 presents the final prediction results for Laoshan and Rizhao green tea
origins. Each triangle represents a sample, plotted by the reference label on the horizontal axis and the pre-
diction label on the vertical. According to the value of the prediction label, the green tea origins will be iden-
tified. For example, prediction labels more than 1.5 are considered Rizhao green tea, while the others are
considered Laoshan green tea. Using Fig. 6, all samples in prediction set can be identified correctly.

Conclusions. The overall results show that the new induced mutation genetic algorithm (IMCA) is a
feasible method for the selection of characteristic spectral variables in the application of NIR spectroscopy.
Compared with the traditional genetic algorithms, the IMGA simplifies the process of genetic evolution, in-
creases the probability of genetic variation, and provides the only raw material for species evolution. There-
fore, the IMGA greatly improves the efficiency of characteristic spectral variables selection while inheriting
the global optimization of genetic algorithms. In addition, the proposed method can be easily extended to
other characteristic variables selection problems to improve the prediction ability and the calculation speed.
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