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A hyperspectral imaging system (400–800 nm) combined with multivariate analyses was investigated to 
discriminate between beef, pork, and mutton species based on the feature wavelengths of intact and minced 
samples. The performances of classification models constructed by combining linear discriminant analysis 
(LDA), partial least squares discriminant analysis (PLS-DA), or a support vector machine (SVM) with a var-
iable selection method, such as a successive projection algorithm (SPA), regression coefficient analysis 
(RCA), or random frog (RF), were compared. The results clearly showed that the linear classifier was pre-
ferred to the nonlinear classifier in the identification of red meat species. Furthermore, instead of selecting 
different sets of feature wavelengths for different types of meat samples, only a set of optimum wavelengths 
including five wavebands (567, 579, 595, 624, and 732 nm) were identified as universal feature wavelengths 
by a comprehensive comparison of three schemes, namely, variable fusion, data merging, and cross model-
ing. A simplified LDA model was then established based on these important wavelengths, yielding classifica-
tion accuracies of 94.20 and 98.36% in the validation set for the intact meat and minced samples, respec-
tively. The overall results showed that the integration of hyperspectral imaging and multivariate analyses 
has great potential for rapid and nondestructive differentiation of common red meat species. 
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Исследована гиперспектральная система визуализации (400–800 нм) в сочетании с многомер-
ным анализом для различения видов говядины, свинины и баранины на основе характерных длин волн 
интактных и измельченных образцов. Проведено сравнение характеристик классификационных мо-
делей, построенных путем объединения линейного дискриминантного анализа (LDA), дискрими-
нантного анализа с проекцией на латентные структуры (PLS-DA) или метода опорных векторов 
(SVM), с методами выбора переменных, такими, как алгоритм последовательного проецирования 
(SPA), анализ коэффициента регрессии (RCA) или метод реверсивных скачков (RF). Показано, что 
при идентификации видов сырого мяса линейный классификатор предпочтительнее нелинейного. 
Путем всестороннего сравнения трех схем, в том числе синтеза переменных, слияния данных и пе-
рекрестного моделирования, определен только один набор оптимальных длин волн, включающий в 
себя пять диапазонов (567, 579, 595, 624 и 732 нм) в качестве универсальных и характерных, вместо 
выбора различных наборов характеристических длин волн для образцов различных видов мяса. На 
основе выбранных длин волн создана упрощенная модель LDA, позволяющая получить точность 
классификации 94.20 и 98.36% в валидационном наборе образцов интактного мяса и фарша. Инте-
грирование гиперспектральной визуализации и многомерного анализа обладает большим потенциа-
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лом в решении проблемы быстрой и неразрушающей дифференциации распространенных видов сы-
рого мяса. 

Ключевые слова: гиперспектральное изображение, сырое мясо, выбор переменных, синтез ха-
рактеристик. 
 

Introduction. Meat and meat products are important constituents of the human diet. However, with in-
creasing meat consumption in recent years, meat adulteration has become a growing challenge for meat 
manufacturers and consumers [1, 2]. Traditional analytical methods, such as sensory evaluation and bio-
chemical analysis, continue to be widely employed to address this problem [3]. However, sensory evaluation 
is subjective and inconsistent, and biochemical analysis techniques are typically laborious, invasive, and 
technically demanding [4]. Consequently, a rapid and cost-efficient method that facilitates the accurate iden-
tification of meat from different species at each level of the supply chain is desirable in the meat industry [5]. 

In recent years, spectroscopy and hyperspectral imaging (HSI) have been extensively studied as nonde-
structive techniques [6, 7], and have already been applied to meat species identification. Cozzolino et al. [8] 
achieved up to 80% accuracy by implementing a principal component analysis (PCA) and partial least 
squares regression (PLSR) model with a monochromator in the region of 400–2500 nm to discriminate be-
tween beef, lamb, pork, and chicken samples. Mamani–Linares et al. [9] achieved 95% accuracy by employ-
ing PCA and PLS modeling within the spectral wavelength range of 400–2500 nm to discriminate between 
minced beef, gravy beef, alpaca, and horse meat samples. Kamruzzaman et al. [10] recognized the intact and 
minced muscle of pork, beef, and lamb with an accuracy of 98.67% using a 900–1700 nm HSI system. 

The long-wave range has been preferred for the identification of meat samples from different species in 
previous studies. However, operating a spectroscopy system in the near-infrared region significantly increas-
es the overall cost owing to the expensive detectors used at wavelengths over 900 nm. Therefore, in stark 
contrast to previous studies, the HSI system in the range of 400–800 nm was adopted in this study. Further-
more, feature wavelength selection has been shown to be an extremely valuable tool for the design of a sim-
ple and cost-effective multi-spectral imaging system. However, feature wavelengths of intact and minced 
meat samples were different in this study owing to their spectral differences, making their industrial applica-
tion inconvenient. Therefore, the main objectives of the present study were to (1) establish hyperspectral 
imaging in the spectral region of 400–800 nm as a classification tool for red meat from three different spe-
cies, (2) identify feature wavelengths for meat species identification in the intact and minced samples, and 
establish an optimal classification model. 

Experimental and methods. Sample preparation. Meat samples from the longissimus dorsi muscle of 
pork, beef, and mutton were purchased at 24 h post-mortem from a scale abattoir (Sushi Meat Products Co., 
Ltd. Huaian, Jiangsu, China), and transported to the laboratory under refrigeration. The meat samples were 
cut into 212 slices with a thickness of 2 cm, comprising pork (70), beef (71), and mutton (71) samples. Fur-
thermore, a total of 185 samples of pork (59), beef (60), and mutton (66) from a different batch were collect-
ed and minced to a homogeneous paste using a food processor. The minced samples were stored in a cylin-
drical vessel (thickness, 2 cm; diameter, 5 cm) prior to data acquisition. The Kennard–Stone algorithm was 
used to select the calibration set, which amounted to two-thirds of all samples from each species. The re-
maining one-third of samples was selected as the validation set. 

Hyperspectral imaging system. A HSI system operating in reflectance mode was used to acquire spec-
tral images of the samples within the wavelength range of 400–800 nm. The system comprised a line-scan 
spectrograph (ImSpector V10E, Spectral Imaging Ltd., Finland), a CCD camera (IPX-2M30-LMC, Imperx, 
USA), two halogen lamps as an illumination unit (MHAB-150W-C, Moritex, Japan), a translation stage 
powered by a stepper motor (Isuzu Optics, Taiwan, China), and a computer with data acquisition software 
(Isuzu Optics, Taiwan, China). All samples were bloomed for approximately 20 min before hyperspectral 
image acquisition. The meat samples were then put on the translation stage at room temperature and individ-
ually transported into the camera field of view at a speed of 3.3 mm/s, as determined by optimizing the cam-
era exposure time to prevent image distortion. 

Hyperspectral image correction and spectral extraction. To reduce the dark current effects associated 
with the CCD camera, and the nonuniformity of illumination, the relative reflectance image (R) was calcu-
lated as follows: 

R = (R0 – B)/(W – B),             (1) 

where R0 is the raw hyperspectral image, W is the white reference image obtained by using a high-
reflectance white calibration tile, and B is the dark reference image, which was acquired with the camera lens 
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completely covered with an opaque cap. 
After image correction, segmentation was performed with a threshold at the 550-nm band. This pro-

cessing yielded a segmented image for each meat sample. The isolated lean meat was selected as the region 
of interest (ROI), and the adjoining fat and remaining background were ignored. A mean spectrum was then 
calculated by averaging the spectra of all pixels within each ROI. This procedure was repeated for all hyper-
spectral images originating from the three meat categories. Image correction, segmentation, and extraction of 
spectral information were performed using ENVI software (ITT Visual Information Solutions, USA). 

Owing to the low signal-to-noise ratio at the head and tail ends of the spectrum, only the spectral range 
of 409–792 nm (540 bands) was used for further analysis. Notably, several preprocessing techniques, such as 
multiplicative scatter correction (MSC) and Savitzky–Golay smoothing, were implemented on the raw spec-
tral data. However, as these techniques did not significantly improve the prediction accuracy, the raw spec-
tral data were used in this study. 

Feature wavelength selection and modeling. Hyperspectral data are characterized by their high dimen-
sionality and collinearity, which consequently prevent the HSI system from being widely implemented 
in online industrial applications. Therefore, waveband selection is necessary to reduce the number of varia-
bles such that only a few with the most valuable information remain and are employed in effective discrimi-
nation models [11–13]. In this study, three variable selection methods, namely, the successive projections 
algorithm (SPA), regression coefficients analysis (RCA), and random frog (RF), were employed and evalu-
ated. SPA is a characteristic variable forward selection algorithm that can eliminate the collinearity between 
numerous wavelength variables and has been widely implemented to perform wavelength selection for food 
quality detection [14, 15]. RCA is acknowledged as another efficient method to determine feature wave-
lengths [16, 3]. The regression coefficients from the PLSR model applied to the full spectra were calculated, 
and the variables with the highest absolute values of RC were selected as the most representative wave-
lengths. Finally, RF is a relatively new approach proposed by Li et al. [17] and is similar to the reversible 
jump Markov chain Monte Carlo algorithm. This method determines the selection probability of each varia-
ble through a few variable iterations, thereby optimizing the variable selection according to the magnitude 
of the probability [18]. 

The selected feature wavelengths of the calibration set were used as the inputs to the classification mod-
els, which were established using two typical linear classifiers and a nonlinear classifier, namely, linear dis-
criminant analysis (LDA), partial least squares discriminant analysis (PLS-DA), and support vector machine 
(SVM), respectively. A tenfold cross-validation method was used to determine the number of latent variables 
(LVs) to avoid overfitting in the PLS-DA model. For the SVM classifier, the radial basis function kernel 
method was applied to simulate a nonlinear projection of the data in a higher dimension. The optimal values 
of the penalty parameter c and kernel parameter  for the SVM classifiers were determined by grid search 
and four-fold cross-validation, respectively. 

The performance of established models was evaluated in terms of the correct classification rate (CCR, %) 
in both the calibration set and the validation set, which was determined as follows: 

CCR = n/N100,          (2) 

where N is the total number of meat samples, and n is the number of correctly classified samples. 
Feature wavelength fusion and optimization. The optimization of feature wavelengths was implemented 

to further reduce the number of feature wavelengths and identify the feature wavelengths applicable to both 
intact and minced meat samples without sacrificing the classification accuracy. For the former objective, 
stepwise regression (SR) was employed to eliminate selected feature wavelengths that did not significantly 
influence the classification accuracy. SR is the step-by-step iterative construction of a regression model that 
involves automatic variable selection [19]. This method is based on the procedure of sequentially introduc-
ing variables into the model one at a time. The number of variables retained in the final model was deter-
mined by the criterion assumed for inclusion and exclusion of variables from the model. In this study, the 
criteria employed for entry and elimination of feature variables were based on a significance level of 5%. 
Three schemes were implemented and compared to realize the latter objective. Scheme 1 was variable fu-
sion, which entailed combining the feature wavelengths of intact and minced meat samples obtained using 
the same variable selection method. The SR algorithm then filters the combined feature wavelengths to ob-
tain the optimized feature variables and establish a classification model. Scheme 2 was data merging, which 
entailed merging the original spectral data of the same species of intact and minced samples before pro-
cessing the merged spectral data using samples partitioning, feature wavelength extraction, and SR-based 
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reoptimization methods to obtain new feature wavelengths and build a classification model. Scheme 3 was 
cross modeling, which evaluated the feasibility of a non-fusion strategy. This involves feature wavelengths 
selected by SPA, RCA, and RF from the spectral data of intact and minced samples being refined directly 
with the SR method. This allows different sets of classification feature wavelengths to be obtained, each of 
which is applied to one type of meat sample (intact or minced samples). These feature wavelengths are used 
not only for classification modeling corresponding to the data set to which they belong, but also to establish 
the classification model of the data set for the other type of meat sample. Finally, the optimum set of feature 
wavelengths were identified by comparing the classification accuracy of each model in cross-modeling. 

Among these three schemes, the optimal scheme was determined by performing a comprehensive com-
parison analysis, which analyzed and compared the number of feature variables and the discriminant accura-
cy of the simplified models. All multivariate statistical analysis operations were performed using MATLAB 
R2010b software (The MathWorks, Inc., Natick, MA, USA). 

Results and discussion. Spectral characteristics of meat samples. The mean reflectance spectra 
extracted from the ROIs in the hyperspectral images of the meat samples are shown in Fig. 1. The spectra of 
the three red meat species were observed to have similar profiles, with the only significant difference being 
the magnitude of reflectance. The reflectance values for pork meat were clearly the highest, mainly owing to 
the pork samples being visibly lighter and brighter than the beef and mutton samples. Furthermore, two 
distinct absorption bands were observed at approximately 545 and 580 nm. This observation indicated a 
certain absorption effect shown by all three red meat species on the incident light that reduces the reflectance 
of these two bands, which are each related to both myoglobin and oxymyoglobin [9]. 

 

 

Fig. 1. Mean reflectance spectra for (a) intact and (b) minced meat samples. 
 

Feature wavelength selection and classification models. SPA, RCA, and RF were conducted to extract 
the feature wavelengths from the full-wavelength spectral data. The number of feature wavelengths using 
SPA was determined using the principle of root mean square error (RMSE) minimization, with the RMSE 
results shown in Fig. 2. Increasing the number of feature variables above nine did not significantly reduce 
the respective RMSE values of 0.1717 and 0.0757 for intact and minced samples, respectively. 

 

 
 

Fig. 2. RMSE plots of the number of selected variables for (a) intact and (b) minced samples by SPA. 
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RCA was implemented during PLS regression, with plots of the regression coefficient shown in Fig. 3. 
Nine and eleven wavelengths from the intact and minced samples, respectively, were determined to have 
significantly large absolute RC values and were selected as the feature wavelengths. 

 

 

Fig. 3. Regression coefficients of each wavelength for (a) intact and (b) minced meat samples by RCA. 
 

RF was conducted ten times in this study to offset the inherent instability of the algorithm, which caused 
the results to slightly vary. The average selection probability values are shown in Fig. 4. The threshold was 
set as 0.2 and 0.35 for intact and minced samples, respectively, and wavelengths with a selection probability 
higher than the threshold were selected as the feature wavelengths. 

 

 

Fig. 4. Mean selection probability of each wavelength for (a) intact and (b) minced samples by RF. 
 
Table 1 shows the detailed results of feature wavelengths obtained by SPA, RCA, and RF. Notably, all 

three variable selection methods significantly reduced the number of wavebands. Some feature wavelengths 
selected by different methods were similar to each other. RF also tended to yield feature wavelengths that 
were directly adjacent to each other, which could lead to data collinearity. 

 
TABLE 1. Feature Wavelength Selection Results 

 
Sample Method Feature wavelength, nm

Intact 
SPA 551 567 579 595 608 624 652 699 732
RCA 443 532 567 580 596 610 628 653 743
RF 571 579 588 741 744 745 746 748 769 770 771 772 773 

Minced 
SPA 562 573 580 590 611 636 652 670 719
RCA 469 507 556 573 581 592 629 652 664 696 722 
RF 521 524 576 581 582 587 588 703 704 719 724 
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Table 2 shows the performances of the three classifiers based on the selected feature wavelengths. 
As highlighted in Table 2, PLS-DA showed the best overall classification performance for intact meat sam-
ples compared with the other classifiers, achieving a minimum CCR of approximately 95%. Among the in-
tact-meat PLS-DA models, the RF-PLS-DA model with 13 feature wavelengths showed the best perfor-
mances with a CCR of 98.60 and 98.55% in the calibration and validation sets, respectively. The SPA-LDA 
model was also able to achieve an average CCR above 97% with only nine feature wavelengths. In contrast, 
applying the RCA-PLS-DA and SPA-PLS-DA models to the minced meat calibration and validation sets 
yielded a CCR of 100%. Notably, the average CCR for minced meat samples was significantly higher than 
that for the intact meat samples. This was primarily due to the classification data being derived from the av-
erage spectral features of the meat surface, and excluded all spatial image information. Therefore, no loss of 
information occurred for the minced samples during spectral extraction, whereas the ROI of the intact sam-
ples might contain intramuscular fat or fascia that would lead to incorrect information being introduced. Fi-
nally, among the three classifiers, PLS-DA and LDA performed significantly better than SVM, which sug-
gested that linear classifiers were preferred for the classification of common red meat species. 

 
TABLE 2. CCR (%) of the Calibration and Validation Sets Based on Feature Wavelengths 

 

Sample Method nSVa 
LDA PLS-DA SVM 

Calibration Validation Calibration Validation Calibration Validation
 
 

Intact 

SPA 9 97.90 97.10 98.60 95.65 86.01 81.16
RCA 9 92.31 91.30 95.10 95.65 88.11 84.06
RF 13 87.41 73.91 98.60 98.55 90.91 91.30

 
 

Minced 

SPA 9 99.19 100.00 100.00 100.00 89.52 85.25 
RCA 11 97.58 100.00 100.00 100.00 90.32 90.16
RF 11 99.19 100.00 98.39 100.00 92.74 91.80 

a Number of selected variables. 
 
Feature wavelength fusion and optimization. Although the feature wavelength-based classification 

models yielded good results, the number of feature wavelengths remained undesirably large. Furthermore, 
the classification feature wavelengths for intact and minced meat differed, showing that further optimization 
was needed. As the linear classifiers yielded the highest recognition rates, only LDA and PLS-DA were used 
to establish classification models in the three schemes described above. Various combinations of the feature 
variable selection algorithms and classifiers were present in the optimization schemes, with the best results 
from each scheme listed in Table 3. 

 
TABLE 3. Highest CCR (%) of Each Scheme at Optimized Wavelengths  

for the Calibration and Validation Sets 
 

Scheme Method nSVa nLVb 
Intact samples Minced samples 

Calibration Validation Calibration Validation
1 SPA+SR+PLS-DA 11 9 98.60 98.55 100.00 100.00 
2 RCA+SR+PLS-DA 9 9 97.90 97.10 99.19 100.00
3 SPA+SR+LDA 5 95.10 94.20 97.58 98.36

a Number of selected variables. 
b Number of latent variables of PLS. 
 
As indicated in Table 3, the fusion strategy adopted in schemes 1 and 2 did not achieve the expected re-

sults in terms of the number of feature wavelengths, although the classification accuracy of these two 
schemes was still high. After optimization, the number of universal feature wavelengths determined by 
schemes 1 and 2 was eleven and nine, respectively, which were not lower compared with Table 2. In con-
trast, scheme 3 achieved relatively satisfactory results, in which the SPA and SR-based LDA model achieved 
CCRs of 95.10 and 94.20% for the intact meat calibration and validation sets, and 97.58 and 98.36% for the 
minced meat calibration and validation sets, respectively. Although the classification accuracy of scheme 3 
was slightly lower than that of the other schemes, five wavelengths (567, 579, 595, 624, and 732 nm) ex-
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tracted from the spectral data of intact samples using a coupled SPA and SR algorithm were identified as 
optimal feature wavelengths, which accounted for only 0.93% of the original variables, and, more important-
ly, were effective for the classification of minced pork, beef, and mutton. In contrast, the feature wavelengths 
extracted from minced samples were not suitable for species classification of intact samples. 

Conclusions. In this study, hyperspectral imaging performed in the spectral range of 400–800 nm was 
combined with various chemometric methods for the discrimination of beef, pork, and mutton. Three 
classifiers (LDA, PLS-DA, and SVM) coupled with three variable selection methods (SPA, RCA, and RF) 
were used to establish the classification models. Comparison of the accuracies showed that linear classifiers 
were the preferred choice for identifying meat species compared with nonlinear classifiers, and that the 
average classification accuracy for the minced meat samples was significantly higher than that for the intact 
meat samples. Furthermore, the feasibility of determining the feature wavelengths for identification of meat 
species applicable to both intact and minced samples was studied using three schemes, namely, variable 
fusion, data merging, and cross modeling. A comprehensive comparison of the three schemes showed that 
the fusion strategy could not further reduce the number of feature variables, while the feature wavelengths 
extracted from the data of intact samples could be effectively employed to classify minced meat samples. 
Five wavelengths (567, 579, 595, 624, and 732 nm) were identified as universal feature wavelengths and a 
simplified LDA model was established to yield overall satisfactory classification performance, with an 
average CCR exceeding 94%. The results obtained in this study indicated that the development of a low-cost 
multi-spectral imaging system to identify common meat species was feasible. 
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