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Based on deep learning, a desertification grassland classification (DGC) and three-dimensional convo-
lution neural network (3D-CNN) model is established. The F-norm2 paradigm is used to reduce the data; the 
data volume was effectively reduced while ensuring the integrity of the spatial information. Through struc-
ture and parameter optimization, the accuracy of the model is further improved by 9.8%, with an overall 
recognition accuracy of the optimized model greater than 96.16%. Accordingly, high-precision classification 
of desert grassland features is achieved, informing continued grassland remote sensing research. 
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Создана гиперспектральная система дистанционного зондирования с беспилотного летатель-

ного аппарата для исследования пустынных пастбищ Внутренней Монголии (Китай) при естест-
венном освещении в полевых условиях. На основе машинного обучения предложена модель трехмер-
ной сверточной нейронной сети (3D-CNN) для классификации пустынных пастбищ. Для уменьшения 
объема данных использована парадигма F-norm2 при обеспечении целостности пространственной 
информации. Благодаря оптимизации структуры и параметров модели ее точность дополнительно 
повышается на 9.8%, при этом общая точность распознавания оптимизированной модели >96.16%. 
Соответственно достигается высокоточная классификация признаков пустынных пастбищ, что 
способствует повышению эффективности исследований по дистанционному зондированию пастбищ.  

Ключевые слова: беспилотный летательный аппарат, гиперспектральное изображение, опу-
стынивание пастбищ, идентификация наземных объектов, трехмерная сверточная нейронная сеть. 

 
Introduction. China’s natural grassland area is 390 million hm2. It accounts for 40% of the country’s 

land area, which is more than cultivated land and forest areas combined. Furthermore, this accounts for 12% 
of the global grassland areas, ranking as the largest national grassland area in the world. However, 80% of 
China’s grasslands are distributed in northern China [1]. The Inner Mongolia grassland is a notable tradition-
al animal husbandry base and green ecological barrier in northern China. Because of long-term use and 
global climate change, the Inner Mongolia grassland has encountered severe ecological challenges during the 
past half century [2]; productivity and ecological functions are significantly reduced. The area of desertifica-
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tion in Inner Mongolia is greater than 60 million hm2, accounting for approximately one-fourth of the na-
tional desertification area, of which 98% is comprised of grassland areas [3]. The area of desertification dis-
tribution is wide and the degree of degeneration is different. Vegetation coverage is a functional indicator for 
visual and quantitative estimations of surface plant communities; used to describe vegetation dynamics, it 
indicates regional ecological environment changes [4]. Monitoring changes in vegetation coverage has be-
come an important means to evaluating regional ecological environmental quality. Traditionally, vegetation 
coverage is monitored through manual methods, including visual estimation methods and instrument meth-
ods [5]. Not only do such measurement methods have many limitations, but they also require significant time 
and material resources [6]. With the development of optical, thermal infrared, and microwave technologies, 
the use of satellite-borne sensors to observe ground objects, including the multispectral scanner system 
(MSS), satellite for observation of earth (SPOT), and thematic mapper (TM), has gradually increased. Re-
mote sensing data can achieve a wide range of measurements for vegetation coverage [7–9]. However, be-
cause of the distance between satellite sensors and information on the ground, the obtained vegetation infor-
mation is limited by the spatial resolution of the image. Thus, the identification and inversion of dense vege-
tation coverage areas can be obtained; however, with satellites alone, it is difficult to achieve fine identifica-
tion and high-precision in vegetation information in desert grassland. To obtain more precise vegetation in-
formation, optical sensors have been increasingly combined with drones. This forms a low-altitude drone 
remote sensing platform. Such unmanned aerial vehicle (UAV) remote sensing platforms not only fulfill the 
gap in information between measurements on the ground and satellite remote sensing image, but also ensure 
data timeliness [10, 11]. Accordingly, low-altitude hyperspectral remote sensing satisfies the requirements of 
data accuracy for desertification grassland while also allowing flexibility and efficiency in data collection.  

Since deep learning was introduced by Hinton et al. in 2006, deep learning has been successfully ap-
plied to machine learning, including its excellent performance in recognition [12], medical image recogni-
tion [13], and image classification [14]. With the success of deep learning in natural image processing, deep 
learning methods have been gradually introduced into remote sensing image classification [15]. Remote 
sensing image classification is characterized by three types of classification: spectral feature classification, 
spatial feature classification, and spectral-spatial feature classification [16, 17]. Among these, spectral fea-
ture classification developed first, as the spatial dimensions of early sensors were very limited [18]. With 
further sensor development, spatial dimension information greatly increased. The classification methods of 
spectral features then gradually developed into the joint use of spectral-spatial information. It has been 
shown that spatial context information helps to explain the relationship between adjacent pixels; utilizing the 
entirety of spatial information effectively improves classification accuracy [19, 20]. Scholars have since used 
a combination of spectral and spatial properties in many studies, one of which involves the initial separate 
extraction of spectral and spatial features, prior to the combination of the spectral and spatial features [21]. 
Separately extracting and then combining spectral and spatial features is often performed with a stacked au-
toencoder (SAE), deep brief network (DBN), one dimensional convolution neural network (1D-CNN), or 
two-dimensional convolution neural network (2D-CNN). In another method, which directly involves hyper-
spectral imaging (HSI), the depth spectral spatial features are extracted from the 3D cube, and a three-
dimensional convolution neural network (3D-CNN) is used to process image cubes [22–24]. At present, the 
SAE, DBN, and CNN models are used to classify and identify HSI data captured by various sensors [25]. 
The classification accuracy of the 3D-CNN model is significantly better than the SAE and DBN models. 
SAE, DBN, and other models applied earlier in HSI image classification efforts have since significantly im-
proved, allowing HSI images to achieve sufficient results [22, 24]. However, with high-precision recognition 
of objects and the study of spectral-spatial characteristics with higher precision requirements, the 3D-CNN 
shows great potential. 

Currently, most investigations have used satellite and aerial remote sensing image data to concentrate 
on the identification and classification of large-scale crops, buildings, roads, and forests. These are limited 
by satellite and aerial sensor accuracy, and the image spatial resolution is low. It is difficult to achieve high-
precision identification and inversion of small features; while the desert grassland vegetation is sparse, the 
coverage is less than 40%, the average height is less than 8 cm, and the distribution is random and scattered. 
Accordingly, a high-precision method for data collection with a deep learning model is proposed. This study 
constructs a low-altitude UAV remote sensing platform to collect remote sensing images of desertification 
grasslands. This ensures data timeliness and improves data accuracy. A 3D-CNN is used to construct the 
desertification steppe vegetation coverage model. Data structure dimension reduction, model structure, and 
parameter tuning are used to obtain the best grassland land object recognition model. In the development of 
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this high-resolution remote sensing UAV platform for the desertification grassland data collection, innova-
tive methods for grassland remote sensing research are developed. 

This study contributes the following:   
1. A UAV hyperspectral remote sensing platform is constructed to collect data for desertification grasslands. 
2. Based on 3D convolution, a desertification steppe General Direction of Development Cooperation 

(DGC) 3D-CNN model is established for low-altitude hyperspectral remote sensing data. 
3. F-norm2 is used for data dimension reduction. By comparing the overall accuracy and training dura-

tion of the five dimensions of data, the best dimension for adapting the model is determined. 
4. The structure and parameters of the DGC-3D-CNN model are optimized, the network performance 

effectively improved, and a comparably superior desertification grassland classification model obtained. 
Materials and methods. Overview of the study area. The experimental area is located in the Gegentala 

Grassland (41°78′43′′N, 111°87′41′′E) in the middle and western area of Siziwang Banner, Wulanchabu 
City, Inner Mongolia, China. This area is a typical desertified grassland with a temperate continental climate: 
the average annual precipitation is 280 mm, 75% of which occurs from June–August; the annual average 
temperature is 3.4°C; the soil type is mainly pale chestnut soil, and the group is short. From Stipa breviflora, 
the dominant species are Artemisia frigida and Cleistogenes mutica; the main associated species are Convol-
vulus ammannii, Neopal-lasia pectinata, and Allium tanuissmum. Vegetation grass layers are low, sparse, 
and random; they have an average height of less than 8 cm and a coverage rate of only 13–35% [26, 27]. 

Construction of UAV Hyperspectral Remote Sensing System. The UAV hyperspectral platform is pri-
marily composed of an eight-rotor UAV, a hyperspectral imager, a pan-tilt, and an inertial navigation sys-
tem. The hyperspectral instrument is a Pika XC2 hyperspectral instrument manufactured by Resonon, USA. 
The HEX-8 UAV is produced by Jinan Share UAV in China and adopts the professional A3pro flight control 
system, which can achieve autonomous flight of the route. The maximum takeoff weight is 40 kg, and the 
full flight duration is 25 min; the Head is adopted from SZ DJI Technology Co., Ltd. RONIN-M Head, man-
ufactured by SZ DJI Technology Co., Ltd., has a built-in DJI advanced 32-bit DSP processor and weighs 
3.6 kg. The inertial navigation system is the Ellipse miniature inertial sensor produced by SBG of France. 
The main parameters are follows: lens focal length 17 mm, field of view 30.8°, spectral range 400–1000 nm, 
spectral resolution 1.3 nm, number of spectral channels 447, number of spatial channels 1600, pixel size 
5.86 µm, scanning method – linear push sweep, maximum flight speed 10 m/s, flight mode – route autono-
mous flight, weight 32 kg, endurance (time) 25 min. 

Data collection. According to the climate characteristics of the grassland and the growth cycle charac-
teristics of the grass, the data collection period is from August 20–August 25, 2018. The weather conditions 
involved a wind of less than 3 level. Between 10:00 and 14:00, hyperspectral data was acquired by flight. To 
ensure that the data are not overexposed or underexposed because of changes in the cloud amount, standard 
reference whiteboard calibration is performed before and after each flight. The UAV-HSI system uses au-
tonomous flight along the route to collect remote sensing images for 2.5 hm2. To ensure image quality and 
data accuracy, the single image size is set to 3640 lines×1600 samples×231 bands, and the flying height of 
the drone is 30 m. The flight speed is 1 m/s, the side overlap is 55%, and the image spatial resolution is ap-
proximately 2.1 cm. According to the calculation, it takes 3 trips to collect 2.5 hm2, wherein the single flight 
times are 20, 20, and 12 min. To ensure data quality, the test area is collected 3 times, for a total of 9 flight 
times. 

Data preprocessing. First, the best image quality was selected by manual inspection, and the radiance 
correction was performed using Spectral Pro software. After data correction, the image includes 400–1000 
nm, a total of 231 bands, a spatial resolution of 2.1 cm/px, and a size of 1600×3603 px. The corrected image 
is shown in Fig. 1a. The image is divided into three types of ground truth classes (Fig. 1b). Of the labeled 
samples, 40% were selected as training data, and the rest were used for testing (Table 1). 
 

TABLE 1. Land-Cover Classes and Numbers of Samples in the Part-UAV-HSI 
 

No. Class Total Test Training 
1 
2 
3 

Vegetation 3,279,270 1,967,562 1,311,708 
Soil 1,620,862 972,517 648,345 
Others 2,268 1,360 908 

All classes 4,902,400 2,451,200 2,451,200 
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Fig. 1. (a) UAV-HSI and (b) ground truth. 
 
DGC-3D-CNN model and F-norm2 band selection. 3D-CNN. With the integral convolutional layer of 

the CNN structure, convolution operations are often used to extract features and introduce nonlinear factors 
into the network through activation functions. The convolution kernel of a 3D-CNN is a three-dimensional 
cube. For hyperspectral data, the convolution kernel slides on the band while sensing the entire channel of 
the field of view image, thus achieving the calculation of spectral and spatial components. When there are 
fewer training parameters, the information provided in the data is utilized as much as possible, and the cost is 
fundamentally reduced. The 3D convolution is expressed as 
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where l, w, and h represent the length, width, and height of the convolution kernel cube, respectively, and m 

and n respectively represent the kernel of the previous layer and the current layer, respectively; kmn
   is the 

( , ,   )th value calculated by convolving the mth feature cube of the preceding layer with the nth kernel of 

the kth layer, and hwd
knu  is the previous position, (h, w, d), calculated by convolving the mth feature cube in 

the preceding layer [28].  
DGC-3D-CNN model. The Python language is used to construct the DGC-3D-CNN network (Fig. 2)  

using the deep learning PyTorch framework. According to the empirical value and initial value obtained by 
the research, the initial network framework is composed of two 3D convolution layers, two pooling layers, 
and one fully connected layer. The activation function is ReLU. The main parameters are shown in Table 2, 
where 3*3*3@20 represents 20 three-dimensional convolution kernels with a size of 3*3*3, a batch size of 
256, a patch size of 9, and a full-link unit number of 1024. 

 

 
Fig. 2. Schematic diagram of DGC-3D-CNN network structure. 
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TABLE 2. Parameters in the DGC-3D-CNN Method 
 

Network layer Convolutional layer Act-F Pooling layer Pooling func-
tion 

1 3*3*3@20 ReLU 3*1*1 Max-pooling 
2 3*3*3@35 ReLU 3*1*1 Max-pooling 

 
Data dimension reduction. HSI uses a large number of bands and narrow band spacing, which can pro-

vide rich spectral characteristics and spatial characteristics. This provides high-precision ground object 
recognition, but also complicates and lengthens the data learning process. The data collected by the UAV 
remote sensing platform is 1600*3603, with a total of 231 dimensions and a band spacing of 4.32 nm. The 
band selection should reduce the data dimension as much as possible while eliminating useless information 
and noise interference, but also retain the complete spectral space information as much as possible. Based on 
this, the Frobenius norm (F-norm), is used [29] 
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where X is a tensor, R is the number of rows of tensor, C is the number of columns of tensor, and b is the 
dimension of the tensor. The values R is 1, 2, ..., 1600. The values C is 1, 2, ..., 3603, and the values B is 
1, 2, ..., 231. The F-norm value corresponding to the image represents the energy of the corresponding band. 
If the F-norm2 value is too small, the amount of information contained therein is too low. If the F-norm2 val-
ue is too large, the noise is severe. Derived from Eq. (2), the square of the F-norm values of the respective 
bands in the UAV-HSI image are shown in Fig. 3. As can be seen, the amount of information contained in 
the first eight bands is low. The F-norm2 value in bands 198–231 band sharply increases because of noise, 
which should be eliminated. Accordingly, the remaining 9–197 bands are selected and recorded as id1. Tak-
ing the F-norm median band, the 104th band, as the central band, the two sets of bands are selected in incre-
ments of 20 bands: bands 86–126, 66–146, 46–166, and 26–186, and the remaining bands are respectively 
recorded as id2, id3, id4, id5, and id6. These groupings of band data are used as input data to classify the 
overall accuracy (OA), the kappa value, and the model training time of the DELL-T7920 workstation as an 
evaluation index. Additionally, different band groupings are compared, and the price and performance of the 
quantity of input data evaluated. 
 

 

Fig. 3. Square of the Frobenius norm of UAV-HSI. 
 

TABLE 3. Calculation Effects of Different Band Models 
 

No Bands Total bands Kappa OA, % T, min DV, % T-DVR, %
id1 9-197 188 0.805 88.12 378 –0.97 +7 
id2 86-126 41 0.816 86.35 270 –2.68 –23 
id3 66-146 81 0.827 87.62 305 –1.47 –13 
id4 46-166 121 0.834 88.97 326 –0.06 –7 
id5 26-186 161 0.837 89.03 351 – – 
id6 1-231 231 0.731 82.32 462 –6.71 +31 
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The results of the model calculation are shown in Table 3. Therein, the id6-full-band data classification 
requires the longest amount of time and the classification effect is the worst; the id1 classification accuracy 
is higher than id6, but it requires the longest amount of time; as the number of bands increases, the id2–id5 
kappa value, the OA, and the time consumed all increase. The best performance is achieved by id5 with an 
OA of 89.03%, and a time of 351 min. To compare the accuracy and time consumption, id5 is used as the 
reference value to obtain the time difference as well as the precision OA difference (OADV), such that 
OADV= idnOA-id5OA. The ratio of time to OADV (T-DVR), such that T-DVR=(idnT-id5T)/id5T, is 
shown in Table 4. Accordingly, the best performing id5 is only 0.06% higher than the id4 precision value, 
but the time consumption is increased by 7%. The next id4 has a higher price/performance ratio. 

DGC-3D-CNN structural parameter optimization. The DGC-3D-CNN model is based on empirical 
values and initial parameters. The pseudo code for the model is shown in Table 4. The performance of the 
CNN model is affected by the parameter settings; if the 3D-CNN parameter settings are not appropriate, the 
network performance will be greatly reduced [25]. To optimize the network performance, id4 is used as the 
input data set, and the nine parameters in DGC-3D-CNN are adjusted according to the logical relationship of 
parameters and the univariate principle. The optimal parameters are selected according to the OA of the clas-
sification. 

 
TABLE 4. Structural Parameter Optimization Pseudo Code 

 
Algorithm: Classification of Hyperspectral Image based on pixel level. The training sample,  

which has the same size, is cut from the source image. Its corner pixel is regarded as the label. 
Input: BS: The batch_size of the samples (the number of samples in each training); 
   Epoch: A hyperparameter, the maximum number of epochs to train the network; 
   train_each_epoch_updt: In each training epoch, the number of parameters’ updating; 
   test_each_epoch_pre: In each test epoch, the number of predictions to samples; 
   Xtrain: The clipped images for training; 
   Xtest: The clipped images for testing. 
Output: MA: The average accuracy on the test samples; 
    The trained model’s weights 
for epoch in range Epoch, do 
 Training: train the model by training samples 
 for it in range train_each_epoch_updt do 

   1) According to the batch extraction method, include the training samples;  
2) Acquire average loss by the forward propagation of the network;  

    3) Update network weights by backward propagation; 
 end 
 Testing: Evaluate accuracy for testing samples 
 for it in range test_each_epoch_pre, do 
  1) According to the batch extraction method, include the testing samples;  

2) Forward propagation;  
3) Compute and acquire the accuracy; 

 end 
 Compute MA (the average accuracy of all the testing samples). 
end 

 
Convolutional layer number and convolution kernel size. This section overviews the influence of the 3D 

convolutional layer number and the convolution kernel size on the accuracy of the model. Using the univari-
ate principle, the convolutional layer number is first used as a variable to attempt different depths for the 
network structure. Compare 2, 3 ,4, 5, 6 models of convolutional layers, Under the same number of itera-
tions, the recognition accuracy of the multi-volume layer network model was not significantly improved; 
however, the computational cost is increased, compared to models of 2 or 3 convolutional layers. The net-
work model of 2 or 3 convolutional layer is more cost-effective. Different convolution kernel sizes were then 
attempted; the smaller convolution kernel size yielded better results in comparisons of the 3×3×5 convolu-
tion kernels on the UAV-HSI data. Because the number of convolution layers and the size of the convolution 
kernel have little effect on the accuracy of the model, these are not described in great detail here. 
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Convolution kernel. The convolution kernel is also called a filter. The more convolution kernels there 
are, the more complete the implicit feature extraction of the sample is. While a model with more kernels can 
more accurately fit the sample, too many convolution kernels require too many parameters, which slows the 
training process. 

In this section, the conclusions obtained in the previous section are applied to train 3D-CNN network 
models with different numbers of kernels. Accordingly, the convolution kernel size 3×3×5 is used. C1 and 
C2 are attempted as 2-layer convolutional network models, and C3, C4, C5, as 3-layer convolutional net-
work models. For C1 and C2 the number of cores is set to 1:2 and 1:3, respectively. For C3:C4:C5 the kernel 
ratio is set to 1:2:3 and 1:2:4. The model accuracy test was performed separately, and the results are shown 
in Fig. 4. 

As seen in Fig. 4a, when the 3D-CNN has a double convolution kernel, the OA of the 1:2 number of 
convolution kernel ratio is higher than that of the 1:3 number of convolution kernel convolution ratio. When 
the number of first-layer convolution kernels is 5 and the second-layer convolution kernel is 10, the OA is 
the highest, at 92.965%. 

As seen in Fig. 4b, when the 3D-CNN has a double convolution kernel, the OA of the 1:2:4 number of 
convolution kernel ratio is higher than that of the 1:2:3 number of convolution kernel convolution ratio. 
When the number of convolution kernels in the first layer is 15, the convolution kernel in the second layer is 
30, and the number of convolution kernels in the third layer is 60, the OA is the highest at 93.056%. Thus, 
the overall classification accuracy of the network models with three convolutional layers is superior to that 
of models with two convolutional layers. For the three convolutions layers, the classification effect is best 
when the convolution kernel ratio is 15:30:60, returning an OA value of 93.05%. 

 
Fig. 4. Overall accuracy of the double (a) and three (b) convolutional layers  

with different convolution kernels. 
 

Spatial size. Spatial size refers to the size of the image being cropped. In the process of cropping, a larg-
er spatial size often contains more texture information. If the texture of an object is more detailed and con-
tained in a smaller image, then the convolution check will be more focused on the characteristics of small 
pictures, and may be better than large pictures. 

Accordingly, for the experiments, spatial sizes of 7, 9, ..., 15 in an order of 2 are selected, and the test 
set accuracy and time consumption of the models compared. As the spatial size increases, the training time 
also increases, while the OA tends to decrease overall (Fig. 5a). When the patch size of 7 has the lowest time 
cost and highest precision, making the first choice, with an OA value is 94.16%.  

Batch size. Batch size is the number of samples used in every training instance of the model. The larger 
the sample size, the better the ability to represent the overall sample. Thus, in a model with a larger batch 
size, it is easier to learn the characteristics of the overall sample in every training instance. The parameter 
update to the global optimization direction provides significant guidance; however, an excessive batch size 
overloads the memory state. Then, because the number of iterations is too small, the time to achieve the 
same precision greatly increases, and the parameter correction speed decreases. 

Seven different size batch sizes were attempted: 16, 32, 64, 128, 256, 512, and 1024. The results are 
shown in Fig. 5b. As the batch size increases, the OA tends to decrease. Additionally, the time required to 
train the model decreases significantly as the batch size increases. This case, the optimal batch size is 128, 
with an OA value of 96.19%. 
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Fig. 5. Accuracy and time consumption (a) of different spatial size and (b) for varying batch sizes. 
 

Other parameters. Through the experiments in Sections 4.2–4.4, the OA of the model was improved 
from 89.03 to 96.19%. After these experiments, it was found that the activation function, optimization algo-
rithm, learning rate, and training sample have minimal effects on the accuracy of the model.  

Four activation function were attempted: Sigmoid, ReLU, ELU, and tanh, of which ReLU showed the 
best performance. Four optimization algorithms were attempted: SGD, Adam, RMS prop, and Mini-Batch 
Gradient Descent (MBGD). Among these, Adam showed the best performance. We tried 7 different learning 
rates, which were 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, when the learning rate was 0.0005 optimum 
performance. Eight gradient training samples were attempted for model training, from 10–80% in increments 
of 10%; the model achieved the best training effect when the training sample was 50%. A 100 epochs model 
training was conducted. When the epoch is 46, the training precision of the model tends to a stable value, so 
the epoch takes 50.  

Results and discussion. From the above experiments, the three parameters that have the greatest impact 
on the classification accuracy of the model were determined to be the number of convolution kernels, the 
spatial size, and the batch size. By optimizing the nine parameters, the OA of the DGC-3D-CNN model was 
improved to 98.11, 9.14% greater than the OA of the initial model. The specific structure and parameters of 
the optimized model are Cov1-3×3×5@15, Cov2-3×3×5@30, Cov3-3×3×5@60, ReLU for the activation 
function, Adam for the optimization algorithm, 0.0005 for the learning rate, and 50% for the training sample.  

The original map and the optimized DGC-3D-CNN model classification effect diagram are shown in 
Figs. 6a,b. To further compare the classification effect, the partial image is enlarged, as shown in Figs. 6c,f. 
A comparison of the Figs. 6c,d shows the small amount of misclassification at the boundary; it can also be 
seen from a comparison of the Figs. 6e,f that there is a small amount of misclassification at the boundary of 
the “other” feature type. 

The above experiments result in the following conclusions. The low-altitude UAV hyperspectral remote 
sensing platform constructed by this experiment has a spatial resolution of 2.1 cm/px, which provides a ma-
terial basis for accurate identification of small objects. Although the 3D convolution data can be analyzed 
without data dimension reduction, data reduction with the F-norm used herein can reduce the data dimension 
while maintaining the spectral spatial information integrity, thus improving the model’s training efficiency. 
The 3D-CNN achieved satisfactory performance in joint spatial spectral information analysis; however, its 
structure and parameters influence recognition accuracy. After experiments, the number of convolution ker-
nels, batch size, and spatial size greatly influence the accuracy of the network model; with a lighter network 
structure, a smaller convolution kernel size has a better effect on the identification of small desertified grass-
land features. After optimization of the nine parameters, the best performance DGC-3D-CNN model was 
obtained. 

Conclusions. This study constructs a low-altitude UAV hyperspectral remote sensing platform, collects 
data from the Gegentala grassland in Inner Mongolia, and establishes a DGC-3D-CNN desertification grass-
land vegetation coverage model. The F-norm function is used to reduce the dimensionality of the data. 
In addition to maintaining spectral characteristic integrity, the training time is effectively shortened. By op-
timizing the structure and parameters of the DGC-3D-CNN, the best DGC-3D-CNN for a low-altitude drone 
hyperspectral remote sensing platform for collecting desertification grassland vegetation characteristics is 
obtained. The optimized model improves the accuracy by 9.8% compared to the initial model, with an over-
all recognition accuracy of 96.16%. Accordingly, this study provides a method for data collection and analy- 
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Fig. 6. (a) UAV-HSI, (b) classification result, (c) local image of vegetation and soil, (d) local image  
of vegetation  and  soil classification  result,  (e) local image of vegetation,  soil,  and  other objects,  

and (f) local image of vegetation, soil, and other objects classification result. 
 

sis of desertification grassland using a UAV hyperspectral remote sensing system. This provides a theoreti-
cal basis for hyperspectral remote sensing inversion of vegetation coverage in desertification grassland, 
while also informing potential further investigations in fine ground object recognition. 
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