T. 87, № 3

V. 87, N 3

MAY - JUNE 2020

ОСОБЕННОСТИ ДЕФЕКТНОЙ СТРУКТУРЫ И ОПТИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛА LiNbO3:Mg(5.05):Fe(0.009 мол.%)

Н. В. Сидоров, Н. А. Теплякова^{*}, Л. А. Бобрева, О. В. Макарова, М. Н. Палатников

УДК 535.34;548.4

Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева обособленное подразделение Федерального государственного бюджетного учреждения науки Федерального исследовательского центра "Кольский научный центр Российской академии наук", 184209, Anamumы, Poccus; e-mail: tepl_na@chemy.kolasc.net.ru

(Поступила 27 ноября 2019)

Методами спектроскопии ИК поглощения, комбинационного рассеяния света, лазерной коноскопии и оптической спектроскопии исследованы дефекты и оптические свойства кристалла LiNbO₃:Mg(5.05):Fe(0.009 мол.%). Установлено, что в спектре указанного кристалла по отношению к спектру номинально чистого конгруэнтного кристалла LiNbO₃ полосы поглощения, соответствующие валентным колебаниям OH-групп, сдвинуты в высокочастотную область и более узкие, что свидетельствует о большем порядке в расположении OH-групп и большей жесткости связей O–H в структуре кристалла LiNbO₃:Mg(5.05):Fe(0.009 мол.%), чем в конгруэнтном кристалле.

Ключевые слова: монокристалл, ниобат лития, двойное легирование, комплексный дефект, фоторефрактивный эффект, спектр ИК поглощения, валентные колебания OH-групп.

The defects and optical properties of a $LiNbO_3:Mg(5.05):Fe(0.009 mol.\%)$ crystal are studied by the methods of IR-absorption spectroscopy, Raman spectroscopy, laser conoscopy, and optical spectroscopy. It is established that the bands of absorption related to valent vibrations of OH groups shift to the high-frequency area and are narrower for this crystal compared to a nominally pure congruent crystal. It indicates a higher order in the OH groups location and the higher stiffness of O–H bonds in the structure of the $LiNbO_3:Mg(5.05):Fe(0.009 mol \%)$ crystal than in a congruent crystal.

Keywords: monocrystal, lithium niobate, codoping, complex defect, photorefractive effect, IR absorption spectrum, valent vibrations of OH-groups.

Введение. Интерес к получению нелинейно-оптических материалов на основе монокристалла ниобата лития (LiNbO₃) обусловлен его уникальными физическими характеристиками [1—3]. Ниобат лития является кислородно-октаэдрической фазой переменного состава [1, 2]. Это сегнетоэлектрик с запрещенной зоной, близкой по величине к широкозонным полупроводникам, причем ширина запрещенной зоны зависит как от состава, так и от технологических особенностей получения кристалла [4]. Управляя структурным беспорядком путем легирования, изменения стехиометрии, можно эффективно воздействовать на состояние ансамбля дефектов, особенности формирования в них кластеров и микроструктур, особенности локализации примесей в структуре кристалла. Такой подход позволяет в широких пределах изменять практически значимые физические характеристики кристалла LiNbO₃ [1—4].

FEATURES OF THE DEFECT STRUCTURE AND OPTICAL PROPERTIES OF A LiNbO₃:Mg(5.05):Fe(0.009 mol.%) CRYSTAL

N. V. Sidorov, N. A. Teplyakova^{*}, L. A. Bobreva, O. V. Makarova, M. N. Palatnikov (*I. V. Tananaev* Institute of Chemistry — Subdivision of the Federal Research Centre "Kola Science Centre of the Russian Academy of Sciences", Science Centre of Russian Academy of Sciences, Apatity, 184209, Russia; e-mail: tepl_na@chemy.kolasc.net.ru) Кристаллы LiNbO₃, выращенные в воздушной атмосфере, всегда содержат в структуре гидроксильные группы (OH⁻) [3, 5—7]. Присутствие OH-групп повышает низкотемпературную проводимость, снижает эффект фоторефракции и величину коэрцитивного поля [4, 5—7]. Концентрация и особенности локализации OH-групп в кристалле LiNbO₃ зависят от его состава [2, 5—7], а также от многих трудно учитываемых технологических факторов: способа приготовления шихты и исходных прекурсоров для ее синтеза, типа и концентрации легирующих добавок и их локализации в структуре, термической предыстории кристалла и др. Однако именно технологическим факторам формирования структурного состояния гидроксильных групп в кристалле LiNbO₃ практически не уделялось внимания. Поведение OH-групп в структуре кристаллов LiNbO₃ обычно исследуют по ИК спектрам поглощения [2, 5—10].

В данной работе методами ИК спектроскопии в области валентных колебаний ОН-групп, спектроскопии комбинационного рассеяния (КР) света, лазерной коноскопии в широкоапертурных пучках лазерного излучения и измерением края оптического фундаментального поглощения исследованы дефекты структуры кристалла LiNbO₃:Mg(5.05):Fe(0.009 мол.%), его оптическая однородность и фоторефрактивные свойства. Кристаллы LiNbO₃ с содержанием Mg, близким ко второму концентрационному порогу (~5.0 мол.% MgO [2]), перспективны как оптические материалы с низкими эффектом фоторефракции и коэрцитивным полем для оптических преобразователей на периодически поляризованных доменных структурах субмикронных размеров [11, 12]. Особенностью кристалла LiNbO₃:Mg(5.05):Fe(0.009 мол.%) является то, что "нефоторефрактивные" катионы Mg^{2+} подавляют эффект фоторефракции, а "фоторефрактивные" катионы Fe³⁺, наоборот, должны его усиливать, что важно, например, для голографической записи информации [2]. Информация об изменении "ловушечных" свойств Fe³⁺ имеет принципиальное значение для понимания особенностей переноса заряда кристаллах LiNbO3:Mg. Необходимо отметить, что концентрация Mg в кристалле R LiNbO3:Mg(5.05):Fe(0.009 мол.%) значительно выше первого концентрационного порога (~3.0 мол.%) MgO [2]) и области максимального упорядочения структурных единиц (1.2—3.0 мол.%) кристалла LiNbO₃:Mg [2, 13].

Эксперимент. Получение монокристаллов LiNbO₃ с химически однородно распределенной по объему выращенной були легирующей добавкой — задача большой практической значимости [14]. Метод легирования путем введения в шихту соответствующего оксида (прямого легирования) не позволяет получать оптически и структурно высокосовершенные кристаллы, особенно для больших концентраций легирующих добавок [14]. В работе [15] показано, что легирующую добавку можно вводить непосредственно в Nb₂O₅, являющийся прекурсором для получения шихты ниобата лития. Этот метод (гомогенного легирования) позволяет получать шихту с однородным распределением легирующей добавки, в том числе при значительных концентрациях примеси [15]. Прекурсоры Nb₂O₅:Mg:Fe для синтеза шихты LiNbO₃ получены из особо чистых реэкстрактов, образующихся при переработке отходов ниобата лития по фторидно-солянокислотной технологии, по методике [15]. Кристаллы LiNbO₃ выращены методом Чохральского и монодоменизированы методом высокотемпературного электродиффузионного отжига (ВТЭДО) при охлаждении образцов со скоростью 20 °C/ч в интервале ~1240—890 °C в условиях приложения электрического напряжения. Контроль степени монодоменности осуществлялся методом анализа частотной зависимости электрического импеданса и путем определения статического пьезомодуля (d_{333cr}) кристаллической були.

ИК спектры зарегистрированы с помощью спектрометра IFS 66 v/s (Bruker). Спектры КР возбуждались излучением с $\lambda = 514.5$ нм аргонового лазера Spectra Physics (модель 2018-RM), регистрировались спектрографом T64000 (Horiba Jobin Yvon) с использованием конфокального микроскопа и обрабатывались с помощью программ Horiba LabSpec 5.0 и Origin 8.1. Точность определения частот, ширин и интенсивностей линий $\pm 1.0, \pm 3.0$ см⁻¹ и 5 % соответственно. Спектры оптического поглощения зарегистрированы спектрофотометром СФ-256 УВИ. Для лазерной коноскопии использовано излучение YAG:Nd-лазера MLL-100 ($\lambda_0 = 532.0$ нм, P = 1 и 90 мВт). Методика получения коноскопических картин описана в [16].

Результаты и их обсуждение. На рис. 1, *а* приведены спектры ИК поглощения в области валентных колебаний ОН-групп кристаллов LiNbO_{3crex}, LiNbO_{3конгр} и LiNbO₃:Mg(5.05):Fe(0.009 мол.%) до и после ВТЭДО, на рис. 1, δ и *в* — спектры КР, соответствующие *E*(*TO*)- и *A*₁(*TO*)-фононам. Видно, что в ИК спектре кристалла LiNbO_{3конгр} проявляются три полосы поглощения (ПП) одинаковой поляризации: 3470, 3483 и 3486 см⁻¹. В то же время в спектре кристалла LiNbO_{3стех}, отличающегося гораздо более упорядоченной катионной подрешеткой и более совершенными октаэдрами О₆, при-

сутствует только одна узкая ПП 3467 см⁻¹ [17]. Спектр кристаллов LiNbO₃:Mg(5.05):Fe(0.009 мол.%) сдвинут в высокочастотную область, в нем также проявляются ПП одинаковой поляризации 3506, 3526, 3535 см⁻¹, причем их ширины меньше, чем в спектре кристалла LiNbO_{3конгр} (рис. 1, *a*), что свидетельствует о более упорядоченном расположении ОН-групп в структуре кристаллов LiNbO₃:Mg(5.05):Fe(0.009 мол.%). Этот факт требует дальнейшего исследования, поскольку структура кристалла двойного легирования должна быть более разупорядочена, чем структура LiNbO_{3конгр}.

Рис. 1. Спектры ИК поглощения монокристаллов LiNbO₃ в области валентных колебаний OH-групп: LiNbO_{3crex} (1), LiNbO_{3конгр} (2), LiNbO₃:Mg(5.05):Fe(0.009 мол.%) (3) и LiNbO₃:Mg(5.05):Fe(0.009 мол.%) (4) после отжига (*a*); спектры КР кристаллов LiNbO_{3конгр} (1) и LiNbO₃:Mg(5.05):Fe(0.009 мол.%) (2) в геометриях рассеяния Y(ZX)Y (б) и Y(ZZ)Y (в)

Наличие нескольких ПП в спектрах кристаллов LiNbO3конгр и LiNbO3:Mg(5.05):Fe(0.009 мол.%) свидетельствует о разных позициях ОН-групп и разных значениях квазиупругих постоянных связей О-Н в октаэдрах. Этот результат согласуется с данными [5, 6, 17, 18]. В [5, 6] показано, что в кристаллах LiNbO₃ частота и интенсивность ПП, соответствующей валентным колебаниям ОН-групп, связаны с локализацией протонов вблизи длин О-О-связи 272, 288 и 336 пм в плоскостях кислорода. Расположение протонов на длинных О-О-связях (336 пм) приводит к более высокой частоте валентных колебаний ОН-групп, чем их расположение на более коротких связях [5, 6]. При этом вклад в различие частот (и, соответственно, в значение квазиупругих постоянных связей О-Н) в спектрах кристаллов LiNbO_{3конгр} и LiNbO₃:Mg(5.05):Fe(0.009 мол.%) может вносить также различие электроотрицательностей Mg²⁺ (~1.3) и Fe³⁺ (~1.8), масс и ионных радиусов основных и легирующих катионов [19]. Согласно [8], ПП значительно перекрываются, если радиус катиона легирующей добавки близок к радиусу основных катионов Li⁺ и Nb⁵⁺. Радиус иона Fe³⁺ (0.67 Å) больше, чем ионов Mg²⁺ (0.65 Å), Li⁺ (0.66 Å) и Nb⁵⁺ (0.66 Å) [20]. Таким образом, сдвиг частот валентных колебаний ОНгрупп в спектре кристалла LiNbO₃:Mg(5.05):Fe(0.009 мол.%) в высокочастотную область (рис. 1, *a*) свидетельствует о большем значении квазиупругих постоянных связей О-Н и может быть обусловлен "возмущением" кислородных октаэдров О₆ легированных кристаллов по сравнению с октаэдрами в номинально чистом кристалле LiNbO_{3конгр}, что подтверждают данные КР.

На рис. 1, б и в приведены спектры КР кристаллов LiNbO_{3конг} и LiNbO₃:Mg(5.05):Fe(0.009 мол.%) в области 20—1000 см⁻¹ в геометриях рассеяния Y(ZX)Y и Y(ZZ)Y. Активны, соответственно, E(TO)- и

 $A_1(TO)$ -фононы [2, 19]. В табл. 1 приведены частоты и ширины линий. Видно, что практически все линии в спектре КР кристалла LiNbO₃:Mg(5.05):Fe(0.009 мол.%) шире, чем в спектре кристалла LiNbO_{3конгр}. При этом линии 576 см⁻¹ (E(TO)) и 630 см⁻¹ ($A_1(TO)$), отвечающие дважды вырожденным и полносимметричным колебаниям кислородных октаэдров O₆, испытывают наибольшее уширение (табл. 1), что свидетельствует о заметном возмущении октаэдров O₆ легирующими катионами. Линии 255 и 276 см⁻¹, соответствующие ($A_1(TO)$)-колебаниям внутриоктадрических катионов вдоль полярной оси, также шире в спектре кристалла LiNbO₃:Mg(5.05):Fe(0.009 мол.%), что указывает на больший беспорядок в его катионной подрешетке по сравнению с LiNbO_{3конгр}. При этом спектры КР образцов кристалла LiNbO₃:Mg(5.05):Fe(0.009 мол.%), полученные до и после ВТЭДО, идентичны, что указывает на несущественное влияние отжига на упорядочение структурных единиц катионной подрешетки.

При легировании кристалла ниобата лития магнием до первого концентрационного порога катионы Mg^{2^+} располагаются только в позициях Li^+ идеальной структуры стехиометрического состава (Li/Nb = 1) [2, 3, 21]. При малых концентрациях катионы Mg^{2^+} практически не влияют на присоединение H⁺, поскольку являются положительно заряженными дефектами по отношению к кристаллической решетке $[Mg_{Li}]^+$ [7]. Однако ситуация может измениться при приближении концентрации Mg ко второму пороговому значению, когда Mg^{2^+} активно занимает позиции Nb^{5^+} . В этом случае катионы Mg^{2^+} могут действовать как отрицательно заряженные дефекты $[Mg_{Nb}]^{3^-}$ и в структуре образуются комплексные дефекты Mg-OH-Me (Me — легирующий, примесный или основной катион). По этой причине IIII 3506 и 3526 см⁻¹ в ИК спектре кристалла LiNbO₃:Mg(5.05):Fe(0.009 мол.%) по аналогии с [6] для LiNbO₃:Mg:Me³⁺ (Me³⁺ = Fe³⁺ и др.) могут быть обусловлены появлением дефекта Mg-OH-Fe³⁺ (рис. 2). В этом дефекте ионы Mg²⁺, OH⁻ и Fe³⁺ занимают, соответственно, позиции Li⁺, Nb⁵⁺ и вакантные октаэдры, образуя локально нейтральный комплекс [6, 10]. При этом IIII 3535 см⁻¹, как показано в [17], относится к валентным колебаниям OH-групп в комплексе Mg-OH.

Рис. 2. Структура кристаллов LiNbO₃: a — номинально чистый кристалл LiNbO_{3конгр}; δ — комплексные дефекты Mg-OH-Mg в структуре кристалла LiNbO₃, легированного магнием; e — комплексные дефекты Mg-OH-Fe в структуре кристалла LiNbO₃, легированного магнием и железом

Сдвиг ИК спектра в области валентных колебаний ОН-групп на ~50 см⁻¹ в высокочастотную сторону (рис. 1, *a*) указывает на то, что О–Н-связи в кристаллах LiNbO₃:Mg(5.05):Fe(0.009 мол.%) более жесткие, чем в номинально чистых кристаллах LiNbO_{3стех} и LiNbO_{3конгр}. С учетом [7, 8] это

можно объяснить следующим образом. Ниже значения второго концентрационного порога катионы Mg^{2+} и Fe³⁺ занимают преимущественно литиевые позиции идеальной структуры, а выше порога — преимущественно ниобиевые позиции. Таким образом, ПП 3535 см⁻¹ должна соответствовать валентным колебаниям OH-групп, находящихся вблизи дефектов $[Mg_{Nb}]^{3-}$ (Mg^{2+} , находящихся в позиции Nb⁵⁺). ПП 3506 см⁻¹ должна отвечать валентным колебаниям OH-групп вблизи дефекта $[Fe_{Nb}]^{2-}$ (катионов Fe³⁺, находящихся в позиции катионов Nb⁵⁺). Поскольку потенциально концентрация дефектов $[Mg_{Nb}]^{3-}$ должна быть больше концентрации дефектов $[Fe_{Nb}]^{2-}$ более чем на два порядка, большая часть протонов в структуре кристалла LiNbO₃:Mg(5.05):Fe(0.009 мол.%) локализуется на дефектах $[Mg_{Nb}]^{3-}$ вследствие их радикально большего количества и большего эффективного отрицательного заряда. Именно поэтому соответствующей O–H-связи отвечает гораздо более интенсивная ПП 3535 см⁻¹ в ИК спектре по сравнению с ПП 3506 см⁻¹ (рис. 1, *a*). В спектре КР при этом наблюдается уширение линий, соответствующих колебаниям внутриоктаэрических катионов и кислородных октаэдров O₆ (табл. 1).

LiNbO _{3конгр}		LiNbO ₃ :Mg(5.05):Fe(0.009 мол.%)	
ν	S	ν	S
E(TO)			
156	12	157	12
240	11	240	12
268	14	266	14
280	12		
324	13	330	20
371	23	372	27
393	14		
434	14	436	17
576	15	580	27
		630	47
876	30		
A(TO)			
256	22	255	26
276	14	276	17
331	15	334	16
630	25	630	29

Таблица 1. Частоты (v, см⁻¹) и ширины (S, см⁻¹) линий в спектрах КР монокристаллов LiNbO_{3конгр} и LiNbO₃:Mg(5.05):Fe(0.009 мол.%) при T = 293 К

В легированном кристалле ниобата лития протоны из-за малых размеров имеют быстрое распространение и скорость дрейфа, следовательно, способны накапливаться вблизи дефектов в виде заряженных центров [7, 8]. На рис. 2 показаны структуры номинально чистого кристалла LiNbO_{3конгр} и кристаллов LiNbO₃:Mg и LiNbO₃:Mg:Fe. В кристаллах LiNbO₃:Mg(>5.0 мол.% MgO) дефект $[Mg_{Nb}]^{3-}$ — единственный сравнительно массовый центр с низкой электроотрицательностью [6—8, 10]. На рис. 2, *б* и *в* показано, что треугольники ионов кислорода в плоскости нормали к диполю Mg_{Li}^{+} -Mg_{Nb}³⁻ и диполю Mg_{Li}^{+} -Fe_{Nb}²⁻ являются благоприятным местом для расположения протонов с образованием комплексов Mg_{Li}-OH-Mg_{Nb} и Mg_{Li}-OH-Fe_{Nb}. Наличие этих комплексов должно приводить к появлению в ИК спектре новой ПП в области 3500—3525 см⁻¹ [6, 8, 10]. Действительно, ПП 3526 см⁻¹ присутствует в ИК спектре кристаллов LiNbO₃:Mg(5.05):Fe(0.009 мол.%) (рис. 1, *a*), что с высокой вероятностью подтверждает наличие в нем дефектов Mg_{Li}-OH-Mg_{Nb} и Mg_{Li}-OH-Fe_{Nb}. Интенсивность этой ПП, очевидно, зависит от электроотрицательности, а также массы и размера ионного радиуса второй легирующей добавки (Fe) [8, 9].

Особенность кристаллов LiNbO_{3конгр} и LiNbO₃:Mg(5.05):Fe(0.009 мол.%) — более низкий эффект фоторефракции по сравнению с LiNbO_{3стех}. Даже при сравнительно высокой (160 мВт) мощности лазерного излучения фоторефрактивный отклик в этих кристаллах отсутствует [22]. Такое поведение необычно для кристалла LiNbO₃:Mg(5.05):Fe(0.009 мол.%), содержащего глубокие ловушки электронов — катионы Fe³⁺. Результат воздействия лазерного излучения на кристаллы LiNbO₃:Mg:Fe зависит от концентрации нефоторефрактивных катионов Mg. При концентрации Mg^{2+} ниже второго концентрационного порога основные акцепторные центры (переходные металлы, дефекты Nb_{Li}) действуют как ловушки электронов. В частности, происходит перезарядка ионов железа $Fe^{3+} + e^- = Fe^{2+}$ или образование поляронов при захвате электронов дефектами Nb_{Li} . При концентрациях Mg^{2+} выше второго концентрационного порога результаты воздействия лазерного излучения на кристаллы $LiNbO_3:Mg:Fe$ изменяются. В таких кристаллах Fe^{3+} локализуется в Nb-позициях [2, 3]. При этом очевидно, что центр $[Fe_{Nb}^{3+}]^{2-}$ с эффективным зарядом –2 не может быть электронной ловушкой. В то же время такие ловушки электронов, как дефекты Nb_{Li}^{4+} , в кристаллах $LiNbO_3:Mg(>5.0 \text{ мол.}\%)$ отсутствуют [2, 3]. При этом оказывают заметного влияния на эффект фоторефракции, как в $LiNbO_3$, легированных только железом. Однако концентрация Fe в кристалле $LiNbO_3:Mg(5.05):Fe(0.009 \text{ мол.}\%)$ достаточно существенна для ухудшения его оптической прозрачности.

На рис. 3 представлены спектры оптического поглощения кристаллов LiNbO_{3конгр} и LiNbO₃:Mg(5.05):Fe(0.009 мол.%) (до отжига). Кристаллы LiNbO₃:Mg(5.05):Fe(0.009 мол.%) имеют легкую красно-коричневую окраску, в то время как LiNbO_{3конгр} абсолютно бесцветные. Для кристалла LiNbO₃:Mg(5.05):Fe(0.009 мол.%) наблюдается резкий сдвиг края фундаментального поглощения в длинноволновую область, что свидетельствует об образовании большого количества заряженных дефектов и наличии структурных микронеоднородностей (кластеров). Спектр кристалла также характеризуется наличием слабо выраженных ПП при ~400—600 нм. Эта область обработана с помощью программы Origin и определены длины волн максимумов поглощения ~485.05 и 497.10 нм. По данным [2, 20], первый максимум соответствует внутрицентровому переходу иона Fe³⁺ (Fe³⁺[Nb]–Li⁺[V]), второй — фотоионизации Fe²⁺, находящегося в позиции Li⁺.

Рис. 3. Край фундаментального оптического поглощения кристаллов LiNbO_{3конгр} (*1*) и LiNbO₃:Mg(5.05):Fe(0.009 мол.%) (*2*); на вставке — фрагмент спектра оптического поглощения кристалла LiNbO₃:Mg(5.05):Fe(0.009 мол.%) в увеличенном масштабе в области ~400—550 нм

Разупорядочение структуры кристалла LiNbO₃:Mg(5.05):Fe(0.009 мол.%), проявляющееся в спектре KP (рис. 1, δ), уверенно проявляется и в коноскопических картинах. Вид коноскопических картин (рис. 4, a—c) свидетельствует о достаточно высокой оптической однородности кристаллов LiNbO_{3конгр} и LiNbO₃:Mg(5.05):Fe (0.009 мол.%) (до отжига). Однако для LiNbO₃:Mg(5.05):Fe(0.009 мол.%) наблюдаются аномалии, особенно заметные при мощности излучения 90 мВт (рис. 4, c), а именно: в области левой нижней и правой верхней ветвей "мальтийского креста" наблюдаются дополнительные системы интерференционных полос. На коноскопических картинах кристалла LiNbO₃:Mg(5.05):Fe(0.009 мол.%) (после отжига) (рис. 4, d, e) проявляется спекл-структура в отсутствие четких контуров интерференционных полос. Это обусловлено тем, что процесс монодоменизации (ВТЭДО) кристаллов LiNbO₃ не приводит к их идеальной униполярности, т. е. определенная часть объема кристалла и после проведения ВТЭДО, по-видимому, состоит частично из доменов противоположного знака. Процесс монодоменизации представляет собой охлаждение кристалла в постоянном электрическом поле от температур выше $T_{Kюри}$. При высокой ионной проводимости по литию при этом происходит, по

сути, твердофазный электролиз кристалла, что в условиях не полностью обратимых по литию электродов приводит к появлению градиентов концентрации основных и примесных компонентов в объеме кристалла, которые могут вызывать повышение оптической неоднородности. Кроме того, в сильно легированных кристаллах, подобных LiNbO₃:Mg(5.05):Fe(0.009 мол.%), формируются также полярные кластеры, образованные локализованными вдоль полярной оси примесными и собственными дефектами [3], которые также могут повышать композиционную неоднородность кристаллов LiNbO₃.

Рис. 4. Коноскопические картины кристаллов LiNbO_{3конгр} (a, δ) и LiNbO₃:Mg(5.05):Fe(0.009 мол.%) до отжига (e, e); LiNbO₃:Mg(5.05):Fe(0.009 мол.%) после отжига (∂ , e); λ = 532 нм, P = 1 (a, e, ∂) и 90 мВт (δ , e, e)

Заключение. В ИК спектрах поглощения кристаллов LiNbO3конгр и LiNbO3:Mg(5.05):Fe(0.009 мол.%) проявляются три полосы поглощения, что свидетельствует о трех разных позициях ОН-групп и разных квазиупругих постоянных связей О-Н в вакантных октаэдрах и октаэдрах, занятых основными (Li⁺, Nb⁵⁺) и легирующими катионами Mg²⁺ и Fe³⁺. Показано, что полоса поглощения 3535 см⁻¹ относится к валентным колебаниям ОН-групп в комплексном дефекте Mg-OH, а полосы поглощения 3506 и 3526 см⁻¹ связаны с появлением комплексного дефекта Mg-OH-Me. Распределение интенсивностей в ИК спектре поглощения кристаллов LiNbO3:Mg(5.05):Fe(0.009 мол.%) можно объяснить вытеснением катионами Mg точечных дефектов NbLi при приближении концентрации Mg ко второму пороговому значению (~5.0 мол.%). Расположение атомов водорода на длинных О-О-связях (336 пм) приводит к существенно более высоким частотам валентных колебаний ОН-групп. Это проявляется в ИК спектре сдвигом полосы поглощения от 3486 см⁻¹ (LiNbO_{3конгр}) до 3535 см⁻¹ (LiNbO₃:Mg(5.05):Fe(0.009 мол.%)). Показано, что в кристаллах ниобата лития с двойным легированием появление новой полосы поглощения в области валентных колебаний ОН-групп зависит от электроотрицательности и ионного радиуса легирующей примеси. Более сильное размытие коноскопической картины, сдвиг края фундаментального оптического поглощения, уширение линий в спектре комбинационного рассеяния света кристалла LiNbO3:Mg(5.05):Fe(0.009 мол.%) обусловлены большим беспорядком в расположении структурных единиц катионной подрешетки, "возмущением" кислородных октаэдров, а также наличием микроструктур (кластеров), образующихся вследствие неравномерного вхождения легирующих добавок магния и железа в структуру в процессе роста кристалла и его последующей электродиффузионной обработки.

- [1] А. А. Блистанов. Кристаллы квантовой и нелинейной оптики, Москва, МИСИС (2000)
- [2] Н. В. Сидоров, Т. Р. Волк, Б. Н. Маврин, В. Т. Калинников. Ниобат лития: дефекты, фоторефракция, колебательный спектр, поляритоны, Москва, Наука (2003)
- [3] **T. Volk, M. Wohlecke.** Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching, Berlin, Springer (2008)
- [4] Н. В. Сидоров, М. Н. Палатников, Н. А. Теплякова, А. В. Сюй, Е. О. Киле, Д. С. Штарев. Неорг. матер., 54, № 6 (2018) 611—615; doi: 10.7868/S0002337X18060106 [N. V. Sidorov, M. N. Palatnikov, N. A. Teplyakova, A. V. Syuy, E. O. Kile, D. S. Shtarev. Inorg. Mater., 54, N 6 (2018) 581—584; doi: 10.1134/S0020168518060134]
- [5] J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, E. Diéguez. Adv. Phys., 45, N 5 (1996) 349–392; doi: 10.1080/00018739600101517
- [6] L. Kovacs, M. Wohlecke, A. Jovanovic, K. Polgar, S. Kapphan. J. Phys. Chem. Sol., 52, N 6 (1991) 797–803; http://doi.org/10.1016/0022-3697(91)90078-E
- [7] L. Arizmendi, E. J. Ambite, J. L. Plaza. Opt. Mater., 35, N 12 (2013) 2411–2413; http://dx.doi.org/10.1016/j.opt.mat.2013.06.043
- [8] Y. Kong, W. Zhang, J. Xu, W. Yan, H. Liu, X. Xie, X. Li, L. Shi, G. Zhang. Infrared Phys. Technol., 45 (2004) 281–289; doi: 10.1016/j.infrared.2003.12.001
- [9] M. Cochez, M. Ferriol, P. Bourson, M. Aillerie. Opt. Mater., 21 (2003) 775-781
- [10] L. Kovacs, L. Rebouta, J. C. Soarest, M. F. da Silva, M. Hage-Alill, J. P. Stoquert, P. Siffer, J. A. Sanz-Garcia, G. Corradit, Zs. Szallert, K. Polgar. J. Phys.: Condens. Matter, 5, N 7 (1993) 781–794
- [11] V. Kemlin, D. Jegouso, J. Debray, E. Boursier, P. Segonds, B. Boulanger, H. Ishizuki, T. Taira, G. Mennerat, J. Melkonian, A. Godard. Opt. Express, 21, N 23 (2013) 28886—28891; http://doi.org/10.1364/OE.21.028886
- [12] **R. T. Murray, T. H. Runcorn, S. Guha, J. R. Taylor.** Opt. Express, **25**, N 6 (2017) 6421—6430; http://doi.org/10.1364/OE.25.006421
- [13] N. V. Sidorov, Yu. A. Serebryakov. Vibr. Spectrosc., 6 (1994) 215—223; http://doi.org/10.1016/0924-2031(94)85008-9
- [14] **M. N. Palatnikov, N. V. Sidorov.** In: Oxide Electronics and Functional Properties of Transition Metal Oxides, USA, NOVA Science Publisher (2014) 31—168
- [15] С. М. Маслобоева, М. Н. Палатников, Л. Г. Арутюнян, Д. И. Иваненко. Изв. С-Пб технолог. ин-та, 64, № 38 (2017) 34—43
- [16] О. Ю. Пикуль, Н. В. Сидоров. Лазерная коноскопия кристаллов, КНЦ РАН, Апатиты (2014)
- [17] K. Lengyel, A. Peter, L. Kovacs, G. Corradi, L. Palfavi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Z. Szaller, K. Polgar. Appl. Phys. Rev., N 2 (2015) 040601—040628; http://doi.org/10.1063/1.4929917
- [18] K. Polgar, L. Kovacs, I. Földvari, I. Cravero. Sol. State Commun., 59, N 6 (1986) 375–379; http://doi.org/10.1016/0038-1098(86)90566-1
- [19] **M. D. Fontana, P. Bourson.** Appl. Phys. Rew., **2** (2015) 040602-1—040602-14; http://doi.org/10.1063/1.4934203
- [20] V. T. Gabrielyan, E. L. Lebedeva, A. L. Pirozerski, S. A. Normatov. Ferroelectrics, 281, N 1 (2002) 151–161; https://doi.org/10.1080/00150190215117
- [21] Г. Х. Китаева, К. А. Кузнецов, И. И. Наумова, А. Н. Пенин. Квант. электрон., **30**, № 8 (2000) 726—732 [G. Kh. Kitaeva, K. A. Kuznetsov, I. I. Naumova, A. N. Penin. Quantum Electron., **30**, N 8 (2000) 726—732; http://dx.doi.org/10.1070/QE2000v030n08ABEH001799]
- [22] Н. В. Сидоров, М. Н. Палатников, А. А. Крук, А. А. Яничев, О. В. Макарова, Н. А. Теплякова, О. Ю. Пикуль. Опт. и спектр., 116, № 2 (2014) 298—305; doi: 10.7868/S003040341402024X [N. V. Sidorov, M. N. Palatnikov, А. А. Kruk, А. А. Yanichev, O. V. Makarova, N. A. Teplyakova, O. Yu. Pikoul. Opt. Spectr., 116, N 2 (2014) 274—280; doi: 10.1134/S0030400X14020234]