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SELF-FOCUSING OF HERMITE-COSH-GAUSSIAN LASER BEAMS IN A PLASMA
UNDER A WEAKLY RELATIVISTIC AND PONDEROMOTIVE REGIME
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In the theoretical investigation of the self-focusing of elegant Hermite-Cosh-Gaussian (EHChG) beams,
the crucial role of decentred parameters has been explored thoroughly in the case of the weak relativistic
and ponderomotive regime of interaction. In the present study, the cartesian coordinate system has been em-
ployed, which enables us to study the evolution of two transverse beam-width parameters simultaneously.
The differential equations for the beam-width parameters are set up through the parabolic wave equation
approach by following WKB and paraxial approximations.

Keywords: self-focusing, elegant Hermite-Cosh-Gaussian laser beam, decentered parameter, relati-
vistic, ponderomotive.

CAMO®OKYCHUPOBKA JIABEPHBIX ITYYKOB OPMHUTA-KOIIHU-T'AYCCA B IIVTASME
B CJJABOPEJIATUBUCTCKOM NOHAEPOMOTOPHOM PEXXUME

K. M. Gavade !, T. U. Urunkar !, B. D. Vhanmore !,
A.T. Valkunde !, M. V. Takale ", S. D. Patil 2

VIIK 533.9;537.525.1

! Vuueepcumem Illusaoxcu, Konxanyp, 416004, Unous;
e-mail: mvtphyunishivaji@gmail.com
2 leguanockuii konnedxc, Aposcynnazap, Konxanyp, 591237, Huous

(llocmynuna 16 uonsn 2018)

Ilpu meopemuyeckom uccredoganuu camopoxycuposku nazepuvix nyuxos Ipmuma-Kowwu-Iaycca usy-
YeHa peulaowas poib Napamempos 0eYyeHmposKU 6 Ciyyae Ciabo20 pesmusUcmcKo20 U noHOepoOMOmop-
HO20 pedicuma ezaumooeticmsus. Ucnonvb3oeana 0ekapmosa cucmema KoopouHam, Komopas no3eoisiem 00-
HOBPEMEHHO U3YYAMb I0TOYUI0 08YX NAPAMEMPOS, ONUCLIEAIOWUX NONnepedHble pasmepsl nyuka. dugge-
PEHYUAIbHbIE YPAGHEHUsL OJIsL WUPUHBL NYYKA YCMAHAGIUBAIOMCSL ¢ NOMOWbIO NAPABOIULECKO20 80IHOBO20
VPABHEHUSL 8 NAPAKCUATLHOM NPUOTUNCCHUU.

Knroueevie cnosa: camogpoxycuposka, nazepnviti nywoxk Ipmuma-Kowwu-Iaycca, deyenmpuposantulii
napamemp, pesimueUCMCKUL, NOHOePOMOMOPHbLL.

Introduction. The self-focusing of laser beams in plasmas has been a subject of many important appli-
cations, mainly because it considerably influences other nonlinear phenomena. Generally, the theory of self-
focusing is well established with the propagation characteristics of the beams, which are found to be closely
related to the properties of the medium. The self-focusing and de-focusing of laser beams in nonlinear media
was reviewed by Akhmanov et al. [1] and extended to plasmas by Sodha et al. [2]. In this phenomenon, the
dielectric constant of the plasma has been modified by the high-power laser beams. However, the increase of
the relativistic mass of the electron leads to the modification of the dielectric constant of the plasma, which
gives rise to relativistic self-focusing [3]. Another nonlinearity caused by the transverse ponderomotive
force, which is generated by the intensity gradient of the laser beam, pushes electrons from the central region
of the beam and depresses the electron density. As a result, the dielectric constant of the plasma is modified,
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producing ponderomotive self-focusing [4]. It has been further established that the combined effects of rela-
tivistic and ponderomotive nonlinearities are also important [5—7]. Recently, the effect of light absorption
and temperature on the self-focusing of finite Airy-Gaussian beams have been studied by Ouahid et al. [8] in
a plasma with the relativistic and ponderomotive regime. The self-focusing of elliptic Gaussian laser beams
in a relativistic ponderomotive plasma using a ramp density profile has been studied by Kumar et al. [9].
Patil et al. [10—12] studied the influence of light absorption on the self-focusing at the laser-plasma interac-
tion with weak relativistic-ponderomotive nonlinearity.

On the other hand, most of the theoretical investigations on the self-focusing of laser beams in plasmas
are, however, limited to the beams that exhibit the Gaussian intensity profile. However, in many situations of
interest, there is a decentering of intensity distribution along the wavefront of the beam. Patil et al. [13, 14]
analytically investigated the self-focusing of Hermite-Cosh-Gaussian laser beams in semiconductors. Re-
cently, Valkunde et al. [15] studied the domain of the decentered parameter and its effect on the self-
focusing of Hermite-Cosh-Gaussian laser beams in a collisional plasma. A new class of the laser beam,
which is a more general case for an elegant Hermite-Gaussian beam and Cosh-Gaussian beam, i.e., elegant
Hermite-Cosh-Gaussian (EHChG), was studied by Honarasa and Keshavarz [16] for its propagation proper-
ties. As such, the nonlinear effects caused by the propagation of such laser beams through plasmas are highly
sensitive to the laser-plasma coupling parameters. Thus, such beams can be utilized to achieve efficient in-
teraction with plasmas. Recently, Vhanmore et al. [17, 18] explored the effect of the decentered parameter
on the self-focusing of asymmetric Cosh-Gaussian laser beams propagating through a collisionless magne-
tized plasma.

This paper presents an analysis of the self-focusing of elegant Hermite-Cosh-Gaussian (EHChG) beams
in a plasma under a weakly relativistic and ponderomotive regime. The differential equations for the beam-
width parameters are established through the usual parabolic wave equation approach by following WKB
and paraxial approximations. The variation of the beam width parameters with the dimensionless distance of
propagation is shown graphically for different values of two identical transverse decentered parameters.
Eventually, the comparison of the beam width parameter variation between two modes reveals interesting
dynamics related to the intensity profiles of individual modes and in turn the use of the identical decentered
parameters deployed.

Evolution of beam-width parameters. The electric field distribution of EHChG laser beams at the
plane of z =0 is described as [16]:

E(x,y,z)=E,H, (ﬁij (ljcosh(le)cosh(sz)exp{—[xz +2y2 H , (@))
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where, Hy and H, are 0" order and p™ order Hermite polynomials, Ey and 7y are the initial amplitude of the
electric field and initial beam radius, 21 = bi/ro and Q, = by/rp are the parameters associated with the hyper-
bolic cosine functions, called also the cosh factors, with b1 and b, the respective decentered parameters in x
and y dimensions. Such decentered laser beams can be produced in the laboratory by offsetting a collimating
lens away from the beam axis for achieving intensity distribution in the wide area and versatility in a spot
shape [19]. Figure la depicts the density plot of the initial intensity distribution for the TEMgp mode with
different identical decentered parameters in the transverse dimensions of EHChG beams. From this figure, it
is clear that for identical decentered parameters, the TEMgo mode of the laser recovers its circularly symmet-
ric (Gaussian) distribution of intensity. With increase in the decentered parameter, the intensity is distributed
in the wide area. Figure 1b portrays the corresponding initial intensity distribution for the TEMo, mode. It
shows a slight deviation from the circular symmetry. As expected, such deviation is more in the y dimension
than the x dimension of the beam. It is to be noted that with identical decentering of the beam profile, the
TEMg2 mode gives the elliptic initial intensity distribution rather than the TEMgo mode. Such elliptic nature
of the initial intensity distribution will further explain the essence of the non-monotonic dependence of the
initial beam radii in transverse dimensions during propagation.
The propagation of laser beams through plasmas is characterized by the dielectric function which can, in
general, be expressed as [2]:
e=¢g0+ O(EE"). ()
Here e=1- (mi /w*) and ¢ are the linear and nonlinear part of the dielectric function,

1/2

0, = (47tnoe2 /'my)'* is the plasma frequency, e and myo are the charge and rest mass of the electron, no is

the density of plasma electrons in the absence of the beam, and  is the angular frequency of the laser used.
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In the weakly relativistic and ponderomotive regime, the nonlinear dielectric function has the following form
[20, 21]
oo [
O(EE )=—[1—;6Xp[—ﬁ(v—1)]}, 3)
where y = (1 + 0EE*)'2, o = &2/m?>w*c?, B = moc*/To, o is the angular frequency of the laser used, and Ty is
the equilibrium plasma electron temperature.
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Fig. 1. Density plot of the initial intensity distribution of EHChG beams for the TEMgo (a—c)
and TEMo, modes (a'—"); b1 = b2 =0.0 (a, a'), 0.4 (b, b"), 0.8 (¢, ).

The wave equation governing the electric field £ of the beam in a plasma with the dielectric function
can be written as

V?E+(o’ /c*)eE+V(E(Ve/£))=0. 4)
The last term on the left-hand side of Eq. (4) can be neglected provided that k2V*(Ing) ~ 1, where,
k=(o/ C)\/g is the wave number of the laser beam. Hence,
V2E +(0* / ¢*)eE =0. (5)
We can express electric field of the laser beam as
E = A(x,y,z)exp[i(of —kz)], 6)
where A(x, y, z) is the complex amplitude of the electric field described by the parabolic equation in the
WKB approximation:
2 2 2
2ika—A=a—f+a—f+k—¢(EE*)A. (7)
0z ox° Oy g
For solving Eq. (7), A(x, y, z) can be expressed as
A(x,y,2) = 4,,(x,,2) exp[—ikS(x,y,z)] , ®)
where, Ao, and § are real functions of x, y, and z. By inserting the expression of A(x, y, z) from Eq. (8) into
Eq. (7) and equating the real and imaginary parts, one obtains

os (asV (asY 1 (%4, 34, 6(4,)
2—+|— | t|—| =0 s t—— |+ , 9)
0z \ Ox oy k"4, ox oy €
oAy oAy o4y 2 2
A°p+6—S A°p+a—S AO"+ af+a—§A§ =0. (10)
0z Ox Ox Oy Oy ox°~ Oy r
Following the approach given by Akhmanov et al. [1] and its extension by Sodha et al. [2], the solutions

corresponding to Egs. (9) and (10) are given by

X dh
T2 de g de (). (1
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Finally, after some algebraic manipulations, the nonlinear coupled differential equations for dimension-
less beam-width parameters f; and f; are expressed as follows:

For the TEMgp mode:
’B Poy’ phe L Up /1
ﬁ:i_pl I a)pexp{B B +f1f2H B+(B+ +f1f2jfz} )
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For the TEMg, mode:
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where, 4, =4(1 —bfz), B ,=(2 —bﬁz), P=0akE}, p1 = p2 = row/c is the equilibrium beam radius, and 1 =

= z/kr?y is the dimensionless distance of propagation. Under the critical condition, fi = /5 = 1 at 1 =0, the
condition d>fi/dn? = d>f/dn? = 0 leads to the propagation of EHChG laser beams without convergence or
divergence, i.e., the laser beam propagates in the self-trapped mode. By using this condition in Egs. (13) and
(14), one can obtain relations between p; and p; as:

For the TEMoo mode p1 = p2 = p:

- 24, (1+ P)’ o

= ) (15)
B.Po? exp{B—Bx/lJrP}{PB+(B+J1+P)}
For the TEMg, mode pi # p2:
_ 4,(1+4P)’ &’ (16)
8B, P’ exp{B—[3\/1+4P}{4PB+([3+x/1+4P)} ’
2 2
ot = 34,(1+4P) o (17

8(4—B,) Po?, exp{B—B\/1+4P}{4P[3+([3+\/1+4P)} '

Results and discussion. Equations (13) and (14) are definitely more amenable to mathematical manipu-
lations. These equations are second-order, nonlinear, coupled, differential equations. On the right-hand side
of these equations, the first term corresponds to the diffraction divergence of the beam, and the second term
corresponds to nonlinear refraction, responsible for the self-focusing of the beam. We have solved these
equations numerically by using the fourth-order Runge-Kutta method for the numerical values of the laser-
plasma parameters, m = 1.778x10' rad/s, p = 5, no = 10" cm™>, and b, = b, = 0.0, 0.4, 0.8. If the dimension-
less initial beam radii p; and p2, and dimensionless intensity parameter P satisfy Egs. (15) and (16), we will
have d>fi»/dn* = 0 at 1 = 0, ensuring that df; »/dn and fi, retain their initial boundary values throughout the
path of propagation; such propagation without the change in beam width is called uniform waveguide propa-
gation. The dependence of p versus P according to Egs. (15) and (16) is known as the self-trapped condition
or the critical curve. The parameter dfi2/dn?* vanishes if the point (P, fi = > = 1) falls on the critical curve.
The parameter dfi»/dn’ has a positive value if the point (P, p) falls below the critical curve, and it has
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a negative value if the point lies above the curve, which corresponds to the self-defocused and self-focused
region, respectively.

For the TEMoo mode, Fig. 2a shows the plot of the initial beam radii p; and p» against the initial intensi-
ty parameter P under the variation of identical decentered parameters b; = b, = 0.0, 0.4, 0.8. From Fig. 2a, it
is seen that as the value of the decentered parameter increases, the critical curves shift downward. One
should note that the initial beam radii p; and p> corresponding to two transverse dimensions vary synchro-
nously with P, which is also evident from the symmetry observed in Eq. (15), i.e., p1 = p2 = p. A simple in-
spection of Eq. (15) clearly reveals that it can be arranged as quadratic in variable P. Therefore, there are two
possible values of P that correspond to the unique initial beam radius. Such a unique value of p decreases
with increase in the associated decentered parameter values.

Figure 2b shows the variation of p; and p, with P for the TEMy, mode of the laser under the same iden-
tical values of b1 and b» as those in Fig. 2a. From Fig. 2b, it is observed that as the value of the decentered
parameter increases, the nature of the critical curves is the same as that discussed in Fig. 2a for the TEMgo
mode. However, p; and p» do not vary synchronously with P. Due to this there are two different initial beam
radii corresponding to two possible values of P, which is also apparent from the difference in Eqgs. (16) and
(17). It is also evident from Fig. 2b that the minimum value of p; is always less than p; for every curve.
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Fig. 2. Dependence of the dimensionless initial beam radii as a function of the intensity parameter P for the
TEMyo (a) and TEMo2 modes (b); b1 = b2 = 0.0 (solid curves), 0.4 (dashed curves), and 0.8 (dotted curves).
Thick curves are for p; and thin curves are for p».
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Fig. 3. Variation of the beam-width parameters as a function of the dimensionless distance of propagation
for the TEMyo (a) and TEMg, modes (b); b1 = b2 = 0.0 (solid curves), 0.4 (dashed curves), and 0.8 (dotted
curves). Thick curves are for f; and thin curves are for f>.
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Such non-monotonic change of p; and p» in the transverse dimensions of the beam is due to the extent of the
Hermite polynomial in the y dimension of the beam, which gives the elliptic nature of the initial intensity
distribution of the TEMp> mode.

Figure 3a depicts the variation of two transverse beam-width parameters f; and f> against the dimension-
less distance of propagation n for the TEMgo mode. The initial conditions were set as p =2.8 and P = 0.4,
and we varied the values of the decentered parameters in the transverse dimensions of the beam,
b1=5,=0.0, 0.4, 0.8. One should note that both beam-width parameters show a synchronized oscillatory
character during propagation. This is due to the symmetric nature of the TEMgo mode of the laser. As the
value of the decentered parameter increases, enhanced self-focusing is observed, with the subsequent reduc-
tion in the self-focusing length in both dimensions of the beam.

Figure 3b shows the variation of f; and f> against n for the TEMp, mode of the laser at p =1.4 and
P =0.1. One should note that as the values of the decentered parameter increases, complexity in the beam-
width parameters is observed. This is due to the asymmetry in the intensity distribution of the TEMy, mode
of the beam. The complexity in f> is more than that in fi. As obviously, with increase in the decentered pa-
rameter in both dimensions of the beam, enhanced self-focusing is observed.

Conclusions. The nonlinear coupled differential equations for the transverse beam-width parameters of
EHChG beam propagation in a plasma are established under a weakly relativistic and ponderomotive re-
gime. Intricacy in self-focusing phenomenon is observed as one considers the higher-order mode index. The
following important conclusions are drawn from the present analysis.

With increase in the decentered parameter in both dimensions of the beam, there is an increase in the
extent of self-focusing, with the subsequent reduction in the self-focusing length. With identical decentering
of the beam profile in both the dimensions, a synchronized oscillatory character of the beam-width parame-
ters is possible for the TEMoo mode, while they do not vary synchronously for the TEMg; mode of the laser.
Complexity in the beam-width parameters of the beam increases with increase in the mode index of the
beam profile. It would be interesting to study such a beam in various situations of laser-plasma interaction so
as to explore the dynamics of the laser beam in two transverse dimensions simultaneously.
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