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In the theoretical investigation of the self-focusing of elegant Hermite-Cosh-Gaussian (EHChG) beams, 
the crucial role of decentred parameters has been explored thoroughly in the case of the weak relativistic 
and ponderomotive regime of interaction. In the present study, the cartesian coordinate system has been em-
ployed, which enables us to study the evolution of two transverse beam-width parameters simultaneously. 
The differential equations for the beam-width parameters are set up through the parabolic wave equation 
approach by following WKB and paraxial approximations.  
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При теоретическом исследовании самофокусировки лазерных пучков Эрмита-Коши-Гаусса изу-
чена решающая роль параметров децентровки в случае слабого релятивистского и пондеромотор-
ного режима взаимодействия. Использована декартова система координат, которая позволяет од-
новременно изучать эволюцию двух параметров, описывающих поперечные размеры пучка. Диффе-
ренциальные уравнения для ширины пучка устанавливаются с помощью параболического волнового 
уравнения в параксиальном приближении. 

Ключевые слова: самофокусировка, лазерный пучок Эрмита-Коши-Гаусса, децентрированный 
параметр, релятивистский, пондеромоторный. 

 
Introduction. The self-focusing of laser beams in plasmas has been a subject of many important appli-

cations, mainly because it considerably influences other nonlinear phenomena. Generally, the theory of self-
focusing is well established with the propagation characteristics of the beams, which are found to be closely 
related to the properties of the medium. The self-focusing and de-focusing of laser beams in nonlinear media 
was reviewed by Akhmanov et al. [1] and extended to plasmas by Sodha et al. [2]. In this phenomenon, the 
dielectric constant of the plasma has been modified by the high-power laser beams. However, the increase of 
the relativistic mass of the electron leads to the modification of the dielectric constant of the plasma, which 
gives rise to relativistic self-focusing [3]. Another nonlinearity caused by the transverse ponderomotive 
force, which is generated by the intensity gradient of the laser beam, pushes electrons from the central region 
of the beam and depresses the electron density. As a result, the dielectric constant of the plasma is modified, 
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producing ponderomotive self-focusing [4]. It has been further established that the combined effects of rela-
tivistic and ponderomotive nonlinearities are also important [5–7]. Recently, the effect of light absorption 
and temperature on the self-focusing of finite Airy-Gaussian beams have been studied by Ouahid et al. [8] in 
a plasma with the relativistic and ponderomotive regime. The self-focusing of elliptic Gaussian laser beams 
in a relativistic ponderomotive plasma using a ramp density profile has been studied by Kumar et al. [9]. 
Patil et al. [10–12] studied the influence of light absorption on the self-focusing at the laser-plasma interac-
tion with weak relativistic-ponderomotive nonlinearity.       

On the other hand, most of the theoretical investigations on the self-focusing of laser beams in plasmas 
are, however, limited to the beams that exhibit the Gaussian intensity profile. However, in many situations of 
interest, there is a decentering of intensity distribution along the wavefront of the beam. Patil et al. [13, 14] 
analytically investigated the self-focusing of Hermite-Сosh-Gaussian laser beams in semiconductors. Re-
cently, Valkunde et al. [15] studied the domain of the decentered parameter and its effect on the self-
focusing of Hermite-Cosh-Gaussian laser beams in a collisional plasma. A new class of the laser beam, 
which is a more general case for an elegant Hermite-Gaussian beam and Сosh-Gaussian beam, i.e., elegant 
Hermite-Сosh-Gaussian (EHChG), was studied by Honarasa and Keshavarz [16] for its propagation proper-
ties. As such, the nonlinear effects caused by the propagation of such laser beams through plasmas are highly 
sensitive to the laser-plasma coupling parameters. Thus, such beams can be utilized to achieve efficient in-
teraction with plasmas. Recently, Vhanmore et al. [17, 18] explored the effect of the decentered parameter 
on the self-focusing of asymmetric Сosh-Gaussian laser beams propagating through a collisionless magne-
tized plasma. 

This paper presents an analysis of the self-focusing of elegant Hermite-Сosh-Gaussian (EHChG) beams 
in a plasma under a weakly relativistic and ponderomotive regime. The differential equations for the beam-
width parameters are established through the usual parabolic wave equation approach by following WKB 
and paraxial approximations. The variation of the beam width parameters with the dimensionless distance of 
propagation is shown graphically for different values of two identical transverse decentered parameters. 
Eventually, the comparison of the beam width parameter variation between two modes reveals interesting 
dynamics related to the intensity profiles of individual modes and in turn the use of the identical decentered 
parameters deployed. 

Evolution of beam-width parameters. The electric field distribution of EHChG laser beams at the 
plane of z = 0 is described as [16]: 

     
2 2

0 0 1 2 2
0 0 0

, , cosh cosh expp
x y x y

E x y z E H H x y
r r r

      
        

       
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where, H0 and Hp are 0th order and pth order Hermite polynomials, E0 and r0 are the initial amplitude of the 
electric field and initial beam radius, 1 = b1/r0 and 2 = b2/r0 are the parameters associated with the hyper-
bolic cosine functions, called also the cosh factors, with b1 and b2 the respective decentered parameters in x 
and y dimensions. Such decentered laser beams can be produced in the laboratory by offsetting a collimating 
lens away from the beam axis for achieving intensity distribution in the wide area and versatility in a spot 
shape [19]. Figure 1a depicts the density plot of the initial intensity distribution for the TEM00 mode with 
different identical decentered parameters in the transverse dimensions of EHChG beams. From this figure, it 
is clear that for identical decentered parameters, the TEM00 mode of the laser recovers its circularly symmet-
ric (Gaussian) distribution of intensity. With increase in the decentered parameter, the intensity is distributed 
in the wide area. Figure 1b portrays the corresponding initial intensity distribution for the TEM02 mode. It 
shows a slight deviation from the circular symmetry. As expected, such deviation is more in the y dimension 
than the x dimension of the beam. It is to be noted that with identical decentering of the beam profile, the 
TEM02 mode gives the elliptic initial intensity distribution rather than the TEM00 mode. Such elliptic nature 
of the initial intensity distribution will further explain the essence of the non-monotonic dependence of the 
initial beam radii in transverse dimensions during propagation.    

The propagation of laser beams through plasmas is characterized by the dielectric function which can, in 
general, be expressed as [2]: 

 = 0 + (EE*).                  (2) 

Here 2 21 ( / )p      and  are the linear and nonlinear part of the dielectric function, 

2 1/2
0 0(4 / )p n e m    is the plasma frequency, e and m0 are the charge and rest mass of the electron, n0 is 

the density of plasma electrons in the absence of the beam, and  is the angular frequency of the laser used. 
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In the weakly relativistic and ponderomotive regime, the nonlinear dielectric function has the following form 
[20, 21] 

 
2

*
2

1
( 1 exp ( 1)) pEE

  
        

,               (3) 

where  = (1 + EE*)1/2,  = e2/m22c2,  = m0c2/T0,  is the angular frequency of the laser used, and T0 is 
the equilibrium plasma electron temperature.  
 

 

 
Fig. 1. Density plot of the initial intensity distribution of EHChG beams for the TEM00 (a–c)  

and TEM02 modes (a–c); b1 = b2 = 0.0 (a, a), 0.4 (b, b),  0.8 (c, c). 
 

The wave equation governing the electric field E of the beam in a plasma with the dielectric function 
can be written as 

 2 2 2/( ) ( / ) 0E c E E         .            (4) 

The last term on the left-hand side of Eq. (4) can be neglected provided that k –22(ln)  1, where, 

  0/  k c     is the wave number of the laser beam. Hence, 
2 2 2 0/( ) EcE     .              (5) 

We can express electric field of the laser beam as  
 ( , , ) exp ( )E A x y z i t kz   ,           (6) 

where A(x, y, z) is the complex amplitude of the electric field described by the parabolic equation in the 
WKB approximation: 
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For solving Eq. (7), A(x, y, z) can be expressed as 
 0( , , ) ( , , ) exp ( , , )pA x y z A x y z ikS x y z  ,           (8) 

where, A0p and S are real functions of x, y, and z. By inserting the expression of A(x, y, z) from Eq. (8) into 
Eq. (7) and equating the real and imaginary parts, one obtains 
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Following the approach given by Akhmanov et al. [1] and its extension by Sodha et al. [2], the solutions 
corresponding to Eqs. (9) and (10) are given by   
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Finally, after some algebraic manipulations, the nonlinear coupled differential equations for dimension-
less beam-width parameters f1 and  f2 are expressed as follows: 

For the TEM00 mode: 
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For the TEM02 mode: 
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0P E  , 1 = 2 = r0/c is the equilibrium beam radius, and  = 

= z/kr2
0 is the dimensionless distance of propagation. Under the critical condition, f1 = f2 = 1 at  = 0, the 

condition d 2f1/d2 = d 2f2/d2 = 0 leads to the propagation of EHChG laser beams without convergence or 
divergence, i.e., the laser beam propagates in the self-trapped mode. By using this condition in Eqs. (13) and 
(14), one can obtain relations between 1 and 2 as:  

For the TEM00 mode 1 = 2 = : 

 
    

2 2
12

2
1

2 1

exp 1 1p

A P

B P P P P

 
 

        
.              (15) 

For the TEM02 mode 1  2: 
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Results and discussion. Equations (13) and (14) are definitely more amenable to mathematical manipu-
lations. These equations are second-order, nonlinear, coupled, differential equations. On the right-hand side 
of these equations, the first term corresponds to the diffraction divergence of the beam, and the second term 
corresponds to nonlinear refraction, responsible for the self-focusing of the beam. We have solved these 
equations numerically by using the fourth-order Runge-Kutta method for the numerical values of the laser-
plasma parameters,  = 1.7781014 rad/s,  = 5, n0 = 1019 cm–3, and b1 = b2 = 0.0, 0.4, 0.8. If the dimension-
less initial beam radii 1 and 2, and dimensionless intensity parameter P satisfy Eqs. (15) and (16), we will 
have d 2f1,2/d2 = 0 at  = 0, ensuring that df1,2/d and f1,2 retain their initial boundary values throughout the 
path of propagation; such propagation without the change in beam width is called uniform waveguide propa-
gation. The dependence of  versus P according to Eqs. (15) and (16) is known as the self-trapped condition 
or the critical curve. The parameter d 2f1,2/d2  vanishes if the point (P, f1 = f2 = 1) falls on the critical curve. 
The parameter d 2f1,2/d2 has a positive value if the point (P, ) falls below the critical curve, and it has 
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a negative value if the point lies above the curve, which corresponds to the self-defocused and self-focused 
region, respectively.  

For the TEM00 mode, Fig. 2a shows the plot of the initial beam radii 1 and 2 against the initial intensi-
ty parameter P under the variation of identical decentered parameters b1 = b2 = 0.0, 0.4, 0.8. From Fig. 2a, it 
is seen that as the value of the decentered parameter increases, the critical curves shift downward. One 
should note that the initial beam radii 1 and 2 corresponding to two transverse dimensions vary synchro-
nously with P, which is also evident from the symmetry observed in Eq. (15), i.e., 1 = 2 = . A simple in-
spection of Eq. (15) clearly reveals that it can be arranged as quadratic in variable P. Therefore, there are two 
possible values of P that correspond to the unique initial beam radius. Such a unique value of  decreases 
with increase in the associated decentered parameter values.  

Figure 2b shows the variation of 1 and 2 with P for the TEM02 mode of the laser under the same iden-
tical values of b1 and b2 as those in Fig. 2a. From Fig. 2b, it is observed that as the value of the decentered 
parameter increases, the nature of the critical curves is the same as that discussed in Fig. 2a for the TEM00 
mode. However, 1 and 2 do not vary synchronously with P. Due to this there are two different initial beam 
radii corresponding to two possible values of P, which is also apparent from the difference in Eqs. (16) and 
(17). It is also evident from Fig. 2b that the minimum value of 2 is always less than 1 for every curve.  

 

         
 

Fig. 2. Dependence of the dimensionless initial beam radii as a function of the intensity parameter P for the 
TEM00 (a) and TEM02 modes (b);  b1 = b2 = 0.0 (solid curves), 0.4 (dashed curves), and  0.8 (dotted curves). 

Thick curves are for 1 and thin curves are for 2. 
 
 

           
 

Fig. 3. Variation of the beam-width parameters as a function of the dimensionless distance of propagation  
for the TEM00 (a) and TEM02 modes (b); b1 = b2 = 0.0 (solid curves), 0.4 (dashed curves), and 0.8 (dotted 

curves). Thick curves are for f1 and thin curves are for f2. 
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Such non-monotonic change of 1 and 2 in the transverse dimensions of the beam is due to the extent of the 
Hermite polynomial in the y dimension of the beam, which gives the elliptic nature of the initial intensity 
distribution of the TEM02 mode.   

Figure 3a depicts the variation of two transverse beam-width parameters f1 and f2 against the dimension-
less distance of propagation  for the TEM00 mode. The initial conditions were set as  = 2.8 and P = 0.4, 
and we varied the values of the decentered parameters in the transverse dimensions of the beam, 
b1 = b2 = 0.0, 0.4, 0.8. One should note that both beam-width parameters show a synchronized oscillatory 
character during propagation. This is due to the symmetric nature of the TEM00 mode of the laser. As the 
value of the decentered parameter increases, enhanced self-focusing is observed, with the subsequent reduc-
tion in the self-focusing length in both dimensions of the beam.  

Figure 3b shows the variation of f1 and f2 against  for the TEM02 mode of the laser at  = 1.4 and 
P = 0.1. One should note that as the values of the decentered parameter increases, complexity in the beam-
width parameters is observed. This is due to the asymmetry in the intensity distribution of the TEM02 mode 
of the beam. The complexity in f2 is more than that in f1. As obviously, with increase in the decentered pa-
rameter in both dimensions of the beam, enhanced self-focusing is observed. 

Conclusions. The nonlinear coupled differential equations for the transverse beam-width parameters of 
EHChG beam propagation in a plasma are established under a weakly relativistic and ponderomotive re-
gime. Intricacy in self-focusing phenomenon is observed as one considers the higher-order mode index. The 
following important conclusions are drawn from the present analysis. 

With increase in the decentered parameter in both dimensions of the beam, there is an increase in the 
extent of self-focusing, with the subsequent reduction in the self-focusing length. With identical decentering 
of the beam profile in both the dimensions, a synchronized oscillatory character of the beam-width parame-
ters is possible for the TEM00 mode, while they do not vary synchronously for the TEM02 mode of the laser. 
Complexity in the beam-width parameters of the beam increases with increase in the mode index of the 
beam profile. It would be interesting to study such a beam in various situations of laser-plasma interaction so 
as to explore the dynamics of the laser beam in two transverse dimensions simultaneously. 
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