V. 84, N 3

MAY - JUNE 2017

ПЕРЕНОС ЭНЕРГИИ В ЦИЛИНДРИЧЕСКОЙ НАНОСТРУКТУРЕ, СОСТОЯЩЕЙ ИЗ МЕТАЛЛИЧЕСКОЙ ЖИЛЫ И КОАКСИАЛЬНОЙ ОБОЛОЧКИ С МОЛЕКУЛАМИ ЛЮМИНОФОРА

М. Г. Кучеренко^{*}, Т. М. Чмерева

УДК 535.372;535.354

Оренбургский государственный университет, 460018, Оренбург, просп. Победы, 13, Россия; e-mail: clibph@yandex.ru

(Поступила 13 декабря 2016)

Теоретически исследовано поглощение света и безызлучательный обмен энергией электронного возбуждения между металлической нанопроволокой круглого сечения и окружающими ее молекулами люминофора. В случае не взаимодействующих друг с другом молекул проведены расчеты скорости передачи энергии от одиночной возбужденной молекулы к нанопроволоке и кинетики распада возбужденного состояния люминофора. Для молекул, объединенных в J-агрегатные комплексы, рассчитана скорость энергопереноса от коаксиального монослоя, образованного J-агрегатами, к нанопроволоке и показана возможность возникновения гибридного экситон-плазмонного состояния. Выявлено существенное влияние геометрических характеристик рассмотренных систем на скорость трансформации энергии электронного возбуждения.

Ключевые слова: цилиндрический нанокомпозит, нанопроволока, слой молекулярных J-агрегатов, экситон, безызлучательный перенос энергии, поверхностный плазмон.

In this paper, we theoretically investigate the light absorption and the nonradiative exchange of the energy of electronic excitation between the metal circular-section nanowire and luminophore molecules. For the case of no interactive molecules, we calculated the energy transfer rate from a single excited molecule to the nanowire and the kinetics of the decay of the luminophor excited state. The energy transfer rate from the coaxial J-aggregate monolayer to the nanowire is calculated for the case of the molecules combined in the J-aggregates. The possibility of the hybrid exciton-plasmon state in this system is shown. The significant influence of the geometric characteristics of these systems on the rate of the transformation of the electronic excitation energy is established.

Keywords: cylindrical nanocomposite, nanowire, molecular J-aggregate layer, exciton, radiationless energy transfer, surface plasmon.

Введение. Характерной чертой современных исследований в области молекулярной оптики является детальный анализ процессов трансформации энергии электронного возбуждения в гибридных структурах, состоящих из проводящих нанообъектов и молекул органического люминофора. Важность такого рода исследований обусловлена практической значимостью, а именно разработками полезных технических наноустройств, принцип действия которых основан на взаимодействии молекулярных возбуждений с поверхностными плазмонами металлических наноструктур. На подавлении интенсивности свечения — "тушении" флуоресценции органических молекул или квантовых точек проводящими нанообъектами — может базироваться работа медицинских и биологических наносенсоров [1]. Безызлучательная передача энергии от квантовой точки к серебряной нанопроволоке, сопровождающаяся возникновением поверхностных плазмонов, которые порождают поверхностное плазмонно-связанное излучение, может быть положена в основу работы наноизлучателя [2]. На взаи-

THE ENERGY TRANSFER IN A CYLINDRICAL NANOSTRUCTURE CONSISTING OF A METAL WIRE AND A COAXIAL COVER WITH LUMINOPHORE MOLECULES

M. G. Kucherenko^{*}, **T. M. Chmereva** (Orenburg State University, 13 Pobedy Prosp., Orenburg, 460018, Russia; e-mail: clibph@yandex.ru)

модействии плазмонов металлического ядра с оболочкой из молекулярных J-arperatoв, которое приводит к рождению экситонов Френкеля с последующим излучением фотона, может функционировать наноизлучатель, предложенный в [3]. Увеличение скорости безызлучательной передачи энергии от возбужденной молекулы на острие иглы к молекуле люминофора на исследуемом образце в присутствии плазмонных наночастиц способствовует повышению качества изображений флуоресцентных микроскопов сверхвысокого разрешения [4, 5].

В данной работе исследована слоистая цилиндрическая структура, состоящая из металлической нанопроволоки и диэлектрической оболочки, содержащей молекулы органического красителя. Рассматриваются два варианта: в первом предполагается, что молекулы красителя не взаимодействуют друг с другом, во втором — находятся в виде J-агрегатов, образующих монослой, окружающий нанопроволоку (рис. 1). Изучено поглощение энергии однородного светового поля либо отдельными фотоактивными молекулами, либо конденсированной экситоногенной оболочкой цилиндрической структуры. Проанализированы особенности безызлучательной трансформации энергии электронного возбуждения в системе. Предполагается, что в зависимости от силы взаимодействия френкелевских экситонов монослоя с поверхностными плазмонами нанопроволоки имеет место односторонний перенос энергии между компонентами системы или образование гибридного плазмон-экситонного состояния. Получена зависимость скорости переноса энергии от параметров системы и установлен закон дисперсии гибридного состояния.

Рис. 1. Схематическое изображение нанопроволоки радиуса R с диэлектрической проницаемостью $\varepsilon_m(\omega)$ в диэлектрической среде с проницаемостью ε_d ; окружающий нанопроволоку монослой J-агрегата содержит N_1 колец, нумеруемых $n_1 = 1, 2, ..., N_1$, h — расстояние между кольцами, каждое кольцо содержит N_2 молекул, нумеруемых $n_2 = 1, 2, ..., N_2, \alpha$ — угловое расстояние между молекулами

Поглощение света молекулами и генерация экситонов в структуре нанокомпозита. Поглощение света молекулой вблизи поверхности слоистого наноцилиндра. Поглощение света молекулой в ближнем поле нанокомпозита, помещенного в однородное монохроматическое поле $E_0\exp(-i\omega t)$, определяется в том числе составляющей общего поля, которая формируется в результате поляризации цилиндрического нанокомпозита. Выделим три характерные пространственные области: $1 - 0 < r < R_1$, $\varepsilon_1(\omega)$, \mathbf{E}_1 ; $2 - R_1 < r < R_2$, ε_2 , $\mathbf{E}_2(r, \theta)$; $3 - R_2 < r$, ε_3 , $\mathbf{E}_3(r, \theta)$; где R_1 — радиус центральной жилы, R_2 — внешний радиус слоистого композита. В каждой из областей диэлектрические проницаемости $\varepsilon_1(\omega)$, ε_2 , ε_3 не зависят от координат, а в материалах, заполняющих области 2 и 3, к тому же отсутствует частотная дисперсия. Поле в центральной жиле композита однородно $\mathbf{E}_1 = \text{const}$, тогда как поля в оболочке и вне композита зависят от полярных координат (r, θ) точек областей 2 и 3.

Если молекула находится вблизи поверхности нанокомпозита (в его ближнем поле), а ее электронный дипольный момент перехода $\mathbf{p}_{if} = \langle i | \hat{\mathbf{p}} | f \rangle$ между основным *i* и возбужденным *f* состояниями известен, то скорость поглощения фотонов молекулярной системой определяется по формуле [6]

$$w(\omega \mid r, \theta) = \frac{2\gamma}{\hbar^2} \frac{\left| \mathbf{p}_{if} \mathbf{E}_3(r, \theta) \right|^2}{\left[(\omega - \omega_{if})^2 + \gamma^2 \right]},$$
(1)

где $E_3(r, \theta)$ — напряженность результирующего (локального) поля в точке расположения молекулы вне цилиндра с оболочкой ($R_2 < r$):

$$\mathbf{E}_{3}(r,\theta) = \mathbf{E}_{0} + \mathbf{G}_{2}(r,\theta)\alpha(\varepsilon_{1}(\omega),\varepsilon_{2},\varepsilon_{3})\mathbf{E}_{0},$$
(2)

где $G_2(r, \theta) = r^{-2}[2n \otimes n - I]$ — двумерный тензор Грина квазистатического поля поляризованного цилиндра; **n** — единичный вектор, задающий ориентацию радиуса-вектора, проведенного от оси цилиндра в данную точку поля; **I** — единичный тензор; ω_{if} — резонансная частота радиационного перехода $i \rightarrow f$; γ — ширина лоренцева контура полосы поглощения молекулы. Второе слагаемое в (2) определяет вклад поля двумерного диполя в суммарную напряженность **E**₃(*r*, θ) поля вне цилиндра.

Дипольная поляризуемость единицы длины слоистого композитного цилиндра с осевой проводящей жилой из металла с диэлектрической проницаемостью ε₁(ω) может быть записана в виде:

$$\alpha(\varepsilon_1(\omega),\varepsilon_2,\varepsilon_3) = \frac{(\varepsilon_1(\omega)+\varepsilon_2)(\varepsilon_2-\varepsilon_3)+(\varepsilon_1(\omega)-\varepsilon_2)(\varepsilon_2+\varepsilon_3)\xi^2}{(\varepsilon_1(\omega)+\varepsilon_2)(\varepsilon_2+\varepsilon_3)+(\varepsilon_1(\omega)-\varepsilon_2)(\varepsilon_2-\varepsilon_3)\xi^2}R_2^2,$$
(3)

где $\xi = R_1/R_2$. Наличие бездисперсионной диэлектрической оболочки в композите приводит к смещению частоты плазмонного резонанса для поляризуемости (3), что дает возможность плавной настройки поглощения энергии электромагнитного поля молекулой, размещенной на внешней поверхности слоистой наноструктуры.

Плазмонный резонанс удельной поляризуемости $\alpha(\omega|\epsilon_1(\omega), \epsilon_2, \epsilon_3)$, отраженный на рис. 2 в области частот 0.60—0.65 плазменной частоты ω_{pl} металла, образующего жилу нанокомпозита, обусловливает дополнительный максимум в спектре (1), помимо пика на частоте молекулярного перехода.

Поглощение света молекулой, внедренной в оболочку композитного наноцилиндра. Если фотоактивная молекула внедрена в толщу оболочки композита, то скорость поглощения ею энергии электромагнитного поля определяется не эффективной поляризуемостью $\alpha(\omega|\epsilon_1(\omega), \epsilon_2, \epsilon_3)$ системы, а другими, более сложными коэффициентами *C* и *D*, связанными с $\alpha(\omega)$. Локальное поле **E**₂(*r*, θ) внутри оболочечного слоя неоднородно и описывается выражением

$$\mathbf{E}_{2}(r,\theta) = C(\varepsilon_{1}(\omega), \varepsilon_{2}, \varepsilon_{3})\mathbf{E}_{0} - D(\varepsilon_{1}(\omega), \varepsilon_{2}, \varepsilon_{3})\nabla\mathbf{E}_{0}\mathbf{r}/r^{2},$$
(4)

где коэффициенты C и D связаны соотношениями, вытекающими из граничных условий для компонент вектора напряженности поля на поверхности проводящей жилы и внешней поверхности композита

$$C = B + D/R_1^2, \quad [1/R_2^2 - 1/R_1^2]D = B - 1 + \alpha(\omega)/R_2^2, \tag{5}$$

постоянная *B* представляет собой фактор Лоренца для однородного поля $E_1 = BE_0$ внутри центральной жилы композита:

$$B = \frac{\varepsilon_2(\omega) + \varepsilon_3}{\varepsilon_1(\omega) + \varepsilon_2(\omega)} - \frac{\varepsilon_2(\omega) - \varepsilon_3}{\varepsilon_1(\omega) + \varepsilon_2(\omega)} \frac{\alpha(\omega)}{R_2^2}.$$
 (6)

Скорость $w(\omega|R_2 > r > R_1, \theta)$ поглощения фотонов молекулами, внедренными в диэлектрическую оболочку цилиндрического нанокомпозита, по-прежнему определяется выражением (1), однако вместо поля $\mathbf{E}_3(r, \theta)$ в нем теперь фигурирует $\mathbf{E}_2(r, \theta)$ — напряженность локального поля в точке расположения молекулы внутри оболочечного слоя $R_2 > r > R_1$.

Скорость генерации экситонов Френкеля в слое молекулярных J-агрегатов, образующем оболочку проводящего наноцилиндра. В случае, когда проводящий наноцилиндр окружен оболочкой из органических молекул (например, цианиновых красителей), сгруппированных в J-агрегаты, образуется квазикристаллический слой, представляющий собой однородно поглощающую свет систему, с генерацией в этом слое экситонов Френкеля. В этом случае скорость $w(\omega|R_1, R_2)$ поглощения фотонов оболочкой цилиндрического нанокомпозита определяется интегралом квадрата напряженности $\mathbf{E}_2(r, \theta)$ локального поля в слое толщиной $\Delta R = R_2 - R_1$:

$$w(\omega \mid R_1, R_2) = \frac{\omega}{2\pi} \int_{R_1}^{R_2} \operatorname{Im} \, \varepsilon_2(\omega) \left| \mathbf{E}_2(r, \theta \mid \omega) \right|^2 \pi \, d\theta \, r dr \,. \tag{7}$$

Диэлектрическая проницаемость ε₂ покрывающего слоя имеет сильную частотную зависимость, обусловленную наличием экситонных мод в кристаллоподобном материале оболочки [7]:

$$\varepsilon_2(\omega) = \varepsilon_0 - \frac{\Omega^2 F}{\left[\omega + i\Gamma(\omega)\right]^2 - \omega_{\rm res}^2(0)},\tag{8}$$

где ε_0 — диэлектрическая проницаемость, обусловленная всеми другими состояниями электронов,

кроме экситонных; $\Gamma(\omega)$ — скорость релаксации, обусловленная взаимодействием экситонов с фононами; Ω^2 — квадрат "плазменной частоты" электронов оболочечного слоя; F — сила осциллятора экситонного перехода; $\omega_{res}(0)$ — частота середины экситонной зоны с нулевым волновым вектором **k**. Далее в расчетах использованы частотные параметры экситонов, характерные для органических молекулярных кристаллов: $\Omega F^{1/2} = 5 \cdot 10^{15} \text{ c}^{-1}$, $\Gamma = 10^{14} \text{ c}^{-1}$, $\omega_{res}(0) = 10^{15} \text{ c}^{-1}$ [7]. Отметим, что использование мнимой части удельной поляризуемости $\text{Im}\alpha(\omega|\varepsilon_1(\omega), \varepsilon_2(\omega), \omega_3)$ для расчетов скорости $w(\omega)$ поглощения композитом энергии инициирующего поля **E**₀ ($w(\omega) \sim \text{Im}\alpha(\omega|\varepsilon_1(\omega), \varepsilon_2(\omega), \omega_3)|\mathbf{E}_0|^2$) дает величину полной скорости поглощения с учетом и той части энергии, которая диссипирует в металле композита при затухании его плазмонных мод. Вместе с тем выражение (7) учитывает лишь поглощение энергии инициирующего поля оболочкой композита и непосредственно дает скорость генерации экситонов в ней.

В спектре мнимой части Іта поляризуемости (3) проводящего цилиндра с диэлектрической оболочкой на плазмонной частоте возникает резонанс, обусловленный воздействием электрического поля волны на металлическую сердцевину композита. В случае, когда металлическая жила покрыта слоем молекулярных J-arperatoв, кроме плазмонного пика в диапазоне частот $0.6-0.65\omega_{pl}$ в низкочастотной области спектра возникают два экситонных резонанса (рис. 2). С увеличением радиуса проводящей жилы плазмонный резонансный пик возрастает по амплитуде и смещается в высокочастотную область. Кроме того, с увеличением силы осциллятора экситонного перехода спектральная амплитуда удельной поляризуемости композита в области экситонной полосы увеличивается, а в области плазмонной полосы уменьшается, при этом экситонные [8]. С увеличением частоты перехода, отвечающей центру экситонной зоны, экситонная полоса удельной поляризуемости смещается в высокочастотную область, при этом происходит незначительное смещение максимума плазмонной полосы в том же направлении.

Рис. 2. Спектры мнимых частей поляризуемостей композитных наноцилиндров с экситоногенным оболочечным слоем молекулярных J-агрегатов; расчеты проведены для композитов одинакового внешнего радиуса $R_2 = 50$ нм, но различных радиусов $R_1 = 30$ (•), 35 (•) и 40 нм (•) проводящей жилы [7]; $\varepsilon_0 = 3$, $\varepsilon_3 = 1$, $\gamma = 10^{14}$ c⁻¹, $\Gamma = 5 \cdot 10^{13}$ c⁻¹, $\omega_{pl} = 1.38 \cdot 10^{16}$ c⁻¹, $\omega_{res} = 4.6 \cdot 10^{15}$ c⁻¹

Тушение флуоресценции органических молекул металлической нанопроволокой. В результате взаимодействия электронов молекулы органического люминофора с электрическим полем одномерных поверхностных плазмонов нанопроволоки возможен процесс безызлучательной передачи энергии от возбужденной молекулы к нанопроволоке, сопровождающийся рождением плазмонов указанного типа. Скорость переноса энергии может быть рассчитана в рамках квантово-механической теории возмущений по золотому правилу Ферми. При вычислениях удобно пользоваться выражениями для компонент напряженности электрического поля плазмона в представлении вторичного квантования. Следуя методу [9], для поля вне нанопроволоки получаем выражения

$$\hat{E}_{r} = \sqrt{\frac{2\hbar}{L}} \sum_{k_{z},n} \sqrt{\frac{\omega_{n}(k)}{S_{n}(k)}} \frac{I_{n}(q_{m}R)}{K_{n}(q_{d}R)} \left(-\frac{ik_{z}}{q_{d}} K_{n}'(q_{d}r) - \frac{i\omega_{n}(k)nf}{q_{d}^{2}r} K_{n}(q_{d}r) \right) \hat{a}_{k_{z},n} e^{i(k_{z}z+n\phi)} + 9.c. ,$$

$$\hat{E}_{\phi} = \sqrt{\frac{2\hbar}{L}} \sum_{k_{z},n} \sqrt{\frac{\omega_{n}(k)}{S_{n}(k)}} \frac{I_{n}(q_{m}R)}{K_{n}(q_{d}R)} \left(\frac{nk_{z}}{q_{d}^{2}r} K_{n}(q_{d}r) + \frac{\omega_{n}(k)f}{q_{d}} K_{n}'(q_{d}r) \right) e^{i(k_{z}z+n\phi)} \hat{a}_{k_{z},n} + 9.c. ,$$

$$\hat{E}_{z} = \sqrt{\frac{2\hbar}{L}} \sum_{k_{z},n} \sqrt{\frac{\omega_{n}(k)}{K_{n}(q_{d}R)}} \sqrt{\frac{\omega_{n}(k)}{K_{n}(q_{d}R)}} K_{n}(q_{d}r) e^{i(k_{z}z+n\phi)} \hat{a}_{k_{z},n} + 9.c. ,$$

$$f = -\frac{nk_{z}}{\omega_{n}(k)R} \left(\frac{1}{q_{d}^{2}} - \frac{1}{q_{m}^{2}} \right) \left(\frac{1}{q_{d}} \frac{K_{n}'(q_{d}R)}{K_{n}(q_{d}R)} - \frac{1}{q_{m}} \frac{I_{n}'(q_{m}R)}{I_{n}(q_{m}R)} \right)^{-1} ; \quad I_{n}(x) \in K_{n}(x) - MOZ \mu \phi \mu \mu \mu \rho B a H b B e^{i(k_{z}z+n\phi)} \rho B e^{i(k_{z}z+n\phi)$$

 $\omega_n(\kappa)\kappa(q_d^- q_m^-)(q_d^- \kappa_n(q_d^- K) - q_m^- l_n(q_m^- K))$ функции Бесселя *n*-го порядка, $K_n'(x)$ — производная функции по x; коэффициенты $q_{m(d)} = [(k_z^2 - -\varepsilon_{m(d)}\omega^2)/c^2]^{1/2}$ определяют быстроту спадания амплитуды напряженности поля вдоль нормали к поверхности нанопроволоки; k_z — продольное волновое число, $k = |k_z|$; c — скорость света в вакууме; ε_m — диэлектрическая проницаемость металла, являющаяся функцией частоты; ε_d — диэлектрическая постоянная среды, окружающей нанопроволоку; R и L — радиус и длина нанопроволоки; $S_n(k)$ — нормировочный множитель, возникающий в результате приведения гамильтониана плазмонного поля к вторично-квантованному виду; $\hat{a}_{k_z,n}$ — оператор уничтожения плазмона. Частота плазмона $\omega_n(k)$ является решением дисперсионного уравнения [10]:

$$\frac{n^2 k_z^2 c^2}{\omega_n^2(k) R^2} \left(\frac{1}{q_d^2} - \frac{1}{q_m^2} \right)^2 = \left(\frac{1}{q_d} \frac{K_n'(q_d R)}{K_n(q_d R)} - \frac{1}{q_m} \frac{I_n'(q_m R)}{I_n(q_m R)} \right) \left(\frac{\varepsilon_d}{q_d} \frac{K_n'(q_d R)}{K_n(q_d R)} - \frac{\varepsilon_m}{q_m} \frac{I_n'(q_m R)}{I_n(q_m R)} \right).$$
(10)

В квазистатическом приближении, когда скорость света считается бесконечно большой, коэффициенты $q_{m(d)} \rightarrow k$ перестают зависеть от частоты ω . Тогда, используя обобщенную формулу Друде для диэлектрической проницаемости металла $\varepsilon_m(\omega) = \varepsilon_{\infty} - \omega_{pl}^2/\omega^2$, из формулы (10) можно найти частоту поверхностного плазмона как функцию волнового числа *k* в явном виде:

$$\omega_n^2(k) = \omega_{\rm pl}^2 \left(\varepsilon_{\infty} + \varepsilon_d \, \frac{I_n(kR)}{K_n(kR)} \frac{K_{n-1}(kR) + K_{n+1}(kR)}{I_{n-1}(kR) + I_{n+1}(kR)} \right)^{-1},\tag{11}$$

где ε_{∞} — высокочастотная диэлектрическая проницаемость; $\omega_{\rm pl}$ — плазменная частота металла. Для осесимметричных поверхностных плазмонов (n = 0) законы дисперсии, определяемые формулами (10) и (11), практически совпадают для нанопроволок малого радиуса. С ростом радиуса появляются незначительные количественные отличия. Для других плазмонных мод (n > 0) имеются качественные отличия законов дисперсии (10) и (11) в области малых волновых чисел.

Вычисляя матричный элемент оператора энергии взаимодействия молекулы с электрическим полем плазмонов $\hat{V} = -\mathbf{p}_{01} \cdot \mathbf{E}(\mathbf{r})$ между состоянием с одним плазмоном и состоянием без плазмона и используя золотое правило Ферми, получаем скорость переноса энергии от возбужденной молекулы люминофора к нанопроволоке

$$U(r) = \frac{4|\mathbf{p}_{01}|^{2}}{3\hbar} \int_{0}^{\infty} \left\{ \frac{\omega_{0}(k)}{S_{0}(k)} \frac{I_{0}^{2}(q_{m}R)}{K_{0}^{2}(q_{d}R)} \left[\frac{k^{2}}{q_{d}^{2}} K_{0}^{\prime 2}(q_{d}r) + K_{0}^{2}(q_{d}r) \right] G(\omega_{0}(k)) + 2\sum_{n=1}^{\infty} \frac{\omega_{n}(k)}{S_{n}(k)} \frac{I_{n}^{2}(q_{m}R)}{K_{n}^{2}(q_{d}R)} G(\omega_{n}(k)) \left[\left(\frac{k}{q_{d}} K_{n}^{\prime}(q_{d}r) + \frac{\omega_{n}(k)nf}{q_{d}^{2}r} K_{n}(q_{d}r) \right)^{2} + \left(\frac{nk}{q_{d}^{2}r} K_{n}(q_{d}r) + \frac{\omega_{n}(k)f}{q_{d}} K_{n}^{\prime}(q_{d}r) \right)^{2} + K_{n}^{2}(q_{d}r) \right] dk,$$

$$(12)$$

где \mathbf{p}_{01} — матричный элемент электрического дипольного момента квантового перехода молекулы из первого возбужденного состояния в основное; r — расстояние между молекулой и осью нанопроволоки; $G(\omega)$ — спектр испускания молекулы люминофора. В формуле (12) выполнено усреднение по направлениям дипольного момента перехода молекулы.

где

Рассмотрим распад возбужденных состояний молекул, расположенных вблизи нанопроволоки. Для простоты считаем, что молекулы однородно распределены в цилиндрическом слое толщины d, внутренний радиус которого R_1 . В этом случае происходит послойное формирование кинетики тушения и временная зависимость среднеобъемной концентрации $\rho(t)$ возбужденных молекул при импульсной активации системы имеет вид

$$\rho(t) = \frac{2\pi\rho_0}{\sigma} e^{-t/\tau} \int_{R_1}^{R_1+d} e^{-U(r)t} r dr , \qquad (13)$$

где т — время жизни возбужденного состояния люминофора; ρ_0 — концентрация возбужденных молекул в начальный момент времени; σ — площадь поперечного сечения слоя. В предельном случае мономолекулярного слоя радиуса *r* формула (13) упрощается до одноэкспоненциальной формы $\rho(t) = \rho_0 \exp[-(1/\tau + U(r))t]$. Наблюдаемый сигнал люминесценции пропорционален концентрации возбуждений, определяемой выражением (13).

Плазмон-экситонное взаимодействие в цилиндрической слоистой наноструктуре. Рассмотрим ситуацию, когда нанопроволоку окружает монослой органических молекул, находящихся в J-агрегатном состоянии, как показано на рис. 1. В этом случае возможен обмен энергией между френкелевскими экситонами монослоя и поверхностными плазмонами нанопроволоки. Для расчетов скорости передачи энергии между экситоном и плазмоном, а также расщепления Раби необходимо вычислить матричный элемент $V_{10,01}$ оператора взаимодействия молекул J-агрегата с электрическим полем поверхностного плазмона $\hat{V} = -\sum_{n} \hat{\mathbf{p}}_{10} \cdot \hat{\mathbf{E}}(\mathbf{n})$ между состояниями рассматриваемой системы $|1_{ex}, 0_{pl}\rangle$ (с одним экситоном и без плазмонов) и $|0_{ex}, 1_{pl}\rangle$ (с одним плазмоном и без экситонов). Трансляционная симметрия монослоя молекул красителя позволяет записать оператор дипольного момента перехода в молекуле J-агрегата, расположенной в узле с радиусом-вектором $\mathbf{n} = (n_1, n_2)$, в виде [11]

$$\hat{\mathbf{p}}_{10} = N^{-1/2} \sum_{q_1, q_2} \left(\mathbf{p}_{10} B_{q_1 q_2}^+ e^{-i(q_1 h \ n_1 + q_2 r \ \alpha \ n_2)} + \mathbf{p}_{10}^* B_{q_1 q_2} e^{i(q_1 h \ n_1 + q_2 r \ \alpha \ n_2)} \right),$$

где $N = N_1 N_2$ — число молекул в монослое; $B_{q_1q_2}^+$ и $B_{q_1q_2}$ — операторы рождения и уничтожения экситонов с волновым вектором $\mathbf{Q} = (q_1, q_2)$; r — расстояние от оси нанопроволоки до монослоя; расстояние h и угол α показаны на рис. 1.

Если считать, что векторы \mathbf{p}_{10} ориентированы касательно к поверхности нанопроволоки, то в матричный элемент $V_{10,01}$ дают вклад две составляющие напряженности поля поверхностного плазмон-поляритона E_{ϕ} и E_z (формулы (9)) в точках расположения молекул красителя r, $\phi = \alpha n_2$ и $z = hn_1$. В результате вычислений матричного элемента получаем

$$V_{10,01}^{(n)} = -\sqrt{\frac{4\pi\hbar \ r \ \omega_n(k)}{s \ S_n(k)}} \frac{I_n(q_m R)}{K_n(q_d R)} \left[\left(\frac{nk_z}{q_d^2 r} K_n(q_d r) + \frac{\omega_n(k)f}{q_d} K_n'(q_d r) \right) (\mathbf{p}_{10})_{\phi} + K_n(q_d r) (\mathbf{p}_{10})_z \right] \delta_{k_z,q_1} \delta_{n,q_2r}, \quad (14)$$

где *s* — площадь элементарной ячейки монослоя. Как видно из (14), осесимметричные (n = 0) поверхностные плазмоны взаимодействуют только с экситонами, распространяющимися вдоль оси нанопроволоки ($q_2 = 0$). В остальных случаях у волнового вектора экситона имеется составляющая вдоль окружности цилиндра.

Если плазмон-экситонное взаимодействие в рассматриваемой наноструктуре можно считать слабым по сравнению с другими взаимодействиями, приводящими к релаксации электронных возбуждений, то скорость передачи энергии от плазмона к экситону можно рассчитывать в рамках теории возмущений. В случае сильной связи условия применимости теории возмущений не выполняются и для описания кинетики энергообмена необходимо использовать формализм матрицы плотности. Кроме того, в этом случае возможно образование гибридного плазмон-экситонного состояния, энергия которого определяется формулой

$$E(k_{z},n/r) = (1/2) \left(E_{\text{ex}}(k_{z},n/r) + \hbar\omega_{n}(k) \pm \sqrt{\left(E_{\text{ex}}(k_{z},n/r) - \hbar\omega_{n}(k)\right)^{2} + 4\left|V_{10,01}^{(n)}\right|^{2}} \right),$$
(15)

где $E_{\rm ex}(k_z, n/r)$ — энергия двумерного экситона коаксиального монослоя.

Результирующая кинетика распада населенности экситонной подсистемы определяется уравнением $\dot{\rho} = -\rho(t)/\tau_{eff}$, где эффективное время τ_{eff} жизни экситона при слабом взаимодействии плазмона с экситоном задается формулой

$$1/\tau_{\rm eff} = 1/\tau_{\rm ex} + U(k),$$
 (16)

где τ_{ex} — собственное время жизни экситона, т. е. в отсутствие плазмонной подсистемы; U(k) — скорость обмена энергией между плазмонной и экситонной подсистемами, рассчитанная по золотому правилу Ферми.

В случае сильного плазмон-экситонного взаимодействия для определения эффективного времени жизни τ_{eff} можно воспользоваться выражением, полученным в работе [12] для произвольной донорно-акцепторной системы:

$$\frac{1}{\tau_{\rm eff}} = \frac{1}{\tau_{\rm ex}} + \frac{2\left|V_{10,01}\right|^2 T_2/\hbar^2}{1 + \left(T_2\Delta E/\hbar\right)^2 + 2T_2\tau_{\rm pl}\left|V_{10,01}\right|^2/\hbar^2},$$
(17)

где T_2 — время поперечной релаксации (время затухания недиагональных элементов матрицы плотности); $\tau_{\rm pl}$ — время жизни плазмона; ΔE — разность энергий экситонного и плазмонного состояний в отсутствие взаимодействия между плазмоном и экситоном (отстройка от резонанса).

Результаты и их обсуждение. Все расчеты по полученным формулам выполнены для серебряной нанопроволоки. Диэлектрическая проницаемость серебра вычислена по обобщенной формуле Друде, в которой энергия объемного плазмона принималась равной $\hbar \omega_{\rm pl} = 9.1$ эВ, высокочастотная диэлектрическая проницаемость $\varepsilon_{\infty} = 3.7$ [10].

На рис. 3 представлены дистанционные зависимости скоростей переноса энергии (12) от возбужденной молекулы люминофора к серебряным нанопроволокам разных радиусов. Диэлектрическая проницаемость содержащей люминофор оболочки, окружающей нанопроволоку, принята $\varepsilon_d = 1.5$. Функция распределения по частотам переходов в молекуле люминофора $G(\omega)$ выбиралась лоренцевой с параметрами $\omega_0 = 5 \cdot 10^{15} \text{ c}^{-1}$ и $\gamma_0 = 0.5 \cdot 10^{15} \text{ c}^{-1}$, отвечающими за положение максимума и полуширину линии. Электрический дипольный момент квантового перехода молекулы тиацианина из первого возбужденного состояния в основное $|\mathbf{p}_{10}| = 8.9 \text{ Д} [13]$. Видно, что зависимость скорости переноса энергии от радиуса нанопроволоки заметна при расстояниях между молекулой и поверхностью нанопроволоки <2 нм. Имеет место снижение скорости с ростом радиуса, которое можно объяснить падением напряженности поля плазмонов с уменьшением кривизны поверхности. Следует отметить, что вычисления скорости переноса энергии в рамках квазистатического приближения приводят к такому же результату, что и расчеты по формуле (12).

Рис. 3. Дистанционная зависимость скорости переноса энергии от возбужденной молекулы люминофора к нанопроволоке радиусом *R* = 5 (*1*), 10 (*2*) и 15 нм (*3*)

На рис. 4 изображены кинетические кривые гибели однородно размещенных в коаксиальной оболочке молекулярных возбуждений, не взаимодействующих друг с другом (расчеты по формуле (13)). Оболочка отделена от поверхности нанопроволоки прослойкой, которая имеет толщину d = 5 нм и такую же диэлектрическую проницаемость, как и слой, содержащий люминофор. В этих расчетах радиус нанопроволоки и время жизни возбужденной молекулы полагались R = 10 нм, $\tau = 1$ нс. Видно, что с увеличением толщины оболочки от 8 до 14 нм быстрота убыли среднеобъемной концентрации возбуждений падает, так как с ростом толщины уменьшается доля молекул, расположенных вблизи нанопроволоки и испытывающих со стороны нее наибольшее воздействие.

Рис. 4. Кинетика распада возбуждений в коаксиальной оболочке толщиной d = 4 (1), 8 (2) и 12 нм (3)

На рис. 5 представлена зависимость скорости передачи энергии между монослоем молекул тиацианина в J-агрегатном состоянии и нанопроволокой от продольного волнового числа осесимметричного поверхностного плазмона (или экситона, поскольку $\mathbf{k} = \mathbf{q}$ (14)) при разных расстояниях между монослоем и поверхностью нанопроволоки радиусом R = 10 нм. Диэлектрическая проницаемость среды, окружающей нанопроволоку, принималась равной $\varepsilon_d = 2$. Согласно [13], монослой J-агрегатов тиацианина имеет решетку типа "кирпичная кладка" со следующими параметрами: длины элементарных векторов a = 1.8 нм и $b\sin\theta = 0.38$ нм, угол между ними $\theta = 24^{\circ}$. Энергия экситона в J-агрегате $\hbar\Omega_I = 2.613$ эВ. Если элементарный вектор **b** параллелен оси нанопроволоки, то расположение молекул относительно поверхности цилиндра соответствует рис. 1. Как видно из рис. 5. зависимость скорости передачи энергии от волнового числа имеет лоренцев вид, поскольку дельта-функция, входящая в золотое правило Ферми и выражающая закон сохранения энергии, при трансформации экситона Ј-агрегата в поверхностный плазмон в расчетах заменялась лоренцианом с теми же параметрами, что и при расчетах по формуле (12). По мере удаления монослоя от поверхности нанопроволоки скорость передачи энергии от экситона к плазмону уменьшается. Однако это уменьшение менее резкое, чем в случае передачи энергии от одиночной молекулы (см. рис. 3). При расстоянии между монослоем и поверхностью нанопроволоки r = 10 нм скорость передачи энергии в максимуме ~10 пс⁻¹. Как известно [14], время высвечивания экситона J-агрегата <1 пс, что на несколько порядков меньше времени высвечивания одиночной молекулы. Поэтому возможна односторонняя передача энергии от возбуждаемых на поверхности нанопроволоки плазмонов к френкелевским экситонам в монослое J-агрегата, которые затем трансформируются в фотоны. При меньших расстояниях между монослоем и поверхностью нанопроволоки быстрее будет происходить обратный перенос энергии от экситона к плазмону, чем преобразование экситона в фотон. Другими словами, практически всегда имеет место сильное тушение экситонов металлом, за исключением области малых волновых чисел $k < 5 \cdot 10^5$ см⁻¹. Экспоненциальная кинетика гибели экситонных состояний в этом случае определяется в основном скоростью трансформации экситона в плазмон.

Рис. 5. Зависимость скорости переноса энергии между экситоном и плазмоном от волнового числа при расстоянии от монослоя J-агрегата до поверхности нанопроволоки r = 1 (1), 5 (2) и 10 нм (3); радиус нанопроволоки R = 10 нм

Рис. 6. Законы дисперсии гибридных квазичастиц при радиусах нанопроволоки R = 10 (1) и 5 нм (2); штриховые кривые — законы дисперсии осесимметричных плазмон-поляритонов, сплошная — энергия экситона

Законы дисперсии гибридных экситон-плазмонных состояний, полученные по формуле (15), демонстрирует рис. 6. При проведении расчетов расстояние между поверхностью нанопроволоки и монослоем принималось равным 1 нм. Видно, что с уменьшением радиуса нанопроволоки точка пересечения экситонной и плазмон-поляритонной дисперсионных кривых сдвигается вправо и расщепление Раби ($\Delta G = 2 |V_{10,01}^{(0)}(k)|$ в условиях резонанса $E_{ex}(k_z, 0) = \hbar \omega_0(k)$) увеличивается от $\Delta G_1 \approx 100$ мэВ при R = 10 нм до $\Delta G_2 \approx 150$ мэВ при R = 5 нм.

На рис. 7 показаны зависимости эффективного времени жизни экситона при сильном плазмонэкситонном взаимодействии от волнового числа, рассчитанные по формуле (17), при разных радиусах нанопроволоки. Как отмечалось выше, время релаксации экситонов в J-агрегатных слоях цианиновых красителей <1 пс. По разным оценкам время жизни плазмонов для серебра 5—40 фс [10]. В наших расчетах эти времена $\tau_{ex} = 100$ фс и $\tau_{pl} = 10$ фс. Время поперечной релаксации должно быть меньше времени релаксации экситона и выбрано $T_2 = 50$ фс.

Минимумы кривых соответствуют нулевой отстройке от резонанса, т. е. равенству энергий невзаимодействующих экситона и плазмона. С увеличением радиуса нанопроволоки положение минимума сдвигается в область меньших волновых чисел, поскольку с ростом радиуса точка пересечения дисперсионных кривых экситона и осесимметричного плазмона сдвигается влево, как видно из рис. 6 (закон дисперсии плазмона имеет более крутой вид). Кроме того, с ростом радиуса нанопроволоки уменьшается глубина минимума, поскольку падает интенсивность плазмон-экситонного взаимодействия из-за уменьшения кривизны поверхности нанопроволоки.

Более строгий анализ кинетики энергообмена между плазмонной и экситонной подсистемами, проведенный в рамках формализма матрицы плотности, показывает, что передача энергии имеет характер затухающих осцилляций, зависящих от релаксационных параметров, частоты Раби и отстройки от резонанса [15].

Рис. 7. Зависимость эффективного времени жизни экситона от волнового числа при радиусах нанопроволоки R = 5 (1), 10 (2) и 15 нм (3)

Заключение. Показано существенное влияние геометрических характеристик системы на энергию взаимодействия между поверхностными плазмонами и френкелевскими экситонами. Варьируя параметры, можно управлять скоростью энергообмена между компонентами системы и добиваться либо эффективного тушения возбужденных состояний люминофора металлической нанопроволокой, либо одностороннего переноса энергии от поверхностного плазмон-поляритона нанопроволоки к экситону монослоя J-агрегата. Последнее более важно с практической точки зрения, поскольку, как отмечалось выше, на одностороннем переносе энергии от плазмонной подсистемы к экситонной может основываться принцип работы новых органических светоизлучающих устройств.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований и правительства Оренбургской области (проект № 16-42-560671).

[1] E. Chang, J. S. Miller, J. T. Sun, W. W. Yu, V. L. Colvin, R. Drezek, J. L. West. Biochem. Biophys. Res. Commun., **334** (2005) 1317—1321

[2] Y. Fedutik, V.V. Temnov, O. Schops, U. Woggon. Phys. Rev. Lett., 99 (2007) 136802

[3] А. Г. Витухновский, Д. А. Чубич. Экситон-плазмонный наноизлучатель, патент РФ №2417483 (2009)

[4] М. Г. Кучеренко, Д. А. Кислов, Т. М. Чмерева. Рос. нанотехнол., 7, № 3-4 (2012) 111—117

[5] М. Г. Кучеренко, Т. М. Чмерева, Э. К. Гадаева. Журн. прикл. спектр., 81, № 3 (2014) 394—401

[M. G. Kucherenko, T. M. Chmereva, E. K. Gadaeva. J. Appl. Spectr., 81 (2014) 416-421]

[6] **М. Г. Кучеренко**. Материалы Всерос. конф. "Университетский комплекс как региональный центр образования, науки и культуры", 3—5 февраля 2016 г., Оренбург, ОГУ (2016) 1220—1227

[7] А. С. Давыдов. Теория твердого тела, Москва, Наука (1976) 367—390

[8] В. М. Налбандян, М. Г. Кучеренко. Тез. докл. V междунар. молодеж. науч. школы-конф. "Современные проблемы физики и технологий", 18—23 апреля 2016 г., Москва, НИЯУ МИФИ (2016) 298—300

[9] A. Archambault, F. Marquier, J.-J. Greffet, C. Arnold. Phys. Rev. B, 82 (2010) 035411

[10] В. В. Климов. Наноплазмоника, Москва, Физматлит (2009) 62-64

[11] J. Knoester. Int. J. Photoenergy (2006) 1—10

[12] В. П. Конышев, А. И. Бурштейн. Теор. экспер. химия, 4 (1968) 122—127

[13] S. Valleau, S. K. Saikin, M.-H. Yung, A.A. Guzik. J. Chem. Phys., 137 (2012) 034109

[14] В. С. Лебедев, А. С. Медведев. Квант. электрон., 42, № 8 (2012) 701—713

[15] М. Г. Кучеренко, Т. М. Чмерева. Материалы междунар. конф. "Фундаментальные проблемы оптики", 17—21 октября 2016 г., С.-Петербург, СПбГУ ИТМО (2016) 205—207