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ITERATIVE FREQUENCY-DOMAIN INTERFEROMETRY TECHNOLOGY
FOR ULTRAFAST PHASE MEASUREMENT
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This paper presents an original design of the single-shot iterative frequency-domain interferometry
(IFDI) technology to measure the ultrafast phase. Unlike frequency domain holography (FDH), in which the
reference pulse interferes with the phase modulated probe pulse, in IFDI two linearly chirped probe pulses
co-propagate and are both phase-modulated by the measured ultrafast phase, and then the phase can be re-
constructed with the iterative algorithm. Compared with two types of FDH, the IFDI technology has better
accuracy and stability.

Keywords: iterative frequency-domain interferometry, single shot measurement, time-resolved imaging.

UTEPAIMOHHASI YACTOTHAA HHTEP@EPOMETPUSI
JJI1 U3BMEPEHUSA CBEPXBBICTPOU ®A3bI

Y. Fan 1%, J. Xiao 2, Y. Li!
VIIK 535.317.1

! NeoPhotonics Co., Ltd., IIIbnvusicons 518060, Kumaii
2 Konneoaic anekmponnoii u unopmayuonnoii unscernepuit, Xapounckuii mexHono2udeckuii UHCmumym,
L Isnvuscans, 518060, Kumaii; e-mail: fanyupeng@email.szu.edu.cn

(Ilocmynuna 11 urons 2019)

ITlpeocmasnena mexnonozusi OOHOKPAMHOU UMEPAMUBHOU UHMEPDepOMempuU 8 YacmomHou ooracmu
(IFDI) ona usmepenus ceepxovicmpou ¢asvl. B omauuue om eonocpaguu ¢ wacmomuou odoracmu (FDH),
6 KOMOpOU ONOPHbLL UMNYILC UHMEPPEPUpyem ¢ 00beKMHbIM (Pa30MO0YIUPOBAHHBIM UMNYAbCOM, 8 TFDI
084 TUHEUHO YUPNUPOBAHHBIX 00BEKMHBIX UMNYILCA PACNPOCMPAHAIOMCS COBMECHO U 06a MOOYIUPOBAHbL
no ¢haze co ceepxboabUION YACMOMOT, npUYem dma haza Modicem 6blMb BOCCMAHOBLEHA C NOMOWbIO UMepa-
muenoeo areopumma. Ilo cpasnenuro ¢ 08yma munamu FDH mexnonoeusn IFDI umeem nyuwue mounocms u
cmadunbHOCHD.

Knrwouesvle cnosa: umepayuonnas unmepgepomempus 8 4acmomHoli obnacmu, usmepenue eOUHUYHO20
Kaopa, 8U3yaru3ayusl ¢ GPeMeHHbIM pa3peuleHuem.

Introduction. Direct observation of the dynamic interplay among drive pulse, plasma wave, and acceler-
ated electrons, including wave-breaking, pump depletion, and beam loading, is essential for realizing potential
applications of plasma accelerators in many fields such as radiobiology, radiotherapy, radiographic materials
inspection, ultrafast chemistry, and high energy physics. As a single-shot interferometric technique, frequency
domain holography (FDH) can measure the ultrafast phase caused by laser-generated nonlinear refractive in-
dex structures. FDH opens a direct window into microscopic physics and is an essential step towards control-
ling the above-mentioned dynamics.

Using FDH, Le Blanc et al. realized a single-shot time-resolved measurement of the ultrafast phase shifts
induced either by the nonlinear susceptibility x> of fused silica or by ionization fronts in air over a temporal
region of 1 ps with a 70 fs resolution [1]. Then, using FDH, Matlis et al. demonstrated a single-shot
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visualization of laser-wake field accelerator structures for the first time [2]. Li et al. experimental results illus-
trate both the strengths (fast, faithful single-shot imaging of most aspects of the wake structure) and limitations
(underestimate of plasma oscillation amplitude when the plasma structure evolves significantly, false structure
from pump-generated radiation) of FDH imaging [3]. Furthermore, Li et al. presented a generalization of FDH
known as frequency domain tomography (FDT), which incorporates several FDHs having different angle be-
tween probe pulse and drive pulse, to visualize evolving light-velocity objects [4].

However, there are some application limits of FDH. In this paper, FDH was divided into two types, and
the limits of FDH were analyzed. Here, a new design of the iterative frequency-domain interferometry (IFDI)
technology was proposed, and a comparison between FDH and IFDI confirmed the feasibility and accuracy of
IFDI technology.

FDH limitation analysis and IFDI technology. In FDH, a wide-bandwidth, temporally extended probe
pulse co-propagates with the drive pulse through the medium, illuminating the entire object being measured
at once, and its phase is modulated by the object. The temporally advanced reference pulse, which does not
overlap with the object, has the same time-frequency characteristic as the linearly chirped probe pulse. The
reference pulse interferes with the phase modulated probe pulse at the detection plane of an imaging spectrom-
eter.

Figure 1a shows the schematic illustration of FDH; here t is the time delay between reference pulse and
probe pulse, and the spectrum interference fringes can be expressed as
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where |Epobe(®)| and |Erer ()| are the spectral amplitudes of the probe pulse and the reference pulse, respec-
tively; Ap(w) is the spectral phase difference between the probe pulse @probe(®) and the reference pulse Qref(®),
which can be reconstructed from the spectrum interference fringes. Let us assume that the variation of the
temporal phase modulation is sufficiently slow compared with the sampling interval, and the time-domain
phase shifts of the linearly chirped probe pulse correspond to the frequency-domain phase shifts of different
instantaneous frequencies; then the phase shifts Ap(¢) can be reconstructed from Ap(w) by Fourier transform
methods.
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Fig. 1. Schematic illustration of FDH (a), and arrangements of type [ FDH (b) and type II FDH (c).

According to whether or not the reference pulse propagates through the medium, the FDH can be divided
into type I (reference and probe pulses co-propagate through the medium) and type II (reference pulse does
not propagate through the medium as the probe pulse). The scheme of Matlis et al., as shown in Fig. 1b, in
which two linearly chirped, frequency-doubled pulses, reference and probe pulses, co-propagate through the
medium with the drive (or pump) pulse, is a typical type I FDH, and the reconstructed phase Ap(®) is just the
phase A®(w) to be measured.

The spectral interference fringe width can be expressed as A®finges = 27/T, Where 7 is the time delay be-
tween the reference and probe pulses. In the type I FDH, the reference and probe pulses co-propagate through
the medium, so T must be larger than the time duration of the ultrafast phase 7, or the time "= L/v, where L is
the length of the object along the direction of propagation and v is the propagation velocity of the probe pulse.
Meanwhile, A®finges can also be expressed in terms of the spectral resolution of the imaging spectrometer
A®res by AOfringes = NAwres. According to the Nyquist-Shannon a ampling theorem, N should be > 2, and for
complicated phase perturbation, N should be larger. Obviously, when 7, or T 'is too large, A®finges Will be too
small to be completely resolved by the spectrometer and will cause further reconstructed phase error. For
example, assume that the wavelength A is 400 nm and the resolution of the imaging spectrometer is 0.05 nm;
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then the spectral resolution Ames = 21 % 0.09375 THz. Assume that 7,= 10 ps, approximately the time duration
of the terahertz waveforms [5]; then the maximum width of the fringes iS A®finges-max = 2mx0.1 THz when t
takes the minimum value Tmin = 7, = 10 ps in the type I FDH. So, the spectral interferogram cannot be com-
pletely resolved, and the phase perturbation cannot be reconstructed accurately.

In a type I FDH, as shown in Fig. 1c, the reference pulse does not propagate through the medium, so the
time delay t between reference and probe pulses is not limited to being larger than the time duration of the
ultrafast phase 7).

However, the reconstructed phase A@(7) is the sum of the ultrafast phase AD(¢) to be measured and the
phase A@'(z) caused by the material dispersion of the medium, which can be expressed as AQ'(r) = nkz, where
n is the refractive index of the medium, z is the length of the medium along the direction of the probe propa-
gation, and & is the wave vector. So AD(¢) reads

AD(1)=Ag(t)-Ag' (1), ()
where A@'(f) is reconstructed under the conditions that the drive (or pump) pulse is blocked. So, the type 11
FDH is not limited by the time duration 7, while it needs an extra step to measure A¢'(z). The accuracy and
stability of the phase measurement is easily and greatly influenced by the environment, especially for a spa-
tially distributed phase measurement.

Here, we present a design of the IFDI technology; Fig. 2 shows the basic principle. Twin linearly-chirped
Gaussian pulses probe 1 and probe 2 co-propagate and are used to measure the ultrafast phase A®D(t), and 1 is
the time delay between the iterative pulses.
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Fig. 2. Schematic illustration of IFDI.

Assume that the variation of the temporal phase modulation is sufficiently slow, and the time-domain
phase shifts of the linearly chirped probe pulse correspond to the frequency-domain phase shifts of different
instantaneous frequencies as in the FDH. Take o, the instantaneous angular frequency component of the
chirped pulse, as an example; the phase perturbation A®D gives the phase AD(#1) to w. of probe 1 at ¢; and gives
the phase AD(#2) to w. of probe 2 at £, so the time delay T = £, — 1, and the phase shifts of the w. of probe 1
and probe 2 can be expressed as

(pprobel (wc) = A(D((Dc) ’ (3)
(Pprobez ((DC) = Aq)(mc - Q) > (4)

where Q = 1/¢", and ¢" is the value of the quadratic dispersion of the chirped probe pulse at the center fre-
quency ®o. The spectral interference fringes can be expressed as

I (0)) = |El (coc)|2 +|E2 (coc)|2 +2|El (o, )| |E2 (coc)| cos[Aq) ((’%) —AD (coC —Q) + cor} . %)

To simplify notation, define the spectral phase difference as 6(w.) = AD(w:) — AD(w: — ). To isolate
0(w.), we use a robust algorithm introduced by Takeda et al. [6] in which the data is Fourier transformed with
respect to the spectrometer frequency, filtered, and inverse-transformed. So 6(w.) can be reconstructed just
like the A@(w) in the FDH.

Then the spectral phase A®(w) can be reconstructed by concatenating the spectral phase difference 6(w).
The spectral phase at some frequency, say o, is set equal to zero so that AD(wo— Q) = —6(wo), and the spectral
phase A®(w) for all frequencies that are multiples of the Q away from ¢ follow in this fashion [7]:
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AD(0, —2Q) = —0(0, —Q)—0(w,),
AD(w, -Q) = —6(w),
AD () = 0, ©)
AD (0, + Q) =6(w, + ),
AD (o, +2Q) =0(w, +2Q) + 0(w, + Q).

By simply adding up the phase differences, we can reconstruct the phase for frequencies separated by Q.
If Q is small relative to the structure of the spectral phase A®(w), the phase difference 6(®) is approximately
the first derivative of the spectral phase

o dAD(w,)

0(0.)=AD(0,) - AD (0, — Q) ~ y
(O]

(7)
Accordingly, A®(w.) can be reconstructed by integration [6].

Simulation results and discussion. Assume that the twin linearly-chirped Gaussian pulses with the spec-
tral bandwidth (full width at half maximum, FWHM) Aw act as the probe pulse and the time advanced refer-
ence pulse in the FDH and two-probe pulses in the IFDH. The linearly-chirped Gaussian pulse can be ex-

pressed as
2, . g2 2
E([) — Eo e—at +ioyt elb[ — EO efat ez(w0+bt)t , (8)

where a =2 In 2 X 1— 2 chirp, 7 chirp = Aw/2b is the FWHM of the chirped pulse, oo is the central frequency,
and b is the chirp parameter which can be expressed as

b= [1+ @27 (o) ] o (1262 a0) ] ©

where B2 = 1/2(5%¢(m)/2w?) is the group delay dispersion (GDD), and ¢(o) is the spectral phase.

Assume that the phase perturbation AD(¢) is to be measured, whose Taylor series expansion is AD(r) =
= Qo+ @1t + g2f>. Here we ignored third- and higher-order terms and set @9 = @1 = 0 to consider only the quad-
ratic term and to simplify the simulation. The other simulation conditions are as follows: u)o = 27c/ho|a=400nm =
=4.71 rad/fs, an SF57 is used for pulse stretching with dn/d\=400nm = 8.8556 pm GVD|x—4oonm =

=1003.6 fsz/mm Tehip= 12 s, a = 9.627x107 fs 2, Aw = 2nx13 THz, and b= 1.118 x 10°° rad/fs Set p2=a
then the phase perturbation is AD(f) = af*.

In the type I FDH, the profiles of the reconstructed phase and the phase perturbation A®(¢) = af* are shown
in Fig. 3a at t=10 ps and in Fig. 3b at Tt =1 ps. Apparently, the type | FDH cannot give an accurate ultrafast
time-varying phase with relatively large 7, because of the spectrometer’s resolution limits.
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Fig. 3. The reconstructed phase (a) 7, = 10 ps and (b) 7,= 1 ps in type I and (c) Ae(¢) and (d) AD(¥) in type
I FDH, the original phase (1) (dashed line) and the reconstructed phase (2) (solid line).
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In the type II FDH, using the same simulation conditions as in the type [ FDH , set t = 1.5 ps. Assume
that the medium is glass BK7, and the length of BK7 is z =1 c¢m; then the refractive index ngk7 is

2 10396121217 . 0.231792344).° . 1.01046945).2
BRTSCHOTI) ™52 0.00600069867 A% —0.0200179144 1% —103.560653

The profiles of the reconstructed phase Ap(f) and AD(¢) and the phase perturbation are shown in Figs.
3c,d. The reconstructed phase is accurate in the type II FDH.

In the IFDI, the twin linearly-chirped Gaussian pulses, similarly to the probe pulse in the type I FDH and
type Il FDH, act as probe 1 and probe 2 delayed by T, respectively. Using the same simulation conditions as
in the FDH, set T = 1.5 ps and A®(¢) = a#; the simulated spectral interferogram of the interference of probe 1
and probe 2 is shown in Fig. 4a.

Then AD(¢) is reconstructed from Fig. 6, as shown in Fig. 4b. It is worth noting that the effective detection
time range of the IFDI is the overlap between probe pulses (tchip— 27). Thus, we can see that the profile of the
reconstructed phase in the middle part (effective detection time range) coincides with that of the phase pertur-
bation AD(f) = af*, and both edges are somewhat inaccurate compared to the type II FDH A®(¢) in Fig. 3d.

Although the effect of noise in actual experiments can be a major factor in application, because the noise
effect is consistent for FDH and IFDI, it is ignored in the comparative simulation.
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Fig. 4. The original temporal phase perturbation (solid line)
and the reconstructed phase (dashed line) in IFDI.

Conclusions. As mentioned above, the type I IFDH cannot measure accurately the ultrafast phase with
relatively large 7, due to the spectrometer’s resolution limits. By contrast, IFDI and type Il FDH can overcome
the limitation and reconstruct the phase more accurately. Compared with the type II FDH, IFDI can eliminate
the extra step of measuring the phase A@'(¢) caused by the material dispersion of the medium and has greater
accuracy and stability, especially for spatially distributed phase measurement. However, IFDI is only appro-
priate for pure phase measurement.

In summary, IFDI is a simple and reliable interferometric technique for measuring the ultrafast phase
variations and can realize single-shot visualization of evolving light-velocity objects, and the reconstructed
result is extremely accurate. Based on the IFDI technique, we can develop new technology like FDT [4] to
visualize the spatiotemporal dynamics of light-velocity objects and image a wide range of nonlinear
propagation phenomena, including filament formation in gases and the evolution of plasma wake fields.
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