V. 87, N 5

JOURNAL OF APPLIED SPECTROSCOPY

SEPTEMBER — OCTOBER 2020

ИССЛЕДОВАНИЕ ЛЕГИРОВАННЫХ СОЕДИНЕНИЙ ХАЛЬКОПИРИТА Сu_{1-x}Pd_xFeS₂ МЕТОДОМ ЯМР ^{63,65}Сu

В. Л. Матухин¹, А. Н. Гавриленко^{1*}, Е. В. Шмидт¹, И. Г. Севастьянов¹, Ф. Р. Сиразутдинов¹, J. Navratil², P. Novak²

УДК 539.143.43;537.311.33

¹ Казанский государственный энергетический университет, 420066, Казань, Россия; e-mail: ang_2000@mail.ru ² Институт физики Чешской академии наук, 16200, Прага, Чехия

(Поступила 29 апреля 2020)

Исследованы образцы серии соединений $Cu_{1-x}Pd_xFeS_2$ (x = 0-0.02) методом ^{63,65}Cu ЯМР в локальном поле при температуре 77 К. Измерены спектры, определены их параметры, оценены поля в области ядер ^{63,65}Cu. Обнаружено асимметричное уширение резонансных линий ЯМР с более плавным затуханием в высокочастотной области, которое может быть результатом увеличения количества дефектов в кристаллической решетке соединения. Такими дефектами могут быть антиструктурные дефекты Fe_{Cu}^{2+} , образование которых обусловлено формированием фазы PdS в матрице халькопирита с увеличением номинального содержания Pd.

Ключевые слова: ядерный магнитный резонанс, градиент электрического поля, термоэлектрик, полупроводник, халькопирит, легирование.

Samples of a series of $Cu_{1-x}Pd_xFeS_2$ (x = 0-0.02) compounds were studied by ^{63,65}Cu NMR in a local field at a temperature of 77 K. The spectra of the samples were measured, their parameters were determined, and the fields in the region of ^{63,65}Cu nuclei were estimated. An asymmetric broadening of the resonance NMR lines with a smoother decay in the high-frequency region was found, which may be the result of an increase in the number of defects in the crystal lattice of the compound. Such defects can be Fe_{Cu}^{2+} antisite defects, the formation of which is caused by the formation of the PdS phase in the chalcopyrite matrix with an increase in the nominal Pd content.

Keywords: nuclear magnetic resonance, electric field gradient, thermoelectric, semiconductor, chalcopyrite, impurity doping.

Введение. Высокоэффективные термоэлектрические материалы привлекают большое внимание из-за их потенциального применения, особенно для сбора энергии с помощью отработанного тепла. В [1] предложено использовать магнитные полупроводники в качестве эффективных термоэлектриков. Магнитные полупроводники представляют собой серию материалов, в которых магнитные ионы, такие как Mn, Fe и Co, включены в состав основного полупроводника. Ранее они интенсивно изучались для применения в спинтронике, но их термоэлектрические свойства исследованы мало. Характерная особенность магнитных полупроводников — сильная связь между носителями заряда и спинами магнитных ионов. Это взаимодействие может привести к большой эффективной массе носителей заряда, которая увеличит коэффициент Зеебека при хорошей проводимости носителей заряда. Один из представителей этого класса соединений — хорошо известный полупроводниковый минерал халькопирит CuFeS₂. Соединение представляет собой один из минералов семейства Cu-Fe-S, входящих в состав медных руд. Халькопирит CuFeS₂, который давно известен как полупроводниковый ма-

^{63,65}Cu NMR STUDY OF DOPED CHALCOPYRITE Cu_{1-x}Pd_xFeS₂ COMPOUNDS

V. L. Matukhin¹, A. N. Gavrilenko^{1*}, E. V. Schmidt¹, I. G. Sevastyanov¹, F. R. Sirazutdinov¹, J. Navratil², P. Novak² (¹ Kazan State Power Engineering University, Kazan, 420066, Russia; e-mail: ang_2000@mail.ru; ² Institute of Physics of the Czech Academy of Sciences, Praha, 16200, Czech Republic)

териал с большим набором уникальных электронных и кристаллических свойств, продолжает оставаться предметом многочисленных экспериментальных и теоретических исследований. Кристаллическая структура тетрагонального CuFeS₂ (структура халькопирита) содержит чередующиеся слои металла, разделенные слоями атомов серы. Спины атомов Fe в каждом слое металла с последовательным чередованием Cu и Fe расположены параллельно оси c, в соседних слоях — антипараллельно. Это приводит к антиферромагнитному (AФM) упорядочению кристаллической решетки CuFeS₂ с температурой Нееля 823 К [2, 3]. Мёссбауэровские исследования свидетельствуют о трехвалентном состоянии железа в CuFeS₂ [4]. Это полупроводник с прямой запрещенной зоной проводимости *n*-типа из-за собственных дефектных вакансий серы.

Халькопирит CuFeS₂ является материалом с достаточно высоким коэффициентом мощности $\sim 1 \text{ MBT/(M} \cdot \text{K})$ [1, 5—8]. Электронная структура CuFeS₂ исследована в [9—11] и показано, что AФMфаза стабилизирует CuFeS₂ по сравнению с другими магнитными фазами, такими как пара- и ферромагнитные фазы. Недавние исследования позволили предположить возможное улучшение термоэлектрических свойств этого соединения, особенно путем разбавленного легирования [12, 13]. Следовательно, для достижения высокоэффективных термоэлектрических соединений необходимо детальное понимание физических свойств этого соединения.

В данной работе исследована серия соединений $Cu_{1-x}Pd_xFeS_2$ (x = 0—0.02) методом ^{63,65}Cu ЯМР в локальном поле. Ранее термоэлектрические и транспортные свойства образцов горячего прессования соединений $Cu_{1-x}Pd_xFeS_2$ (x = 0—0.1) были изучены в [14].

Эксперимент. Поликристаллические образцы номинального состава $Cu_{1-x}Pd_xFeS_2$ (x = 0, 0.01, 0.02) синтезированы из смеси чистых элементов, полученных из Sigma-Aldrich, включая Cu (4 N shots), Pd (4 N powder), Fe (4 N granular) и S (5 powder). Синтез образцов описан в [14].

Спектральные и релаксационные параметры ЯМР ^{63,65}Си в локальном поле в CuFeS₂ измерены на многоимпульсном ЯКР/ЯМР спектрометре Tecmag Redstone. Измерение формы линии ЯМР проведено с использованием квадратурного детектирования путем записи сигналов спинового эха с пошаговым прохождением диапазона частот и накоплением сигналов спинового эха.

Результаты и их обсуждение. Халькопирит $CuFeS_2$ имеет тетрагональную кристаллическую структуру, где атомы Cu и Fe расположены в правильном тетраэдрическом S-каркасе. Все атомы Cu расположены в кристаллически эквивалентных местах, но в тетраэдрах CuS₄ смещены от идеальной сферической координационной симметрии вдоль оси *c*. Это структурное искажение вызывает появление градиентов электрического поля (ГЭП) на ядре Cu. Магнитные моменты Fe чередуются в противоположных направлениях вдоль оси *c*.

Сверхтонкое взаимодействие между Fe и Cu вместе с меньшим дипольным полем от соседних упорядоченных магнитных моментов Fe приводит к зеемановскому взаимодействию на ядрах Cu, которое доминирует в расщеплении энергетических уровней во внутреннем магнитном поле $B_0 = 1.62$ Tл [15]. Дополнительное более слабое взаимодействие между ядерным квадрупольным моментом Cu и ГЭП создает для каждого изотопа Cu спектр магнитного резонанса, состоящий из трех линий (ядерный спин обоих изотопов I = 3/2). Спектр ЯМР в АФМ-состоянии при нулевом внешнем поле обычно определяется гамильтонианом, состоящим из вкладов зеемановского и квадрупольного взаимодействий \hat{H}_Z и \hat{H}_Q (здесь ссылаемся на главный каркас тензора ГЭП):

$$\hat{H} = \hat{H}_Z + \hat{H}_Q,\tag{1}$$

$$\hat{H}_{Z} = -\gamma \hbar I B_{\text{loc}}, \ \hat{H}_{Q} = (h \nu_{Q}/6) [3\hat{I}_{Z}^{2} - I^{2} + (\eta/2)(\hat{I}_{+}^{2} + \hat{I}_{-}^{2})],$$
(2)

$$v_Q = (3eQV_{ZZ})/2I(2I-1)h.$$
 (3)

где γ — гиромагнитное отношение ядра; B_{loc} — локальное (внутреннее) поле в зоне ядра; eQ — ядерный квадрупольный момент; V_{ZZ} — Z-компонента тензора ГЭП в ядре; η — параметр асимметрии ГЭП, $\eta = (V_{XX} - V_{YY})/V_{ZZ}$ с $V_{\mu\mu} = \partial^2 V/\partial \mu^2$ ($\mu = X, Y, Z$), $|V_{zz}| \ge |V_{xx}|$, $0 \le \eta \le 1$.

Спектр ЯМР 63,65 Си в локальном поле в нелегированном образце CuFeS₂, измеренный при T = 77 К (рис. 1, *a*), согласуется с ранее полученными результатами, его следует отнести к резонансным сигналам от немагнитных ионов меди Cu⁺ [15—17].

Спектр имеет для каждого изотопа меди три резонансные линии и состоит из центральной линии v_c ($v_{c'}$), соответствующей переходу $I_Z = 1/2 \leftrightarrow -1/2$, и двух квадрупольных сателлитов v_l ($v_{l'}$) и v_h ($v_{h'}$), соответствующих переходам $I_Z = 3/2 \leftrightarrow 1/2$ и $I_Z = -1/2 \leftrightarrow -3/2$. Расстояние между пиками сателлитных линий определяет квадрупольную частоту v_Q , пропорциональную главной компоненте V_{ZZ} тензора ГЭП. Детальное изучение формы резонансных линий выявило их асимметричную природу с более плавным затуханием в высокочастотной области. Интересная особенность полученных спектров — разная ширина резонансных линий для каждого из изотопов Cu, поэтому уширение линии обусловлено распределением параметров ГЭП, но не распределением локальных магнитных полей. В последнем случае ширина линий одинаковая. Отметим, что резонансные линии в спектре ЯМР Cu в локальном поле некоторых природных образцов симметричны и значительно меньше по ширине [15—17].

Спектр образца с наименьшей номинальной концентрацией Pd, т. е. $Cu_{0.99}Pd_{0.01}FeS_2$ при 77 К (рис. 1, δ), почти совпадает со спектром нелегированного образца, что можно объяснить теми же параметрами решетки образцов. Спектр образца с более высокой концентрацией палладия $Cu_{0.98}Pd_{0.02}FeS_2$ при 77 К значительно расширяется, и наблюдается небольшое смещение резонансных линий. Для сравнения показан спектр ЯМР ^{63,65}Си в локальном поле образца CuFeS₂ на одном рисунке (рис. 2).

Уширение резонансных линий может быть результатом увеличения количества дефектов в кристаллической решетке соединения, что приводит к большему распределению ГЭП на резонансных ядрах меди. Такими дефектами могут быть антиструктурные дефекты Fe_{Cu}²⁺ [14]. Их образование обусловлено формированием фазы PdS в матрице халькопирита с увеличением номинального содержания Pd. Сдвиг частоты резонансных линий можно объяснить взаимодействием Рудермана— Киттеля—Касуя—Йосиды (РККИ) [18]. Это подтверждается повышенной проводимостью, наблюдаемой для образца Cu_{0.98}Pd_{0.02}FeS₂ [14].

Рис. 1. Измеренные спектры ЯМР ^{63,65}Си в локальном поле при T = 77 К (**■**) нелегированного образца CuFeS₂ (*a*) и Cu_{0.99}Pd_{0.01}FeS₂ (*b*); линии — огибающая экспериментальных точек

Рис. 2. Измеренные спектры ЯМР 63,65 Си в локальном поле при T = 77 К образцов CuFeS₂(\bullet) и Cu_{0.98}Pd_{0.02}FeS₂(\blacksquare); линии — огибающая экспериментальных точек

Рис. 3. Измеренные спектры ЯМР 63,65 Си в локальном поле при T = 77 К образцов CuFeS₂ (*a*), Cu_{0.99}Pd_{0.01}FeS₂ (*б*) и Cu_{0.98}Pd_{0.02}FeS₂ (*b*): I — экспериментальные данные, 2 — узкая линия ($l_1, l_1', c_1, c_1', h_1, h_1'$), 3 — широкая линия ($l_2, l_2', c_2, c_2', h_2, h_2'$), 4 — накопительная линия; 2 и 3 указывают на расщепление каждой резонансной линии (l или 4) на две линии

Экспериментальный спектр ЯМР Си соединений при 77 К можно рассматривать как суперпозицию двух спектров ЯМР Си: первый состоит из низкочастотных резонансных линий, отнесенных к основной фазе (рис. 3, линии l_1 , l_1' , c_1 , c_1' , h_1 , h_1'), второй состоит из высокочастотных линий, обусловленных резонансными центрами, расположенными в дефектных областях кристаллической структуры (линии l_2 , l_2' , c_2 , c_2' , h_2 , h_2'). Показано разложение линий экспериментального спектра ЯМР ⁶³Си при 77 К на гауссовы линии Cu-1 и Cu-2:

$$A(\mathbf{v}) = A_1 \exp[-(\mathbf{v} - \mathbf{v}_1)^2 / 2\sigma_1^2] + A_2 \exp[-(\mathbf{v} - \mathbf{v}_2)^2 / 2\sigma_2^2], \tag{4}$$

где амплитуды A_1 , A_2 , полуширины линий σ_1 , σ_2 , частоты v_1 , v_2 определялись путем численной обработки экспериментальных данных; полуширина σ связана с полной шириной на половине максимума (FWHM) как FWHM = $2\sigma\sqrt{\ln 4}$ (табл. 1).

Величину B_{loc} локального (внутреннего) поля можно грубо оценить по частоте центрального перехода, пренебрегая эффектом второго порядка квадрупольного взаимодействия. Резонансная частота $v_c = \gamma B_{loc}$. Используя $v_{c1} = 19.86$ МГц (нелегированный CuFeS₂), $v_{c1} = 19.97$ МГц (Cu_{0.98}Pd_{0.02}FeS₂) и $\gamma = 11.285$ МГц/Тл для ⁶³Cu, получаем $B_{loc} = 1.76$ Тл для нелегированного CuFeS₂ и $B_{loc} = 1.77$ Тл для Cu_{0.98}Pd_{0.02}FeS₂) в качестве приблизительного значения. Используя $v_{c1}' = 21.403$ МГц (Cu_{0.98}Pd_{0.02}FeS₂) и $\gamma = 12.089$ МГц/Тл для ⁶⁵Cu, получаем $B_{loc} = 1.76$ Тл для нелегированного CuFeS₂ и $B_{loc} = 1.76$ Тл для значения. В систе систе

Таким образом, для каждого перехода в спектре ЯМР Си можно выделить узкую низкочастотную и широкую высокочастотную линии благодаря резонансным центрам, расположенным в относительно более неупорядоченных областях кристаллической структуры. Такие участки связаны с образованием антиструктурных дефектов Fe_{Cu}^{2+} . Низкочастотные составляющие спектральных линий ЯМР отнесены к относительно более упорядоченным структурным областям, и можно предположить, что ширина этих линий обусловлена собственными дефектами соединения CuFeS₂. Такими дефектами могут быть, например, вакансии в структурных позициях атомов меди — V_{Cu} .

Образец	Центральная линия	ν, МГц	σ, МГц	<i>А</i> , отн.ед.	FWHM, МГц	Площадь, отн. ед.	Площадь/ (Площадь <i>c</i> ₁ + Площадь <i>c</i> ₂)
⁶³ Cu							
Нелегированный CuFeS ₂	<i>C</i> 1	19.86	0.09	0.65	0.22	0.1507	0.276
	c_2	20.11	0.38	0.42	0.89	0.3922	0.722
$\mathrm{Cu}_{0.99}\mathrm{Pd}_{0.01}\mathrm{FeS}_2$	c_1	19.89	0.10	0.80	0.23	0.1998	0.501
	c_2	20.15	0.28	0.29	0.66	0.1991	0.499
Cu _{0.98} Pd _{0.02} FeS ₂	<i>C</i> ₁	19.97	0.13	0.50	0.29	0.1567	0.235
	<i>C</i> ₂	20.34	0.35	0.58	0.82	0.5089	0.765
⁶⁵ Cu							
Нелегированный CuFeS ₂	c_1'	21.26	0.09	0.29	0.20	0.0635	0.170
	c_2'	21.37	0.39	0.32	0.92	0.3109	0.830
$Cu_{0.99}Pd_{0.01}FeS_2$	c_1'	21.32	0.09	0.32	0,22	0,0758	0,326
	c_2'	21.42	0.29	0.21	0,69	0,1571	0,674
Cu _{0.98} Pd _{0.02} FeS ₂	c_1'	21.40	0.13	0.26	0.31	0.0847	0.185
	c_2'	21.67	0.45	0.33	1.06	0.3722	0.815

Таблица 1. Коэффициенты (амплитуды A ₁ , A ₂ , полуширины линий σ ₁ , σ ₂ , частоты ν ₁ , ν ₂)
двух экспоненциальных подгонок согласно (4) для ЯМР спектра ⁶³ Си и ⁶⁵ Си в локальном поле
при температуре 77 К образцов Сu _{0.99} Pd _{0.01} FeS ₂ , Cu _{0.98} Pd _{0.02} FeS ₂ и нелегированного образца

Заключение. Исследована серия соединений $Cu_{1-x}Pd_xFeS_2$ (x = 0—0.02) методом ЯМР ^{63,65}Cu в локальном поле. Ранее термоэлектрические и транспортные свойства образцов горячего прессования $Cu_{1-x}Pd_xFeS_2$ (x = 0—0.1) изучались в [14]. Уширение резонансных линий ЯМР может быть результатом увеличения количества дефектов в кристаллической решетке соединения, что приводит к большему распределению градиентов электрических полей на резонансных ядрах меди. Такими дефектами могут быть антиструктурные дефекты Fe_{Cu}^{2+} , их образование обусловлено образованием фазы PdS в матрице халькопирита с увеличением номинального содержания Pd. Метод ЯМР Cu в локальном поле можно использовать для оценки дефектности поликристаллов соединений $Cu_{1-x}Pd_xFeS_2$ (x = 0—0.02).

Работа выполнена при финансовой поддержке Чешского научного фонда (Czech Science Foundation), проект №18-12761S.

[1] N. Tsujii. J. Electron. Mater., 42, N 7 (2013) 1974–1977

[2] G. Donnay, L. M. Corliss, J. D. H. Donnay, N. Elliot, J. M. Hastings. Phys. Rev., 112, N 6 (1958) 1917–1923

[3] T. Teranishi. J. Phys. Soc. Jpn., 16, N 10 (1961) 1881-1887

[4] C. Boekema, A. M. Krupski, M. Varasteh, K. Parvin, F. van Til, F. van der Woude, G. A. Sawatzky. J. Magn. Magn. Mater., 272-276 (2004) 559-561

[5] J. H. Li, Q. Tan, J. F. Li. J. Alloy Compd., 551 (2013) 143-149

[6] Y. Li, T. Zhang, Y. Qin, T. Day, G. J. Snyder, X. Shi, L. Chen. J. Appl. Phys., 116 (2014) 203705

[7] N. Tsujii, T. Mori. Appl. Phys. Express, 6, N 4 (2013) 043001

[8] R. Ang, A. U. Khan, N. Tsujii, K. Tanaki, R. Nakamura, T. Mori. Angew. Chem. Int. Ed., 54, N 44 (2015) 12909–12913

[9] T. Hamajima, T. Kambara, K.I. Gondaira, T. Oguchi. Phys. Rev., B 24, N 6 (1981) 3349-3353

[10] M. Zhou, X. Gao, Y. Cheng, X.R. Chen, L.C. Cai. Appl. Phys. A Mater. Sci. Proc., 118, N3 (2015) 1145-1152

[11] S. Conejeros, P. Alemany, M. Llunell, I. P. R. Moreira, V. Sanchez, J. Llanos. Inorg. Chem., 54, N 10 (2015) 4840—4849

[12] H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii, T. Mori. Mater. Today Phys., 3 (2017) 85–92

[13] H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii, T. Mori. Appl. Phys. Lett., 110, N 7 (2017) 072107

[14] J. Navratil, J. Kašparová, T. Plecháček, L. Beneš, Z. Olmrová-Zmrhalová, V. Kucek, C. Drašar. J. Electron. Mater., 48, N 4 (2019) 1795–1804

[15] R. S. Abdullin, V. P. Kal'chev, I. N. Pen'kov. Phys. Chem. Minerals, 14, N 3 (1987) 258-263

[16] А. И. Погорельцев, А. Н. Гавриленко, В. Л. Матухин, Б. В. Корзун, Е. В. Шмидт. Журн. прикл. спектр., 80, N 3 (2013) 362—367 [A. I. Pogoreltsev, A. N. Gavrilenko, V. L. Matukhin, B. V. Korzun, E. V. Schmidt. J. Appl. Spectr., 80, N 3 (2013) 351—356]

[17] В. В. Оглобличев, И. Г. Севастьянов, А. Н. Гавриленко, В. Л. Матухин, И. Ю. Арапова, E. Ю. Медведев, С. О. Гарькавый, Е. В. Шмидт. Журн. прикл. спектр., 83, N 5 (2016) 731—735 [V. V. Ogloblichev, I. G. Sevastyanov, A. N. Gavrilenko, V. L. Matukhin, I. J. Arapova, E. J. Medvedev, S. O. Garkavyi, E. V. Schmidt. J. Appl. Spectr., 83 (2016) 771—775]

[18] T. Koyama, M. Matsumoto, S. Wada, Y. Muro, M. Ishikawa. J. Phys. Soc. Jpn., 70, N 12 (2001) 3667—3672