V. 87, N 6

JOURNAL OF APPLIED SPECTROSCOPY

NOVEMBER — DECEMBER 2020

СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА КРИСТАЛЛОВ ИТТРИЙ-МАГНИЕВОГО ПЕНТАБОРАТА, ЛЕГИРОВАННЫХ ИОНАМИ Er³⁺ и Yb³⁺

К. Н. Горбаченя^{1*}, Е. В. Вилейшикова¹, В. Э. Кисель¹, В. В. Мальцев², Д. Д. Митина², Е. В. Копорулина^{2,3}, Е. А. Волкова², Н. В. Кулешов¹

УДК 621.3.038.825.2

¹ Научно-исследовательский центр оптических материалов и технологий

Белорусского национального технического университета,

220013, Минск, Беларусь; e-mail: gorby@bntu.by

² Московский государственный университет имени М. В. Ломоносова, 119234, Москва, Россия

³ Институт проблем комплексного освоения недр им. академика Н. В. Мельникова Российской АН, 111020, Москва, Россия

(Поступила 1 октября 2020)

Исследованы спектрально-люминесцентные свойства кристаллов иттрий-магниевого пентабората, легированных ионами Er³⁺ и Yb³⁺. Определены спектры поперечных сечений поглощения и стимулированного испускания в поляризованном свете. Измерены времена жизни энергетических уровней ⁴I_{13/2} иона эрбия и ²F_{5/2} иона иттербия. Проведена оценка эффективности переноса энергии от ионов иттебрия к ионам эрбия. В рамках стандартной теории Джадда-Офельта рассчитаны силы линий абсорбционных и излучательных переходов, что позволило определить радиационное время жизни возбужденных уровней иона Er³⁺, а также коэффициенты ветвления люминесценции.

Ключевые слова: эрбий, иттербий, иттрий-магниевый пентаборат, спектрально-люминесцентные свойства.

The spectral-luminescent properties of Er^{3+} , Yb^{3+} : $YMgB_5O_{10}$ were investigated. The spectra of the crosssection of absorption and stimulated emission in polarized light were determined. The lifetimes of the erbuim ${}^{4}I_{13/2}$ and ytterbium ${}^{2}F_{5/2}$ energy levels were measured. The $Yb^{3+} \rightarrow Er^{3+}$ energy transfer efficiency was estimated. Within the framework of the conventional Judd-Ofelt theory the strengths of absorption and emission transitions were calculated, which gave an opportunity to determine the lifetime of the Er^{3+} excited energy levels as well as the luminescence branching ratios.

Keywords: erbium, ytterbium, yttrium-magnesium pentaborate crystals, spectral-luminescent properties.

Введение. Лазерное излучение с длиной волны 1.5—1.6 мкм имеет ряд достоинств, интересных для широкого практического применения в лазерной дальнометрии, медицине, системах оптической локации и лазерно-искровой эмиссионной спектрометрии [1]. Основное преимущество указанного излучения — условная безопасность для органов зрения из-за того, что малая часть излучения попадает на сетчатку, поглощаясь до нее тканями глаза (роговицей, хрусталиком и стекловидным телом). Вследствие прозрачности атмосферы, а также высокого пропускания излучения с $\lambda = 1.5$ —1.6 мкм в условиях тумана, дыма и пара лазерные источники указанного диапазона используются также в системах оптической локации и дистанционного зондирования Земли.

Существует большое количество источников лазерного излучения с $\lambda = 1.5$ —1.6 мкм: волоконные лазеры, полупроводниковые лазеры, параметрические генераторы света и лазеры на основе вы-

SPECTRAL-LUMINESCENT PROPERTIES OF YTTRIUM-MAGNESIUM PENTABORATE CRYSTALS CO-DOPED WITH Er³⁺ and Yb³⁺

K. N. Gorbachenya^{1*}, E. V. Vilejshikova¹, V. E. Kisel¹, V. V. Maltsev², D. D. Mitina², E. V. Koporulina^{2,3}, E. A. Volkova², N. V. Kuleshov¹ (¹ Center for Optical Materials and Technologies of Belarusian National Technical University, Minsk, 220013, Belarus; e-mail: gorby@bntu.by; ² M. V. Lomonosov Moscow State University, Moscow, 119234, Russia; ³ Melnikov Research Institute of Comprehensive Exploitation of Mineral Resources of the Russian Academy of Sciences, Moscow, 111020, Russia) нужденного комбинационного рассеяния. Однако благодаря простоте и компактности конструкции наибольший интерес разработчиков лазерных систем привлекают твердотельные лазеры на основе материалов, соактивированных ионами эрбия и иттербия. Основные требования, которые предъявляются к эрбий-иттербиевым материалам для получения эффективной лазерной генерации в области 1.5 мкм [2]: эффективное поглощение излучения накачки ионами иттербия и последующий эффективный перенос энергии от ионов иттербия к ионам эрбия; быстрая безызлучательная релаксация с уровня ${}^{4}I_{11/2}$ ионов эрбия на верхний лазерный уровень ${}^{4}I_{13/2}$ для минимизации потерь, связанных с обратным переносом энергии от ионов эрбия к ионам иттербия и ап-конверсионными переходами на вышележащие уровни; высокий квантовый выход люминесценции с уровня ${}^{4}I_{13/2}$ для сохранения невысокого порога лазерной генерации.

Наиболее полно указанным требованиям соответствуют фосфатные стекла, легированные ионами эрбия и иттербия, которые характеризуются высоким поперечным сечением поглощения в области ~1 мкм, относительно коротким временем жизни уровня ${}^{4}I_{11/2}$ и близким к единице квантовым выходом люминесценции с уровня ${}^{4}I_{13/2}$. Благодаря наличию таких свойств указанные среды долгое время занимали лидирующие позиции в вопросе выбора материала для эрбиевых лазеров. Однако основными недостатками использования фосфатных стекол с ионами эрбия и иттербия в качестве лазерных сред являются их низкая теплопроводность (0.85 Вт/м · K) и низкий порог теплового разрушения в лазерах с непрерывной накачкой [3]. Поэтому актуален поиск кристаллической матрицы с ионами эрбия и иттербия, удовлетворяющей приведенным спектроскопическим требованиям для получения эффективной лазерной генерации в области ~1.5 мкм и имеющей высокую теплопроводность.

В настоящей работе исследованы спектрально-люминесцентные свойства кристаллов иттриймагниевого пентабората, легированных ионами эрбия и иттербия Er³⁺, Yb³⁺:YMgB₅O₁₀ (YMBO).

Выращивание монокристаллов. Монокристаллы (Er,Yb):YMBO (Er = 1.5 ат.%, Yb = 12 ат.%) выращены методом SGDS (solution growth on dipped seeds) из высокотемпературного растворарасплава на основе тримолибдата калия $K_2Mo_3O_{10}$ (TMK) [4]. Соотношение кристаллообразующих оксидов соответствовало их стехиометрическому отношению в формуле. В качестве компонентов исходной шихты использованы R_2O_3 (R = Y, Yb, Er), MgO, B₂O₃, K_2MoO_4 и MoO₃ (квалификация не ниже х.ч.), $K_2Mo_3O_{10}$ предварительно синтезирован при 650 °C согласно реакции $K_2MoO_4 + 2H_2MoO_3 = K_2Mo_3O_{10} + 2H_2O^{\uparrow}$. В температурном интервале 800—1000 °C предварительно определялась растворимость (Er,Yb):YMBO в расплаве TMK. Проведенные с этой целью эксперименты с разными соотношениями TMK:YMBO при прочих равных условиях показали оптимальное отношение в области 83/17 мас.% (учитывались масса, размер и качество полученных кристаллов).

При выращивании методом SGDS исходная композиция помещалась в платиновый тигель объемом 250 мл и нагревалась до 1000 °C. После гомогенизации раствора-расплава в течение 20 ч в расплав вводился пробный кристалл и по изменению его веса и характера поверхности определялась температура насыщения 805 °C. Для затравки использовался спонтанный монокристалл YMBO с размерами ребра 2 мм, закрепленный на отожженной платиновой проволоке диаметром 0.15 мм. Затравка фиксировалась на кристаллодержателе и погружалась в расплав, температура в реакционном объеме кристаллизационной установки в процессе роста понижалась с переменной скоростью от 1 до 0.5 °C/сут. Общая длительность такого охлаждения 780 ч. Далее кристалл приподнимался над расплавом и охлаждался до комнатной температуры в течение 2 сут. Остатки растворителя с кристалла удалялись путем его отмывания в концентрированной соляной кислоте. В результате получен монокристалл Er,Yb:YMBO оптического качества размерами 23×21×12 мм.

Абсорбционные свойства. Для исследований спектров поглощения в поляризованном свете из кристаллов Er,Yb:YMBO изготовлены полированные плоскопараллельные пластинки толщиной 2 мм, ориентированные вдоль главных осей оптической индикатрисы кристалла N_m , N_p , N_g . Измерение проводилось при комнатной температуре на двухлучевом спектрофотометре Varian CARY 5000 в области 850—1050 нм, соответствующей энергетическим переходам ${}^2F_{7/2} \rightarrow {}^2F_{5/2}$ ионов иттербия и ${}^4I_{15/2} \rightarrow {}^4I_{11/2}$ ионов эрбия, и 1400—1600 нм, соответствующей энергетическому переходу ${}^4I_{15/2} \rightarrow {}^4I_{13/2}$ ионов эрбия. Для записи спектров в поляризованном свете в оба канала спектрофотометра помещались поляризационные призмы Глана—Тейлора. Спектральное разрешение прибора 0.5 нм. При определении коэффициентов поглощения учтено френелевское отражение от полированных поверхностей образцов. По спектральным зависимостям коэффициентов поглощения и содержанию ионовактиваторов определены спектры поперечных сечений поглощения.

На рис. 1 приведены спектры поперечных сечений поглощения кристалла Er,Yb:YMBO. В области 850—1050 нм (переходы ${}^{2}F_{7/2} \rightarrow {}^{2}F_{5/2}$ ионов иттербия и ${}^{4}I_{15/2} \rightarrow {}^{4}I_{11/2}$ ионов эрбия), наблюдаются две интенсивные полосы поглощения с пиками на $\lambda = 935$ и 975 нм (рис. 1, *a*). Максимальное поперечное сечение поглощения 1.55 $\cdot 10^{-20}$ см² на $\lambda = 975$ нм для поляризации $E//N_{g}$. Спектральная ширина полосы поглощения 2.5 нм (рис. 1, *a*). В области 1400—1600 нм (рис. 1, б) наблюдаются также интенсивные полосы поглощения с пиками на различных длинах волн в области 1475—1575 нм с максимальным поперечным сечением поглощения до 1.55 $\cdot 10^{-20}$ см² на $\lambda = 1482$ нм для поляризации излучения $E//N_{m}$.

Рис. 1. Спектры поперечных сечений поглощения в областях ~1 мкм (*a*) и ~1.5 мкм (*б*), $E||N_p(1)$, $E||N_m(2), E||N_g(3)$; на вставке — монокристалл Er^{3+} , Yb³⁺:YMgB₅O₁₀ (шкала 1 мм)

Кинетические характеристики. Эффективность переноса энергии от ионов иттербия к ионам эрбия. Цель проведения измерений кинетик люминесценции — определение времени жизни возбужденного состояния ${}^{4}I_{13/2}$ ионов эрбия в кристалле YMBO, легированном только ионами эрбия, и ${}^{2}F_{5/2}$ ионов иттербия в кристаллах YMBO, как легированных только ионами иттербия, так и соактивированных ионами эрбия и иттербия. Исследование кинетики люминесценции в области 1.6 мкм (переход ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ ионов эрбия) и определение времени жизни уровня ${}^{4}I_{13/2}$ проводились для кристалла YMBO, легированного только ионами эрбия. Для возбуждения люминесценции использована $\lambda \sim 1530$ нм (переход ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ ионов эрбия). Для всей серии измерений затухание люминесценции хорошо описывалось одноэкспоненциальной функцией, время жизни уровня ${}^{4}I_{13/2}$ ионов эрбия 390 ± 20 мкс (рис. 2).

Рис. 2. Кинетика затухания люминесценции с постоянной времени 390 ± 20 мкс

Эффективность переноса энергии от ионов иттербия к ионам эрбия оценивалась по сокращению времени жизни уровня ${}^{2}F_{5/2}$ ионов иттербия в кристалле YMBO, легированном ионами Er и Yb, отно-

сительно соответствующего времени жизни в кристалле, легированном только ионами Yb, по соотношению [5]:

$$\eta_{\rm Yb\to Er} = 1 - \frac{\tau_{\rm Yb, Er}(^2 F_{5/2})}{\tau_{\rm Yb}(^2 F_{5/2})}, \qquad (1)$$

где $\eta_{Yb\to Eb}$ — эффективность переноса энергии от ионов иттербия к ионам эрбия; $\tau_{Yb,Er}(^{2}F_{5/2})$ и $\tau_{Yb}(^{2}F_{5/2})$ — времена жизни уровня $^{2}F_{5/2}$ ионов иттербия в кристалле, легированном ионами Er^{3+} и Yb^{3+} , и в кристалле, легированном только ионами Yb^{3+} .

Возбуждение люминесценции осуществлялось на $\lambda \sim 976$ нм, кинетика затухания с уровня ${}^{2}F_{5/2}$ зарегистрирована в области 1040 нм. С учетом сильного влияния эффекта перепоглощения на измерямое время жизни уровня ${}^{2}F_{5/2}$ ионов иттербия вследствие перекрытия полос поглощения и люминесценции в области 1 мкм измерения выполнялись в суспензии кристаллического порошка в глицерине [6]. Профиль затухания кинетики люминесценции с уровня ${}^{2}F_{5/2}$ в кристалле Yb(1 ат.%):YMBO описывался одноэкспоненциальной функцией. При разбавлении суспензии глицерином время затухания люминесценции уменьшалось с 635 до 580 мкс. Начиная с относительного содержания кристаллического порошка в суспензии ~40 %, измеряемое время жизни уровня ${}^{2}F_{5/2}$ ионов иттербия 580 ± 30 мкс не изменялось, несмотря на дальнейшее увеличения содержания глицерина в суспензии.

Профиль затухания кинетики люминесценции с уровня ${}^{2}F_{5/2}$ ионов иттербия в кристаллах Er,Yb:YMBO, не аппроксимировался моноэкспоненциальной функцией, что объясняется появлением еще одного канала опустошения указанного уровня — резонансного переноса энергии на уровень ${}^{4}I_{11/2}$ ионов эрбия. Время жизни уровня, характеризующегося неэкспоненциальным затуханием, оценивалось по соотношению [7]:

$$\tau_{\rm Yb,Er}({}^{2}F_{5/2}) = \int_{0}^{\infty} tI(t)dt / \int_{0}^{\infty} I(t)dt , \qquad (2)$$

где $\tau_{Yb,Er}({}^{2}F_{5/2})$ — время жизни уровня ${}^{2}F_{5/2}$ ионов иттербия в кристалле, соактивированном ионами Er^{3+} и Yb³⁺; *t* — время; *I*(*t*) — интенсивность люминесценции.

В соответствии с (2) время жизни уровня ${}^{2}F_{5/2}$ ионов иттербия в кристалле Er,Yb:YMBO 95 ± 5 мкс. Эффективность переноса энергии от ионов иттербия к ионам эрбия в кристалле YMBO, легированном ионами Er и Yb, достигает 84 %.

Расчет интенсивностей *f-f*-переходов в рамках модели Джадда-Офельта. Вероятности излучательных переходов в спектрах испускания иона Er^{3+} в Er, Yb:YMgB₅O₁₀ рассчитаны на основе модели Джадда-Офельта (Д-О) [8, 9]. Модель Д-О описывает интенсивности электродипольных (ЭД) переходов в спектрах испускания и поглощения трехвалентных ионов лантаноидов. В условиях слабых конфигурационных взаимодействий и влияния кристаллического поля в приближении Д-О сила линии ЭД-перехода $S_{pac4}(JJ')$:

$$S_{\text{pacy}}(JJ') = \sum_{k=2,4,6} U^{(k)} \Omega_k , \qquad (3)$$

где $U^{(k)} = \langle (4f^n)SLJ || U^k || (4f^n)S'L'J' \rangle^2$ — квадрат дважды редуцированного матричного элемента перехода $J \rightarrow J'$ иона Er^{3+} ; Ω_k — параметры интенсивности Д-О.

Для иона Er^{3+} в кристаллических средах матричные элементы $U^{(k)}$ переходов слабо зависят от характера координации иона-активатора и природы матрицы [10, 11]. На основе зарегистрированного спектра оптического поглощения кристалла Er,Yb:YMgB₅O₁₀ определены экспериментальные силы осциллятора $f_{3\kappa cn}$ для каждого перехода Er^{3+} :

$$f_{_{\rm 3KCII}}(JJ') = \frac{m_e c^2}{\pi e^2 N_{\rm Er} \langle \lambda \rangle^2} \Gamma(JJ'), \qquad (4)$$

где m_e и e — масса и заряд электрона; c — скорость света; $\Gamma(JJ')$ — интегральный коэффициент поглощения для полосы в спектре поглощения; $\langle \lambda \rangle$ — "центр тяжести" полосы поглощения; значения $f_{3\kappa cn}(JJ')$ усреднены по трем направлениям поляризации $f = 1/3(f_X + f_Y + f_Z)$.

Поскольку модель Д-О описывает переходы ЭД-природы, вклад магнитных дипольных (МД) переходов вычтен из экспериментальных сил осцилляторов $f_{3ксп}$, определенных из спектров поглощения: $f_{3кспЭД} = f_{3ксn} - f_{MZ}$, где $f_{3ксnЭД} = - 3$ кспериментальные силы осцилляторов ЭД-переходов, f_{MZ} — силы осцилляторов МД-переходов, рассчитанные на основе данных [12]. Для определения па-

раметров интенсивности Ω_{λ} , где $\lambda = 2, 4, 6$, рассчитаны силы линии ЭД-вкладов переходов в поглощении $S_{3\kappa cn \exists J}$:

$$S_{\rm {\scriptscriptstyle 3KCH} \Im JI}(JJ') = \frac{3h(2J'+1)\langle \lambda \rangle}{8} \frac{9n}{\left(n^2+2\right)^2} f_{\rm {\scriptscriptstyle 3KCH} \Im JI}(JJ') , \qquad (5)$$

где *h* — постоянная Планка; *n* — показатель преломления кристалла Er,Yb:YMgB₅O₁₀.

Значения $S_{3 \text{ксп} 3 \text{д}}$ использованы для определения параметров интенсивности Ω_2 , Ω_4 и Ω_6 через аппроксимацию методом наименьших квадратов. В моделировании задействованы восемь наиболее интенсивных полос поглощения. В результате получены следующие параметры Д-О: $\Omega_2 = 3.485 \cdot 10^{-20}$, $\Omega_4 = 1.303 \cdot 10^{-20}$, $\Omega_6 = 1.508 \cdot 10^{-20}$ [см²] со среднеквадратичным отклонением RMS $f = 0.339 \cdot 10^{-7}$. Следует отметить, что кристалл Er^{3+} , Yb³⁺:YMgB₅O₁₀ характеризуется существенным коэффициентом поглощения на $\lambda \sim 960$ нм, обусловленным переходом ${}^2F_{7/2} \rightarrow {}^2F_{5/2}$ иона Yb³⁺, спектрально перекрывающимся с переходом ${}^4I_{15/2} \rightarrow {}^4I_{11/2}$ иона Er^{3+} . По этой причине переход в состояние ${}^4I_{11/2}$ (Er³⁺) не задействован в аппроксимации. Определенные параметры Д-О хорошо согласуются с интенсивностями для изоструктурных кристаллов, активированных Er^{3+} в спектрах поглощения:

$$f_{\text{pacy}}(JJ') = \frac{8}{3h(2J'+1)\langle\lambda\rangle} \frac{(n^2+2)^2}{9n} S_{\text{pacy}}(JJ') + f_{\text{M},\text{I}}(JJ') \,. \tag{6}$$

Результаты моделирования представлены в табл. 1.

Вероятности спонтанных излучательных переходов $A_{\text{расч}}$ рассчитаны на основе соответствующих сил линий $S_{\text{расчЭД}}$, вычисленных на основе полученных параметров Д-О Ω_k и квадратов матричных элементов $U^{(k)}$ (3):

$$A_{\text{pacy}}(JJ') = \frac{64\pi^4 e^2}{3h(2J'+1)\langle\lambda\rangle^3} n \left(\frac{n^2+2}{3}\right)^2 S_{\exists\mu}^{\text{pacy}}(JJ') + A_{\text{M}\mu}(JJ') \,. \tag{7}$$

Вклад МД-переходов $A_{MД}$ в (7) рассчитан на основе вероятностей МД-переходов иона Er^{3+} [12]. Суммированием вероятностей спонтанных переходов для отдельных каналов излучения $J \rightarrow J'$ вычислены полные вероятности излучения $A_{oбщ}$ и соответствующие радиационные времена жизни возбужденных состояний τ_{pag} :

$$A_{\text{общ}} = \sum_{J'} A_{\text{расч}}(JJ'), \ \tau_{\text{рад}} = 1/A_{\text{общ}}.$$
(8)

В табл. 2 приведены рассчитанные вероятностные характеристики спонтанных излучательных переходов из состояний ${}^{4}I_{13/2}$, ${}^{4}I_{11/2}$, ${}^{4}I_{9/2}$, ${}^{4}F_{9/2}$ и ${}^{4}S_{3/2}$. Радиационное время жизни нижнего возбужденного состояния $\tau_{\text{рад}}({}^{4}I_{13/2}) = 8.054$ мс несколько меньше полученного для изоструктурных кристаллов Er,Yb:GdMgB₅O₁₀ и Er,Yb:LaMgB₅O₁₀ [13, 14].

Таблица 1. Экспериментальные и рассчитанные в результате аппроксимации методом Джадда-Офельта силы осцилляторов переходов Er³⁺ в спектрах поглощения кристалла Er³⁺,Yb³⁺:YMgB₅O₁₀

${}^{4}I_{15/2} \rightarrow$	U^2	U^4	U^6	<λ>, нм	$F_{ m эксп}, \times 10^7$	$F_{\text{pacy}}, \times 10^7$
${}^{4}I_{13/2}$	0.0195	0.1173	1.4299	1514.67	18.602	14.024 ^{ЭД} +4.502 ^{МД}
${}^{4}I_{9/2}$	0	0.1856	0.0122	801.96	2.717	2.77 ^{ЭД}
${}^{4}F_{9/2}$	0	0.5275	0.4612	653.92	18.528	18.455 ^{ЭД}
$^{2}H_{11/2}$	0.7326	0.4222	0.3157	523.83	58.253	58.481 ^{ЭД}
${}^{4}F_{7/2}$	0	0.1467	0.6280	487.36	20.343	20.722 ^{ЭД}
${}^{4}F_{5/2} + {}^{4}F_{3/2}$	0	0	0.3493	447.70	10.443	10.528 ^{ЭД}
$^{2}H_{9/2}+^{4}G_{9/2}$	0	0.0157	0.2278	406.90	7.658	7.982 ^{ЭД}
${}^{4}G_{11/2}$	0.8970	0.5123	0.1172	378.23	89.676	89.424 ^{ЭД}
RMS						0.339

Переход $J \rightarrow J'$		4 a ⁻¹	$1 - c^{-1}$	τ Μο
J	J'	$A_{JJ'}, c$	$A_{06щ}$, С	град, МС
${}^{4}I_{13/2}$	${}^{4}I_{15/2}$	95.349 ^{ЭД} +28.805 ^{МД}	124.15	8.054
${}^{4}I_{11/2}$	$^{4}I_{13/2}$	8.161 ^{ЭД} +7.836 ^{МД}	78.42	12.752
	$^{4}I_{15/2}$	62.422 ^{ЭД}		
$^{4}I_{9/2}$	${}^{4}I_{13/2}$	23.258 ^{ЭД} +0.533 ^{МД}	69.99	14.286
	${}^{4}I_{15/2}$	45.832 ^{ЭД}		
${}^{4}F_{9/2}$	${}^{4}I_{11/2}$	28.421 ^{ЭД} +7.529 ^{МД}	551.3	1.814
	$^{4}I_{13/2}$	21.803 ^{ЭД}		
	$^{4}I_{15/2}$	490.544 ^{ЭД}		
${}^{4}S_{3/2}$	$^{4}I_{9/2}$	25.106 ^{ЭД}	826.5	1.209
	${}^{4}I_{11/2}$	16.547 ^{ЭД}		
	${}^{4}I_{13/2}$	226.789 ^{ЭД}		
	$^{4}I_{15/2}$	558 1 ^{9Д}		

Таблица 2. Вероятностные характеристики радиационных переходов Er³⁺ в кристалле Er³⁺, Yb³⁺: YMgB₅O₁₀

Расчет спектров поперечных сечений стимулированного испускания и усиления. Расчет спектров поперечных сечений стимулированного испускания (СИ) ионов Er^{3+} в области ~1.5 мкм (переход ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$) выполнен по модифицированному методу соответствия [15] с использованием рассчитанных ранее спектров поперечных сечений поглощения для трех поляризаций и радиационного времени жизни уровня ${}^{4}I_{13/2}$ ионов эрбия, определенного из теории Джадда-Оффельта:

$$\sigma_{\mu c \pi}^{\alpha}(\lambda) = \frac{3 \exp(-hc/(kT\lambda))}{8\pi n^2 \tau_{pa \pi} c \sum_{\beta} \int \lambda^{-4} \sigma_{nor \pi}^{\beta}(\lambda) \exp(-hc/(kT\lambda)) d\lambda} \sigma_{nor \pi}^{\alpha}(\lambda) \quad , \tag{9}$$

где $\sigma_{\text{исп}}(\lambda)$ — поперечное сечение СИ; α — поляризация света; h — постоянная Планка; c — скорость света в вакууме; k — постоянная Больцмана; T — температура среды; n — показатель преломления кристалла; $\tau_{\text{рад}}$ — радиационное время жизни уровня ${}^{4}I_{13/2}$ ионов эрбия; β — поляризация света; $\sigma_{\text{погл}}(\lambda)$ — поперечное сечение поглощения.

На рис. 3 представлены спектры поперечных сечений СИ кристалла Er,Yb:YMBO в области 1425—1650 нм. Интенсивные структурированные полосы испускания на различных длинах волн могут быть использованы для получения лазерной генерации. Для полосы испускания, соответствующей поляризации излучения $E//N_m$, наиболее интенсивный максимум с поперечным сечением СИ $1.85 \cdot 10^{-20}$ см² наблюдается на $\lambda = 1514$ нм. На вставке рис. 3 приведены спектры поперечных сечений

Рис. 3. Спектры поперечных сечений стимулированного испускания кристалла Er, Yb:YMBO в диапазоне 1425—1600 нм: $E||N_p(1), E||N_m(2), E||N_g(3)$; на вставке — спектры поперечных сечений усиления кристалла Er,Yb:YMBO в диапазоне 1425—1600 нм

усиления для различных коэффициентов относительной инверсной населенности β для поляризации *E*//*N_m*, рассчитанные по соотношению [16]:

$$g(\lambda) = \beta \sigma_{CH}(\lambda) - (1 - \beta) \sigma_{norn}(\lambda), \qquad (10)$$

где $g(\lambda)$ — коэффициент усиления на длине волны λ ; $\sigma_{CU}(\lambda)$ — поперечное сечение СИ на длине волны λ ; $\sigma_{norn}(\lambda)$ — поперечное сечение поглощения на длине волны λ .

Заключение. Показано, что кристалл иттрий-магниевого пентабората, легированный ионами Er³⁺ и Yb³⁺, характеризуется большими поперечными сечениями поглощения и стимулированного испускания, высокой эффективностью переноса энергии от ионов эрбия к ионам иттербия. Указанные характеристики свидетельствуют о перспективности использования кристаллов Er,Yb:YMBO в качестве активной среды лазеров диапазона 1.5—1.6 мкм, работающих в непрерывном режиме генерации и режиме пассивной модуляции добротности.

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 19-12-00235).

[1] К. Н. Горбаченя, В. Э. Кисель, А. С. Ясюкевич, В. Н. Матросов, Н. А. Толстик, Н. В. Кулешов. Журн. прикл. спектр., 82, № 2 (2015) 214—218 [К. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. N. Matrosov, N. A. Tolstik, N. V. Kuleshov. J. Appl. Spectr., 82 (2015) 208—212]

[2] K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, N. V. Kuleshov. Opt. Lett., 38 (2013) 2446–2448

[3] S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, F. Laurell. IEEE Phot. Tech. Lett., 13 (2001) 19-21

[4] Д. Д. Митина, В. В. Мальцев, Н. И. Леонюк, К. Н. Горбаченя, Р. В. Дейнека, В. Э. Кисель, А. С. Ясюкевич, Н. В. Кулешов. Неорг. матер., 56 (2020) 221—232

[5] P. A. Burns, J. M. Dawes, P. Dekker, J. Piper, H. Jiang, J. Wang. IEEE J. Quantum Electron., 40 (2004) 1575–1582

[6] D. S. Sumida. Opt. Lett., 19 (1994) 1343-1345

[7] Б. И. Степанов. Введение в теорию люминесценции, Минск, АН БССР (1963)

[8] B. R. Judd. Phys. Rev., 172 (1962) 750-761

[9] G. S. Ofelt. J. Chem. Phys., 37 (1962) 511-519

[10] A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Boulon, A. Brenier, B. Di Bartolo. Phys. Status Solidi (a), **151** (1995) 231–255

[11] W. T. Carnall, P. R. Fields, K. Rajnak. J. Chem. Phys., 49 (1968) 4424-4442

[12] C. M. Dodson. Phys. Rev. B, 86 (2012) 125102

[13] Y. Huang, F. Yuan, S. Sun, Z. Lin, L. Zhang. Materials, 11 (2018) 25

[14] Y. Huang, S. Sun, F. Yuan, L. Zhang, Z. Lin. J. Alloys Compd., 695 (2017) 215-220

[15] А. С. Ясюкевич, В. Г. Щербицкий, В. Э. Кисель, А. В. Мандрик, Н. В. Кулешов. Журн.

прикл. спектр., 71 (2004) 187—192 [A. S. Yasyukevich, V. G. Shcherbitskii, V. É. Kisel', A. V. Mandrik, N. V. Kuleshov, J. Appl. Spectr., 71 (2004) 202—208]

[16] **M. Eichhorn.** Appl. Phys. B, **93** (2008) 269–316