NOVEMBER — DECEMBER 2020

ОПРЕДЕЛЕНИЕ ДИНАМИКИ ВНУТРИКЛЕТОЧНОГО ПУЛА ИОНОВ ЦИНКА В ЭРИТРОЦИТАХ ЧЕЛОВЕКА С ПОМОЩЬЮ ФЛУОРЕСЦЕНТНОГО ЗОНДА FluoZin-3

Ю. М. Гармаза*, А. В. Тамашевский, Е. И. Слобожанина

УДК 577.336

Институт биофизики и клеточной инженерии НАН Беларуси, 220072, Минск, Беларусь; e-mail: garmaza@yandex.ru

(Поступила 16 июля 2020)

Продемонстрирован биофизический подход для определения динамики лабильного пула ионов цинка в эритроцитах человека в диапазоне 1-1000 нМ с помощью флуоресцентного зонда FluoZin-3. Метод может быть использован при проведении медико-биологических исследований и стать основой для разработки способов диагностики или прогнозирования течения заболеваний, связанных с нарушением метаболизма цинка.

Ключевые слова: эритроциты человека, лабильный пул ионов цинка, флуоресцентный метод.

We demonstrate a biophysical approach for estimation of the dynamics of a labile pool of zinc ions in human erythrocytes in the range from 1 to 1000 nM using a FluoZin-3 fluorescent probe. This method can be used in biomedical research and become the basis for developing methods for diagnosing or predicting the disease course associated with failure in zinc metabolism.

Keywords: human erythrocytes, labile zinc pool, fluorescent method.

Введение. Поддержание клеточного баланса ионов переходных металлов, таких как железо, медь и цинк, является непростой задачей для всех живых организмов. За счет уникальных химических свойств данные ионы способны выступать в качестве кофакторов многочисленных ферментов и белков, что отражается на их относительно высокой суммарной клеточной концентрации 1—100 мМ [1]. В то же время известно, что в свободной форме железо, медь и цинк проявляют определенную токсичность. Например, токсичность железа и меди в основном связана с их участием в окислительновосстановительных реакциях, что делает их мощными катализаторами при образовании свободных радикалов [1]. Токсичность свободного Zn²⁺ обусловлена его высоким сродством к различным аминокислотным остаткам, например гистидину и цистеину, что позволяет ему связываться со многими белками даже в наномолярных концентрациях и в итоге приводить к ингибированию ферментов или индукции белок-белковых взаимодействий [1—3]. Поэтому в процессе эволюции живые организмы выработали жесткую систему молекулярно-мембранных механизмов на клеточном уровне, позволяющую поддерживать оптимальное соотношение эссенциальных металлов в клетке и зависящую от их типа, а также видового разнообразия организмов [4].

Известно, что поддержание клеточного гомеостаза Zn^{2+} осуществляется путем буферизации внутриклеточной концентрации свободных ионов цинка при уровне, способном обеспечить Zn-связывающие участки белков, но ниже токсичного [5]. Несмотря на то что во многих животных клетках существует сложная регуляторная система, обеспечивающая поддержание физиологического уровня цитозольного Zn^{2+} , размер его внутриклеточного пула может быстро изменяться из-за повышенного поступления или дефицита ионов, что становится причиной нарушения многих биохимических процессов [6].

DETERMINATION OF THE DYNAMICS OF THE INTRACELLULAR POOL OF ZINC IONS IN HUMAN ERYTHROCYTES USING A FLUORESCENT PROBE FluoZin-3

Y. M. Harmaza*, A. V. Tamashevski, E. I. Slobozhanina (Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, 220072, Belarus; e-mail: garmaza@yandex.ru)

Для более четкого понимания процессов контроля гомеостаза ионов цинка и его роли в передаче сигналов внутри клетки необходимы методические подходы, которые позволяют визуализировать и регулировать уровень Zn²⁺ или его изменение. Выбор таких подходов должен опираться на несколько ключевых факторов: время анализа; требуемую точность; стоимость; пул ионов цинка, который необходимо определить (общий, лабильный или свободный), и его субклеточную локализацию (цитозоль, органеллы — комплекс Гольджи, митохондрии и др.) [7]. Метод флуоресценции идеально подходит для таких задач, поскольку сочетает высокую чувствительность и экспрессность. Флуоресцентные соединения должны иметь нужное сродство к ионам металла в физиологических условиях, высокую селективность по отношению к ним по сравнению с другими биодоступными металлами, а также обладать возможностью транслирования сигнала о связывании с исследуемым металлом в значительное увеличение интенсивности своей флуоресценции [7, 8].

Долгое время основной проблемой в изучении цинковой сигнализации было отсутствие чувствительных и специфических флуоресцентных соединений для визуализации динамических изменений Zn^{2+} *in vitro* и *in vivo*. В последнее десятилетие произошел большой прогресс в разработке новых цинк-селективных флуоресцентных зондов и хелаторов, которые позволили заглянуть в "окно" клеточной биологии цинка. Если провести параллель с научными открытиями в области кальциевой сигнализации в 1980-х гг., то они начались после разработки ратиометрического зонда фура-2, который помог дифференцировать Ca^{2+} от Mg^{2+} , а также селективного кальциевого хелатора ВАРТА [9]. Аналогичная работа проведена несколькими группами химиков по разделению двух других ионов $(Zn^{2+}$ и $Ca^{2+})$ в 2000-х гг., что привело к синтезу ряда флуоресцентных зондов на ионы цинка, таких как Newport green, FluoZin-3, zinpyr-1, chromis-1, а также генетически кодированных цинковых сенсоров [10—14].

Цель настоящей работы — разработка чувствительного и простого способа определения изменения внутриклеточной концентрации лабильного пула ионов цинка (пул свободных и слабосвязанных ионов) в эритроцитах человека с помощью флуоресцентного зонда FluoZin-3, который способен значительно изменять свои эмиссионные свойства при связывании данного элемента.

Эритроциты человека выбраны в качестве объекта исследования, так как они являются подходящими клетками для оценки статуса ионов цинка в организме (при попадании соединений цинка в кровь человека в них накапливается >90 % элемента), а отсутствие ядра и других органелл позволяет оценить именно цитозольный лабильный пул этого микроэлемента.

Концентрация свободных ионов цинка в клетках крови (в том числе в эритроцитах) составляет \sim 1 пМ [15], уровень лабильного цитозольного цинка колеблется около 1 нМ [16]. Для достижения поставленной цели выбран FluoZin-3, обладающий рядом преимуществ по сравнению с другими аналогами (FluoZin-1, FluoZin-2, RhodZin-3, Newport Green) [11, 17, 18]: чувствительностью к низким уровням содержания Zn^{2+} и к незначительным концентрационным изменениям (K_d =15 нМ при рН 7.4); стабильностью в присутствии окислителей (например, пероксинитрита); относительной невосприимчивостью к колебаниям рН в физиологических диапазонах; концентрации FluoZin-3, используемые в биологических системах (0.5—2 мкМ), относительно малы в отличие от других аналогов; длина волны возбуждения FluoZin-3 аналогична флуоресцеину, что делает возможным измерение флуоресцентных характеристик этого зонда на многих специализированных приборах (спектрофлуориметре, проточном цитометре, флуоресцентном и конфокальном микроскопе и др.).

В качестве аналога предлагаемого метода взят подход [17, 18] разработчиков флуоресцентного индикатора FluoZin-3. К недостаткам данного подхода можно отнести следующее: не подобраны точные условия работы с флуоресцентным зондом для его встраивания в клетки крови (температура и время инкубации, концентрация, буферная система); для пересчета концентрации ионов цинка предложены способы, требующие дополнительных реактивов (хелатора ионов цинка, ионофора для ионов цинка, флуоресцентного зонда mag-fura-5), времени и специальной методической подготовки для выполнения исследований.

Эксперимент. Периферическая кровь условно здоровых доноров в консерванте "гепарин" получена из РНПЦ трансфузиологии и медицинских биотехнологий МЗ РБ. Эритроциты отделяли от плазмы путем центрифугирования цельной крови при 2000g в течение 10 мин. Затем клетки промывали три раза при тех же условиях в физиологическом растворе (0.155 M) NaCl; ресуспендировали в 10 мМ трис-HCl буфере (рН 7.4), содержащем 0.155 M NaCl (буфер A) до 0.2 % гематокрита и нагружали флуоресцентным зондом FluoZin-3-AM в конечной концентрации 2 мкМ в течение 30 мин при постоянном перемешивании (37 °C). Исходный раствор FluoZin-3-AM в концентрации 2 мМ при-

966 ГАРМАЗА Ю. М. и др.

готовлен в диметилсульфоксиде (ДМСО), аликвота зонда была разведена в буфере A, содержащем 20 %-ную плюроновую кислоту F-127. Зонд, не связавшийся с эритроцитами, отмывали путем центрифугирования суспензии клеток при 2000g в течение 10 мин, далее клетки ресуспендировали в исходном буфере A, содержащем 0.3 % бычьего сывороточного альбумина (БСА), инкубировали при комнатной температуре в течение 30 мин в темноте и дважды отмывали (2000g, 10 мин) в буфере A. Далее к клеткам добавляли 2 мл буфера A и помещали в кварцевую кювету для измерения интенсивности флуоресценции FluoZin-3, которую регистрировали на спектрофлуориметре при $\lambda_{возб}/\lambda_{per} = 494/516$ нм.

Для изучения транспорта ионов цинка в кювету вносили 0.5 мл суспензии эритроцитов (0.2 %-й гематокрит), нагруженных зондом FluoZin-3 AM, как описано выше, после чего создавали различные экспериментальные условия для модификации цинкового гомеостаза клетки: добавляли сульфат цинка (100 мкМ), цинковый ионофор Na-пиритион (25 мкМ), внутриклеточный хелатор цинка N',N'-тетракис-(2-пиридил-метил)-этилендиамином (TPEN, 25 мкМ). После этого прописывали кинетики флуоресценции FluoZin-3 при $\lambda_{\text{возб}}/\lambda_{\text{per}} = 494/516$ нм.

Для исследования изменений внутриклеточного пула ионов цинка в эритроцитах человека проводили их инкубацию (10 %-й гематокрит) с сульфатом цинка в субгемолитических концентрациях (10—500 мкM) в течение 2 ч в буфере A in vitro (<math>37 °C). После инкубации эритроцитов в среде, содержащей сульфат цинка, клетки отмывали путем центрифугирования при 2000 g в течение 10 мин при температуре 2—4 °C, супернатант удаляли, а эритроциты ресуспендировали в исходном буфере A.

С целью перехода от абсолютных (приборных) величин интенсивности флуоресценции FluoZin-3 (отн. ед.) в количественные изменения концентрации Zn^{2+} (нМ) построена калибровочная кривая с использованием зонда FluoZin-3-TS. Для этого в кювету, содержащую 10 мМ трисHCl буфер (рН 7.4) и зонд FluoZin-3-TS концентрацией 1 мкМ, последовательно добавляли раствор сульфата цинка в концентрациях от 1 до 5000 нМ и прописывали кинетику флуоресценции при $\lambda_{возб}/\lambda_{per} = 494/516$ нм. Затем строили калибровочную кривую зависимости изменения интенсивности флуоресценции FluoZin-3 от концентрации Zn^{2+} .

Специфичность зонда FluoZin-3 к ионам цинка изучали следующим образом: в кювету, содержащую 10 мМ трисHCl буфер (рН 7.4) и зонд FluoZin-3-TS концентрацией 1 мкМ, добавляли физиологические концентрации сульфата цинка (1 мкМ), хлорида кальция (2 мМ) и хлорида магния (2 мМ). После этого прописывали кинетики флуоресценции FluoZin-3 при $\lambda_{возб}/\lambda_{per} = 494/516$ нм.

Растворы, используемые для построения калибровочной кривой и при определении внутриклеточной концентрации ионов цинка в эритроцитах, приготовлены из деионизированной воды mQ (удельное сопротивление 18.2 М·Ом·см) и солей металлов со степенью очистки >99.5 %.

Использованы следующие химические реактивы: 2-меркаптопиридин N-оксид-Na (Na-пиритион), TPEN, плюроновая кислота F-127, ДМСО, сульфат цинка (Sigma); FluoZin-3 AM и FluoZin-3 TS (Molecular Probes); БСА (Serva); трис-(оксиметил)-аминометан (Aplichem); хлорид натрия, хлорид магния, хлорид кальция ("Peaxum"). Все флуоресцентные измерения выполнены на спектрофлуориметре Cary Eclipse (Varian, Австралия).

Результаты и их обсуждение. Существуют две формы флуоресцентного индикатора FluoZin-3. Водорастворимая форма (FluoZin-3 TS) флуоресцирует в растворе и не проницаема для клеточной мембраны (использована для построения калибровочной кривой). Эстерифицированная форма (FluoZin-3 AM) способна проникать через клеточную мембрану, где эндогенные эстеразы "активируют" ее с образованием свободной окисленной формы (FluoZin-3), не проницаемой для мембраны. Это приводит к аккумуляции загруженного зонда в клеточном цитозоле, что позволяет контролировать в нем даже незначительные колебания содержания ионов цинка [11, 17]. В данном исследовании эстерифицированная форма FluoZin-3 использована при работе с эритроцитами человека.

Поскольку внутриклеточный уровень свободных ионов цинка (10^{-11} M) на несколько порядков ниже физиологического уровня ионов кальция (10^{-7} M) и магния (10^{-4} M) [19], а FluoZin-3 имеет три карбоксильные группы вместо четырех, как у классического Ca^{2+} -индикатора, для сохранения высокой аффинности к ионам цинка и для ее снижения к ионам кальция [20], на первом этапе работы с данным зондом проверено влияние физиологических концентраций ионов Ca^{2+} и Mg^{2+} на интенсивность его флуоресценции, чтобы исключить их вклад в интерпретацию итоговых результатов. Из рис. 1, a видно, что при добавлении хлорида кальция в концентрации 2 мМ в 10-мМ трисНСІ буфер, содержащий 1 мкМ FluoZin-3 TS, интенсивность флуоресценции FluoZin-3 возрастает в среднем на 3—5 %, а при добавлении хлорида магния концентрацией 2 мМ происходит ее незначительное

снижение — возможный результат эффекта разведения. В то же время добавление сульфата цинка концентрацией 1 мкМ в систему буферный раствор+зонд приводит к резкому увеличению интенсивности флуоресценции FluoZin-3. Таким образом, ионы магния в физиологической концентрации не оказывают влияния на интенсивность флуоресценции FluoZin-3, а ионы кальция вносят незначительный вклад в итоговую интенсивность флуоресценции FluoZin-3.

Рис. 1. Кинетика интенсивности флуоресценции FluoZin-3 в 10-мМ трис-HCl буфере до и после изменения его ионного состава (a) и встроенного в интактные эритроциты человека до и после модификации их цинкового гомеостаза (δ)

Проведены эксперименты по изучению ответа зонда FluoZin-3 на модификацию цинкового баланса в интактных эритроцитах человека. Из рис. 1, δ видно, что при добавлении в суспензию эритроцитов, предварительно нагруженных FluoZin-3 AM, комбинации ZnSO₄+Na-пиритион зонд реагирует мгновенно, увеличивается интенсивность его флуоресценции, так как присутствие цинкового ионофора (Na-пиритиона) в среде инкубации клеток позволяет ионам цинка быстро проходить сквозь цитоплазматическую мембрану во внутриклеточное пространство. В то же время при добавлении мембранопроницаемого внутриклеточного хелатора цинка TPEN, который обладает высокой аффинностью к Zn²⁺ (3.8 · 10¹⁵ M⁻¹) [21], снижается интенсивность флуоресценции FluoZin-3 до уровня ниже базального. Эти результаты демонстрируют, что флуоресцентный зонд FluoZin-3 быстро реагирует на модификацию внутриклеточного лабильного пула ионов цинка и его можно использовать для решения поставленных задач.

На следующем этапе непосредственно разработан флуоресцентный подход к определению изменения внутриклеточной концентрации лабильного пула ионов цинка с помощью FluoZin-3. К основным критериям разработки отнесены доступность используемого метода и диапазон его чувствительности. Чтобы экспериментально увеличить внутриклеточное содержание ионов цинка в эритроцитах условно здоровых доноров, проведена их предынкубация с сульфатом цинка в субгемолитических концентрациях (10—500 мкМ) в течение 2 ч *in vitro*. Соответствующий диапазон концентраций выбран исходя из того, что используемые количества сульфата цинка не вызывали гемолиза эритроцитов при выбранном времени инкубации (2 ч), а данные концентрации являются физиологическими (10 мкМ), фармакологическими (50 и 100 мкМ) и токсичными (500 мкМ) для клеток крови человека in vitro [22, 23]. Далее согласно протоколу, описанному выше, в интактные и Zn-модифицированные эритроциты был загружен флуоресцентный зонд FluoZin-3 AM и зарегистрированы спектры эмиссии флуоресценции FluoZin-3 (рис. 2, a). Как видно из рис. 2, δ , инкубация эритроцитов с сульфатом цинка в выбранном диапазоне концентраций в течение 2 ч приводит к дозозависимому возрастанию интенсивности флуоресценции FluoZin-3. Так, при воздействии ZnSO4 концентрацией 10 мкМ интенсивность флуоресценции увеличивается в среднем на 15—25 %, при инкубации с 50 мкМ на 30—45 %, при инкубации с 100 мкМ на 50—75 %, а при инкубации с 500 мкМ на 130—170 % относительно интенсивности флуоресценции FluoZin-3 в интактных клетках.

968 ГАРМАЗА Ю. М. и др.

Рис. 2. Типичный спектр флуоресценции FluoZin-3, встроенного в эритроциты человека (a), и зависимость его относительной интенсивности флуоресценции от содержания ионов цинка в среде инкубации клеток (δ); за 100 % принята интенсивность флуоресценции FluoZin-3 в интактных эритроцитах в отсутствие сульфата цинка в среде инкубации (контроль); представлены средние значения шести экспериментов ($x_{\rm cp} \pm S_x$); $\lambda_{\rm Bo36}/\lambda_{\rm per} = 494/516$ нм

С целью количественного пересчета изменения концентрации ионов цинка в Zn-модифицированных эритроцитах построена калибровочная кривая с использованием водорастворимой формы флуоресцентного зонда FluoZin-3 — FluoZin-3-TS. Для этого в кювету, содержащую 10 мМ трисHCl буфера и 1 мкМ зонда FluoZin-3-TS, последовательно добавляли сульфат цинка в концентрациях 0, 1, 10, 20, 30, 40, 50, 100, 150, 200, 300, 400, 500, 600, 1000, 2000, 5000 нМ и прописывали кинетику флуоресценции FluoZin-3 при $\lambda_{\text{возб}}/\lambda_{\text{per}} = 494/516$ нм в среднем по 150 с на каждую точку (рис. 3).

Рис. 3. Кинетика флуоресценции FluoZin-3 в 10-мМ трис-HCl буфере при увеличении концентрации сульфата цинка в буферной среде

Для перехода от кинетических кривых к средней интенсивности флуоресценции FluoZin-3 после добавления определенной концентрации ионов цинка определяли частное от деления площади под кинетической кривой на количество секунд, в течение которых регистрировали интенсивность флуоресценции. Итоговый результат (рис. 4, a) представляет собой калибровочную кривую в виде отношения разности интенсивности флуоресценции FluoZin-3 в экспериментальном образце (I) и интенсивности флуоресценции образца в отсутствие FluoZin-3 (I_0) к интенсивности флуоресценции образца в отсутствие FluoZin-3 (I_0). Из представленных калибровочных кривых (рис. 4) видно, что предлагаемый подход позволяет определить динамику концентрации лабильных ионов цинка в клетках в диапазоне 1—1000 нМ.

Рис. 4. Калибровочные кривые для определения изменения внутриклеточной концентрации лабильного пула ионов цинка в клетках

С использованием линейного участка построенной калибровочной кривой (рис. 4, δ) проведен пересчет полученных ранее относительных интенсивностей флуоресценции FluoZin-3 (рис. 2, δ) и установлено, что после инкубации суспензии эритроцитов с ZnSO₄ в концентрациях 10, 50, 100 и 500 мкМ в течение 2 ч *in vitro* внутриклеточная концентрация лабильных ионов цинка в них увеличивалась в среднем на 17—26, 30—43, 48—73 и 131—177 нМ соответственно.

Заключение. Результаты исследований позволили выявить особенности флуоресцентного метода оценки изменения внутриклеточного пула лабильных ионов цинка в эритроцитах человека с помощью FluoZin-3. Продемонстрирована чувствительность индикатора к низким уровням концентрации микроэлемента и незначительным изменениям содержания его лабильного пула. Установлено, что физиологические концентрации ионов Ca²⁺ и Mg²⁺ практически не влияют на интенсивность флуоресценции FluoZin-3 и, соответственно, не способны вносить вклад в интерпретацию итоговых результатов, что свидетельствует о высокой специфичности выбранного метода. Предлагаемый подход позволяет зарегистрировать изменение концентрации лабильных ионов цинка в эритроцитах человека в диапазоне 1—1000 нМ. Для определения изменения уровня лабильных ионов цинка предлагаемым способом достаточно небольшого количества биологического материала (в 1 мкл крови содержится ~1 млн эритроцитов).

Полученные результаты положены в основу патента "Способ количественного определения в эритроцитах содержания лабильных ионов цинка" [24]. Разработанный способ может быть использован для медицинских целей при создании методов оценки воздействия повышенных концентраций Zn^{2+} на клетки крови человека (например, при проведении "цинковой терапии") [2], а также методов коррекции патологий, вызванных дисбалансом цинка в организме человека (например, кардиологические болезни) [6, 25].

- [1] M. Valko, H. Morris, M. T. Cronin. Cur. Med. Chem., 12 (2005) 1161—1208
- [2] Ю. М. Гармаза, Е. И. Слобожанина. Биофизика, **59**, вып. 2 (2014) 322—337 [Y. M. Harmaza, E. I. Slobozhanina. Biophysics, **59**, N 2 (2014) 264—275]
- [3] W. Maret. Biochemistry, 43, N 12 (2004) 3301—3309
- [4] K. Bowers, S. K. Singh Srai. Traffic, 19 (2018) 813—822
- [5] A. Krezel, W. Maret. J. Biol. Inorg. Chem., 11 (2006) 1049—1062
- [6] Ю. М. Гармаза, К. А. Захарова, Е. И. Слобожанина. Новости мед.-биол. наук, 19, № 3 (2019) 84—106 [Y. M. Harmaza, K. A. Zakharova, E. I. Slobozhanina. News Biomed. Sci., 19, N 3 (2019) 84—106]
- [7] K. P. Carter, A. M. Young, A. E. Palmer. Chem. Rev., 114 (2014) 4564—4601
- [8] D. W. Domaille, E. L. Que, C. J. Chang. Nat. Chem. Biol., 4 (2008) 168—175
- [9] **R. Y. Tsien.** Biochemistry, **19**, N 11 (1980) 2396—2404
- [10] D. Bourassa, C. M. Elitt, A. M. McCallum, S. Sumalekshmy, R. L. McRae, M. T. Morgan, N. Siegel, J. W. Perry, P. A. Rosenberg, C. J. Fahrni. ACS Sens., 3, N 2 (2018) 458—467

970 ГАРМАЗА Ю. М. и др.

- [11] K. R. Gee, Z.-L. Zhou, D. Ton-That, S. L. Sensi, J. H. Weiss. Cell Calcium, 31, N 5 (2002) 245—251
- [12] D. Y. Zhang, M. Azrad, W. Demark-Wahnefried, C. J. Frederickson, S. J. Lippard, R. J. Radford. ACS Chem. Biol., 10 (2015) 385—389
- [13] J. G. Park, Y. Qin, D. F. Galati, A. E. Palmer. ACS Chem. Biol., 7 (2012) 1636—1640
- [14] J. L. Vinkenborg, T. J. Nicolson, E. A. Bellomo, M. S. Koay, G. A. Rutter, M. Merkx. Nat. Methods, 6 (2009) 737—740
- [15] **T. J. Simons.** J. Membr. Biol., **123** (1991) 63—71
- [16] **D. J. Eide.** Biochim. Biophys. Acta, **1763** (2006) 711—722
- [17] A. R. Kay. BMC Physiol., 4, N 4 (2004) 1—9
- [18] **I. Johnson, M. T. Z. Spence.** Molecular Probes Handbook, a Guide to Fluorescent Probes and Labeling Technologies, 11th ed., Life Technologies (2010)
- [19] W. Maret. Int. J. Mol. Sci., 18, N 11 (2017) 6—17
- [20] J. Zhao, B. A. Bertoglio, K. R. Gee, A. R. Kay. Cell Calcium, 44, N 4 (2008) 422—426
- [21] H. Haase, S. Hebel, G. Engelhardt, L. Rink. Anal. Biochem., 352 (2006) 222—230
- [22] N. Boukaïba, C. Flament, S. Acher, P. Chappuis, A. Piau, M. Fusselier, M. Dardenne, D. Lemonnier. Am. J. Clin. Nutr., 57 (1993) 566—572
- [23] K. L. Chang, T. C. Hung, B. S. Hsieh, Y. H. Chen, T. F. Chen, H. L. Cheng. Nutrition, 22, N 5 (2006) 465—474
- [24] **Ю. М. Гармаза, А. В. Тамашевский, Е. И. Слобожанина.** Способ количественного определения в эритроцитах содержания лабильных ионов цинка, патент № 20134 PБ, МПК C2 G01N 33/52 (2006.01) (2016)
- [25] Y. M. Harmaza, A. V. Tamashevski, E. I. Slobozhanina. J. Int. OMICS, 9, N 1 (2019) 10—16