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We established prediction models based on the combination of spectral and different advanced image 

features to improve the prediction accuracy of solid-soluble content (SSC) of apple. Eight optimal wave-
lengths were selected using a new variable selection method called variable combination population analy-
sis (VCPA). Image textural features of the first three principal component score images were obtained using 
a gray level co-occurrence matrix (GLCM) and a local binary pattern (LBP). Next, a random frog algorithm 
was developed to select optimal textural features for further analysis. A support vector regression (SVR) 
model based on spectral and different textural features was developed to predict the SSC of the apple. The 
model based on eight optimal wavelengths and nine optimal GLCM features of principal component images 
yielded the best result with the determination coefficient for prediction (Rp

2) of 0.9193, root mean square er-
ror for prediction (RMSEP) of 0.2955, and the ratio of the standard deviation of the prediction set to the 
root mean square error of prediction (RPD) with a value of 3.50. These results revealed that the spectral 
combined with optimal GLCM features from principal component images coupled with the SVR model has 
the potential for prediction of the SSC of apple. 
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Созданы модели прогнозирования, основанные на сочетании спектральных и различных расши-

ренных функций изображения для повышения точности прогнозирования твердого растворимого 
содержимого (SSC) яблока. Восемь оптимальных длин волн выбраны с помощью нового метода вы-
бора переменных — анализа совокупности переменных (VCPA). Текстурные особенности первых 
трех изображений с оценкой основных компонент получены с использованием матрицы совместной 
встречаемости уровней серого (GLCM) и локального двоичного шаблона (LBP). Разработан алго-
ритм случайной лягушки для выбора оптимальных текстурных особенностей для дальнейшего ана-

 
** Full text is published in JAS V. 87, No. 6 (http://springer.com/journal/10812) and in electronic version of ZhPS 
V. 87, No. 6 (http://www.elibrary.ru/title_about.asp?id=7318; sales@elibrary.ru). 
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лиза. Для прогнозирования SSC яблока разработана модель регрессии опорных векторов (SVR), осно-
ванная на спектральных и текстурных характеристиках. Модель, основанная на восьми оптималь-
ных длинах волн и девяти оптимальных характеристиках GLCM-изображений главных компонент, 
дает лучший результат с коэффициентом детерминации для прогноза (Rp2) 0.9193, среднеквадра-
тичной ошибкой прогноза 0.2955 и отношением стандарта. Отклонение прогноза установлено на 
среднеквадратичную ошибку прогнозирования RPD = 3.50. Результаты показывают, что спектр 
в сочетании с оптимальными характеристиками GLCM из изображений основных компонент в со-
четании с моделью SVR имеет потенциал для предсказания SSC яблока. 

Ключевые слова: гиперспектральное изображение, растворимое твердое вещество, текстур-
ная характеристика, анализ совокупности переменных, случайная лягушка, модель регрессии опор-
ных векторов. 

 
Introduction. Apple is one of the most popular fruits among consumers worldwide [1, 2]. Soluble sol-

ids content (SSC) is one of the most critical fruit quality properties that attract consumers [3, 4]. The tradi-
tional methods used for measuring the SSC of the fruits are destructive and time-consuming. Therefore, to 
meet the requirements of improving product quality in the fruit industry, it is necessary to develop a fast and 
nondestructive method for detecting the SSC of apple.  

Two main methods are used in the field of nondestructive testing of food quality attributes: near-
infrared spectroscopy (NIRS) and machine vision [5–7]. NIRS is widely used in the study of internal quality 
attributes of foods because of its fast and non-invasive nature [8–10]. Owing to the variations in the absorb-
ance of different chemical bonds in the near-infrared range, NIRS can precisely reflect the internal chemical 
composition of agricultural products. However, it cannot provide spatial information [11]. Machine vision 
technologies use the image information of the sample surface alone to predict the content of internal compo-
nents, and the lack of spectral information also limits them.  

Hyperspectral imaging (HSI) technology was offered to circumvent these problems [12–16]. This 
method can provide both spectral and image information and was already employed to detect the internal 
quality of food. The textural features of the image reflect the intensity changes of pixels and spatial topologi-
cal relations, which may be related to the chemical composition of SSC in apples. Consequently, a calibra-
tion model based on a combination of spectral and textural features may offer more information for predict-
ing SSC than using the spectrum alone.  

Many studies have used a combination of image and spectral to combination to predict quality attributes 
of agricultural products. Examples include prediction of SSC of apple [17], where the best results were ob-
tained with correlation coefficient (R), and root mean square errors of prediction set (RMSEP), with a value 
of 0.9327 and 0.641%, respectively. Hyperspectral imaging for predicting the moisture content of roasted 
pistachio kernels established an artificial neural network (ANN) model with results of Rp

2 = 0.907 and 
RMSEP = 0.179, respectively [18]. These results indicated that applying a combination of spectral and tex-
ture information to predict the SSC of apple is feasible for improving the prediction accuracy in comparison 
with the use of spectral or texture information alone. Moreover, many previous investigations have shown 
that the prediction results obtained using texture information alone were unsatisfactory. For example, 
Liu et al. used the fusion data and the individual textural features to predict the pH in salted meat, and the 
coefficients of determination (Rp

2) were 0.794 and 0.593, respectively [19]. To reduce the dimensions of hy-
perspectral images, Cheng et al. extracted textures from the grayscale images at characteristic wavelengths 
for predicting the K value of pork [20], Jun-Hu Cheng predicted the sensory quality index score of fish fillet 
using textures extracted from the principal component (PC) score images [21].  

Therefore, this study aims to determine the best combination of spectral and two types of textural fea-
tures (i.e., gray level co-occurrence matrix (GLCM) and local binary pattern (LBP), both extracted from PC 
images), to obtain a prediction model with the highest efficiency, instead of investigating the modeling re-
sults obtained using textures alone. The particular objectives of this study are: (1) to extract spectral data 
from the region of interest (ROI) of hyperspectral images and select the most prominent spectral bands as 
optimal spectral bands by VCPA; (2) to extract textural features from PC images using GLCM and LBP, re-
spectively; (3) to select the optimal textural features employing random frog algorithm, and to (4) predict 
SSC of apple by establishing support vector regression (SVR) model based on optimal spectral alone, opti-
mal spectral information combined with full textural features, full spectral information combined with opti-
mal textural features, and the combination of optimal spectral information and optimal textural features.  
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Materials and methods. Figure 1 shows a flowchart of the main steps involved in predicting the SSC 
of apple, where the main process of data analysis was presented in a schematic diagram. Details are present-
ed in subsequent sections. 

 

   
 

Fig. 1. Flowchart of the prediction of SSC by hyperspectral imaging. 
 

Sample preparation. A total of 126 similarly sized Yantai apples was purchased at the local fruit market 
in Ya’an, China. The apples were fruit-shaped, and the surface of the fruits was bright and flawless. After 
washing and labeling, they were placed at standard room temperature for 24 h prior to experiments. All sam-
ples were divided into a calibration set and a prediction set, a subset of 90 samples was selected for the cali-
bration set, while the remaining 36 were used for the prediction set. 

Hyperspectral images acquisition and calibration. In this study, the hyperspectral imaging system 
named ‘GaiaSorter’ (Zolix. Instrument Co. Ltd, China) was used to obtain raw hyperspectral images of ap-
ples. The system mainly consisted of a hyperspectral camera with 1344×1024 pixels (Image--V10) cover-
ing the spectral range of 387–1034 nm, an illumination unit of 4×200 W tungsten bromide lamps, a transla-
tion stage, and a computer with data acquisition software (SpectralView). 

The translation stage had a scanning speed of 5 mm/s, the distance between the surface of samples and 
lens was 255 mm, and the exposure time was set to 11 ms. In order to reduce the effect of dark current of the 
CCD detector, the raw hyperspectral images (Rraw) were calibrated with a white reference image (Rwhite) and 
a dark reference image (Rdark). The white reference image was obtained from whiteboard (100% reflec-
tance), and the dark reference image was obtained with the lamps off and the camera lens completely cov-
ered with its cap (0% reflectance). The corrected image (R) was calibrated according to the equation: 

raw dark

white dark

100%
R R

R
R R


  .              (1) 

Extraction of spectral information and preprocessing. As apple is a spherical fruit, the lightness on the 
fruit surface is uneven. Hence, the regions of interest (ROIs) with 60×60 pixels near the center area was 
manually selected from hyperspectral images of each apple using ENVI 5.1 (ITT Visual Information Solu-
tions, Boulder, CO, USA) software. Then, the mean spectral information of all the pixels within the ROIs 
was extracted and represented as the spectral value of the sample. Owing to sharp noise in the two sections 
of 387–400 and 1000–1034 nm (Fig. 2), the whole spectrum was resized to the range of 400–1000 nm with 
237 wavebands. Finally, the spectral data were preprocessed using Savitzky-Golay smoothing (the width of 
the moving window was set to 15, and the polynomial order was 3) and direct orthogonal signal correction 
(DOSC) [22] with a tolerance value of 1E-3. It is noteworthy that the prediction model can be influenced by 
the relative values of spectral and textural features. Hence, all input variables were normalized before modeling. 
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Fig. 2. Original spectrum of pixel points.  
 
Extraction of textural features. Extraction of textural features from images at all wavelengths can pro-

duce a large amount of data that may complicate the calculations using the model. To solve the problem of 
the high dimensionality of hyperspectral images, a principal component analysis was performed in order to 
transform hyperspectral images into a sequence of principal component score images. In this study, the first 
three PC images were used to extract textural features as their cumulative variance accounted for 97% in all. 

Extracting textural features using gray level co-occurrence matrix (GLCM). GLCM is a popular statis-
tical texture analysis method [23], which measures the probability that a pixel of a particular gray level oc-
curs at a specified direction and distance from its neighboring pixels [24]. In this study, the GLCM was em-
ployed to calculate textural features use four directions (θ  = 0, 45, 90, and 135) with the distance between 
two neighboring pixels equal to 1. As the background could influence the extraction of texture from the 
whole image, we extracted texture from ROIs of the image. On the other hand, in order to improve the calcu-
lation speed and to reduce the impact of noise, the gray levels of images were compressed to 16. The ob-
tained six textural features, namely, maximum probability, contrast, correlation, energy, homogeneity, and 
entropy, were calculated using the following equations: 

Maximum probability = max{P(i,j)},                                          (2)  

Contrast =    2

1 1
,

N N

i j
i j P i j

 
 ,               (3) 

Correlation =
   1 1 , μ μ

σ σ

N N
i ji j

i j

ij P i j   
,       (4) 

Energy =  2

1 1
,

N N

i j
P i j

 
 ,               (5) 

Homogeneity =
 
 2

1 1

,

1

N N

i j

P i j

i j   
 ,        (6) 

Entropy =     
1 1

, lg ,
N N

i j
P i j P i j

 
 ,        (7) 

where  and  are the means and standard deviations, respectively. Furthermore, i and j represent the row 
and column in the GLCM. Thus, a textural features matrix of 126×3×24 (samples×images×6 textural fea-
tures in four different directions) was obtained in each case. All the textural features were pre-processed us-
ing the 15-point SG smoothing mentioned above before developing the prediction models. 

Extracting textural features using local binary pattern (LBP). There is a relationship between a pair of 
pixels in a particular spatial position, where the local binary model can better reflect this space relationship 
[25, 26]. The basic idea of the LBP is to define a local area (rectangle or circle) and to compare the gray val-
ue of the center pixel (gc) with the gray value of all adjacent pixels (gh) in an equispaced circular neighbor-
hood of P pixels of radius R. The corresponding binary mode was calculated when gc  gh was set to 0 and 
gc  gh was set to 1. Next, the histogram of each cell was calculated and normalized. Finally, the statistical 
histograms of each cell were connected to obtain the LBP texture features of the image. In the present study, 
we have applied rotation and uniform invariant of LBP to reduce the dimensions of the LBP patterns, which 
was expressed by the following formula: 
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where U(LBPP,R) are the transitions between 0 and 1; gc represent the gray value of a pixel at center location, 
and gh the gray value of all adjacent pixels in an equispaced circular neighborhood of P pixels in a radius R. 
The s is a sign function equal to 0 or 1. If U(LBPP,R) is higher than 2, the LBP is equal to P+1 and regarded 
as a non-uniform pattern. Ultimately, a total of 10 normalized histogram features of each image was obtained 
to form a matrix of 126×3×10 (samples×images×features). 

SSC reference measurement. After the acquisition of the hyperspectral images of the samples, the phys-
icochemical value of the SSC was measured using a sugar refractometer (LB20T, China). A piece  
of 2–3 mm flesh was taken from the position which corresponded to the area of spectra acquisition, the ap-
propriate amount of fruit juice was squeezed on the detection prism of the refractometer, and the sample val-
ues were recorded. To reduce the effect of the randomness of the measurements, the operation was repeated 
three times for each sample, and the average value was considered as the main result for sample measurements. 

Variable selection method. Usually, a large amount of textural data does not have a positive effect on 
the prediction accuracy of the model. Therefore, VCPA and random frog algorithms were used to select the 
optimal variables for spectral and textural features, respectively. 

Variable combination population analysis (VCPA). VCPA is a novel variable selection method. It con-
sists of two crucial procedures: (i) the exponentially decreasing function (EDF) was used to determine the ra-
tio of a variable that has to be retained after each run to update the variable space continuously; (ii) a binary 
matrix sampling (BMS) strategy was used to produce a series of subsets by random combination. The model 
population analysis was applied to determine the first σ% subsets that have the lowest root mean squares er-
ror of cross-validation (RMSECV), followed by computation of the frequency of each variable appearing in 
those first % subsets [27]. The advantage of VCPA is that it provides all variables the same chance to be 
selected through the BMS strategy. In the present study, the EDF run N was set to 50; the BMS runs times 
were set to 10000, and the number of variables retained after N times EDF run was set to 14. Finally, the 
RMSECV of all combinations among these 14 variables was computed, and subsets with the lowest 
RMSECV were selected. The following formula expresses the ratio of the remaining variables in the ith run 
of EDF: 

i
ir e ,               (10) 

where θ is a constant parameter controlling the curve of EDF. When i = 0, all variables are taken for model-
ing, which indicates that r0 = 1. Furthermore, when i = N, rN = 14/p, where p is the number of all variables, 
θ was calculated as follows: 

 ln /14
θ

P

N
 .                  (11) 

Random frog. Random frog is a variable selection method based on the framework of reversible jump 
Markov Chain Monte Carlo (RJMCMC) proposed by Li et al. [28, 29]. In quantitative analysis, it is consid-
ered the absolute regression coefficient of the variable as the probability of being selected. The higher the 
probability, the easier is the selection. Briefly, it works in four steps: (1) initialize a subset of variable V0 
consisting of Q variables; (2) propose a candidate subset V* with Q* variables; (3) accept V* as V1 to replace 
V0 with a certain probability; and (4) after N iterations, compute a selection probability of each variable and 
set a threshold based on experience. 

Support vector regression (SVR) analysis. Support vector regression is a frequently used method based 
on the minimization of structural risk, which can solve the problems of small sample size, nonlinearity, and 
high dimensionality [30]. The basic idea of SVR is to find an optimal interval that minimizes the error of all 
training samples from the optimal interval. Similar to the perceptron model, the support vector machine tries 
to find a straight line in a two-dimensional space to isolate the two types of samples correctly. For a higher 
dimensional space, a hyperplane with a maximum-margin is necessary. Assuming that the hyperplane can be 

expressed as ω 0T x b  , the distance from the support vector to the optimal hyperplane is 1/||||, so the 
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maximum-margin is equal to 2/||||. The optimization goal is to minimize the value of ||||. When a function 
ω,f x b     is used to approximate pairs (xi, yi) with +(i, i

*) precision, the convex optimization problem 

can be formalized as    
                                                           Minimize subject to 

 2 *

1

*

*

1

2

,

,

, 0

l

j j
i

i i j

i i j

j j

C

y x b

x b y b


    

       
        
   



         (12) 

where ω, x   denotes the dot product of  and x, and  is the maximum biases of yi and function f that can 
be tolerated, representing the expectation error. The constant C is the penalty factor, which indicates the de-
gree of punishment for samples that exceed the maximum biases . The i  and  i

*  are introduced slack vari-
ables. After calculating  and b by constructing a Lagrange function, function f can be written as follows: 

*

1
( )) ( ,

l

i i i
i

f x x x b


       ,                     (13) 

where i and i
* are Lagrange multipliers, i is the number of samples in the calibration set, and xi, x denotes 

the dot product of xi and x.  
The radial basis function (RBF) was used as a kernel function to map training data into some feature 

space and then apply a standard SVR algorithm; moreover, the present study employed the grid method and 
5-fold cross-validation to determine the optimal penalty factor (C) and the parameter of kernel function (γ). 

Model evaluation. The model evaluation parameters include the determination coefficient for calibration 
(Rc

2) and the determination coefficient for prediction (Rp
2), the root mean square error of calibration 

(RMSEC) and the root mean square error of prediction (RMSEP), and the ratio of the standard deviation of 
prediction set to the root mean square error of prediction (RPD). Generally, the values of Rc

2 and Rp
2 are in 

the range of 0–1, and a well-performing model should have a high value of Rc
2, Rp

2, and RPD and low values 
of RMSEC and RMSEP. RPD values higher than 2.0 indicate that the model has decent predictive perfor-
mance, whereas RPD values above 3.0 indicate good to excellent prediction accuracy [31, 32]. 

Results and discussion. Statistics of SSC of samples. To ensure that the information from the calibra-
tion set used to establish the predictive model is representative, the Kennard-Stone method was used to di-
vide the 126 samples into two groups, the calibration set and the prediction set. The statistics of SSC of ap-
ples in the calibration and the prediction are shown in Table 1. The range of the calibration set is 12–17.75 
and covers the range of the prediction set. The mean value and the standard deviation of the calibration set 
are 14.6367 and 1.1738, respectively.  

 
TABLE 1. Statistics for the SSC Values of the Calibration Set and Prediction Set 

 
 Number of samples Min Max Mean Std 

Total 126 12.0000 17.7500 14.6579 1.1041 
Calibration set 90 12.0000 17.7500 14.6367 1.1738 

Prediction set 36 12.9000 17.2500 14.7111 0.9196 
 

Modeling based on spectral information. Before the selection of effective variables, the performance of 
the full-spectrum SVR model was investigated. When the SVR algorithm was involved in building a predic-
tive model, the optimal penalty factor (c) and the parameter of kernel function () were achieved with c = 16 
and  = 9.76510–4, respectively. As can be observed in Table 2, the model yielded a result with 
Rp

2 = 0.6357, RMSEP = 0.5799, and RPD = 1.51 for SSC prediction. The value of RPD and Rp
2 indicates 

that the generalization ability of the model at the present stage is insufficient. 
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TABLE 2. Performance of SVR Model Based on Spectral Features Alone 
 

Method Number of 
variables 

Calibration Prediction 
Rc

2    RMSEC Rp
2 RMSEP RPD 

Full spectral 237 0.9306    0.3156 0.6357    0.5799 1.51 
VCPA 8 0.9185    0.3347 0.7881    0.4225 2.18 

random frog 10 0.9029    0.3771 0.7960    0.3622 2.25 
 

The VCPA was implemented to select eight optimal wavelengths (411, 427, 447, 449, 452, 576, 621, 
and 944 nm) from the full spectra, and the frequency of selected variables after EDF runs is presented in 
Fig. 3. The selected optimal variable at 944 nm was likely due to the combined effect of water and carbohy-
drate absorbance. Furthermore, chlorophyls associated with fruit maturity have absorption bands occurring at 
about 621 and 576 nm [33, 34]. From 400 to 500 nm, there is an increase in absorbance, with a stronger peak 
at about 490 nm. Although the results of chemical property analysis of spectral features from 400 to 500 nm 
are unclear, the results showed that this region may be related to the SSC prediction. The calibration model 
was developed based on the eight optimal wavelengths coupled with the SVR algorithm. As it can be seen in 
Table 2, the results of the SVR model based on the optimal wavelengths (Rc

2 = 0.9185, RMSEC = 0.3347, 
Rp

2 = 0.7881, RMSEP = 0.4225, and RPD = 2.18) show considerable progress compared to the full-
spectrum. However, the results are not entirely satisfactory, and the information used for modeling may not 
be sufficiently rich. 

 

  
 

Fig. 3. Selected variables and the frequency of selected variables within 50 times by VCPA. 
 

The random frog algorithm is used to calculate the probability of all wavelengths being selected, and 
then the largest top 10 (404, 421, 428, 442, 445, 447, 567, 604, 607, and 960 nm) are selected as the optimal 
variables. Taking these optimal variables as the input of the SVR model, the prediction model finally result-
ed in Rc

2 = 0.9029, RMSEC = 0.3771, Rp
2 = 0.7960, RMSEP = 0.3622, and RPD = 2.25. As shown in Table 

2, the model established with the variables selected by the random frog algorithm achieved results similar to 
those obtained with the VCPA algorithm. 

Modeling based on the combination of spectral selected by VCPA and textural features. To compensate 
for the drawbacks of using spectral data alone, the SVR model was constructed depending on the combina-
tion of spectral and textures extracted from PC images. In Table 3, the model evaluation parameters of the 
model (Rp

2 = 0.8437, RMSEP = 0.4682, and RPD = 2.14) based on the combination of spectral and full 
GLCM features were compared with the model that used spectral data alone. The Rp

2 value improved by 
7.05%, although the RMSEP value increased by 10.82%. For LBP features, the model (Rp

2 = 0.8439, 
RMSEP = 0.3853, and RPD = 2.38) based on spectral combined full features showed some progress.  

According to the statistical analysis of the results mentioned above, for the predictive ability of SSC, it 
can be observed that although the performance of the model based on spectral information and full textural 
features has been improved, it is still not satisfactory. We supposed that this might be because of the fusion 
of textural features and spectral data, which results in data redundancy. Therefore, the textural feature was 
selected using the random frog algorithm. The more important a textural feature is, the more likely it is to be 
selected into the optimal subsets. We set the threshold to 0.15 based on experience and selected nine optimal 
features for GLCM features (maximum probabilityθ=0°  located on PC1  image,  energyθ=0°,  homogeneityθ=0°, 
entropyθ=90°, maximum probabilityθ=135° located on PC2 image, correlationθ=0°, homogeneityθ=0°, contrastθ=135°, 
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and correlationθ=135° located on the image PC3). For LBP features, we also set the threshold to 0.15 and select 
8 optimal features. Table 3 shows that the performance of the model based on a combination of spectral and 
optimal GLCM features (Rc

2 = 0.9330, RMSEC = 0.2909, Rp
2 = 0.9193, RMSEP = 0.2955, and RPD = 3.50) 

and the model based on spectral combined with optimal LBP features (Rp
2 = 0.9121, RMSEC = 0.3131, 

Rp
2 = 0.8740, RMSEP = 0.4392, and RPD = 2.81) were more efficient than those based on spectral infor-

mation plus complete textural features. Specifically, the model using spectral and optimal GLCM features 
performed better than the model using spectral and optimal LBP features. The measured and predicted val-
ues of the different models are collected in Fig. 4. 

 
TABLE 3. Performance of SVR Model Based on Spectral and Different Textural Features 

 
 

Index 
 

Data set 
Number of 
variables 

Calibration Prediction 
2
cR  RMSEC 2

pR  RMSEP RPD 

Optimal spectral+ 
full textures 

Spectral+GLCM 8+72 0.8924 0.3595 0.8437 0.4682 2.14 
Spectral+LBP 8+30 0.9111 0.3486 0.8439 0.3853 2.38 

VCPA Spectral+GLCM 8+9 0.9330 0.2909 0.9193 0.2955 3.50
Spectral+LBP 8+8 0.9121 0.3131 0.8740 0.4392 2.81 

 

   

   

  
 

Fig. 4. Measured vs. predicted SSC for model based on different combinations of spectral  
and textures of PC images. Spectral alone (a), (b), and combinations (c)–(f). 
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Modeling based on combination of spectral selected by random frog and textures. Similar to the previ-
ous section, in order to verify that there is redundancy in the full texture feature data, the optimal spectral 
features were combined with the full texture features to establish a prediction model. The as-obtained results 
are in line with expectations. Whether the spectrum is combined with full GLCM or LBP features, the model 
prediction results only show a small increase or even a regression. Moreover, prediction models based on 
full-spectrum and optimal texture features were established. The model based on full spectral and optimal 
GLCM texture features gave the results Rp

2 = 0.8359, RMSEP = 0.3417, and RPD = 2.34. Furthermore, the 
model based on full spectral and optimal LBP texture features gave the results Rp

2 = 0.8467, 
RMSEP = 0.3331, and RPD = 2.48. In the next step, the optimal spectrum was combined with the texture 
features optimized by the random frog algorithm to establish an improved SVR model. As shown in Table 4, 
the predicted results of the model based on optimal spectral and GLCM textures are Rp

2 = 0.8406, 
RMSEP = 0.3414, and RPD = 2.52, and the results of the model based on optimal spectral and LBP textures 
are Rp

2 = 0.8892, RMSEP = 0.3324, and RPD = 3.05. Thus, it can be concluded that after the optimization of 
the full textural features, the performance of the model was significantly improved. 

 
TABLE 4. Performance of SVR Model Based on Spectral and Different Textural Features 

 

Index Data set Number of 
variables 

Calibration Prediction 
Rc

2 MSEC Rp
2 RMSEP RPD

Optimal spectral 
+full textures  

Spectral+GLCM 10+72 0.9176 0.3417 0.7104 0.5024 1.65
Spectral+LBP 10+30 0.8916 0.3968 0.8236 0.3816 2.13

Full spectral+ opti-
mal texture 

Spectral+GLCM 237+9 0.9228 0.3223 0.8359 0.3417 2.34 

Full spectral+opti-
mal texture 

Spectral+LBP 237+8 0.9497 0.2481 0.8467 0.3331 2.48 

Random frog Spectral+GLCM 10+9 0.9455 0.2769 0.8406 0.3414 2.52 
 Spectral+LBP 10+8 0.8998 0.3591 0.8892 0.3324 3.05
 

Conclusions. The present study explored the feasibility of using optimal wavelengths integrated with 
textural features to develop a simple and efficient prediction model for SSC detection. Using VCPA and the 
random frog algorithm to select eight and 10 optimal wavelengths, respectively, and building a simplified 
model separately gave results that were not satisfactory. The predictive ability of the model obtained by fus-
ing spectral and textural features was better. For instance, the model based on the fusion of full spectral and 
optimal LBP features had values of Rp

2 of 0.8467, RMSEP of 0.3331, and RPD of 2.48. Furthermore, we 
used the random frog algorithm to select optimal textural features for further analysis. The results show that 
the performance of the model (Rp

2 = 0.9193, RMSEP = 0.2955, and RPD = 3.50) based on the combination 
of optimal spectral and optimal textures of GLCM was best. 
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