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The objective of this study was to confirm whether near infrared spectroscopy could be used to discrim-
inate the infected silkworm chrysalises. A total of 105 silkworm chrysalises — 65 infected and 40 uninfected —
were collected at Beijing Shoucheng Agricultural Development Co., Ltd. Near infrared spectra were ac-
quired at the head, chest, abdomen, and posterior belly of each silkworm chrysalis (both uninfected and in-
fected). Three spectral pre-processing methods and four discrimination models were used to identify the un-
infected and infected silkworm chrysalises. Results indicated that the PLS-DA model based on the spectra
processed by multiplicative scatter correction (MSC) had the best discrimination performance (the predic-
tion accuracy of calibration set and prediction set were 100 and 97.5%, respectively), and the head portion
was the best position for the discrimination of uninfected and infected silkworm chrysalises. The overall
conclusion was that the uninfected and infected silkworm chrysalises could be successfully identified by
using near infrared spectroscopy technology in the cultivation of Cordyceps militaris.

Keywords: Cordyceps militaris, multiplicative scatter correction, partial least square discriminant
analysis.
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Bnuorcnsas UK-cnekmpockonust ucnonis306ana 0is pacho3HABAHUS 3APANCEHHBIX XPUZAIUOO8 NMYMOBOZO
wenkonpsoa. Beceeo 105 xpuzanudos mymosoeo weakonpsaoa (65 unguyuposannvix u 40 He3apajdceHHvIX)
cobparno 8 nexunckou xomnanuu Shoucheng Agricultural Development Co., Ltd. Cnexmpwvl 6 6naudichem
HK-0uanaszone nomyyensvt uz obnacmeti 20106bi, epyou, HCUeOmMa U 3a0Hell vacmu OPIOUKa Kaxcoo20 Xpusa-
AUOA MYMOBO2O UETKONPAOA (KAK He3apadCeHHbIX, MaK U UHQUUUPOBaHHIX). {1 udeHmugurayuu Hesa-
PAXCEHHBIX U UHDUYUPOBAHHBIX XPUZAIUOOE THYNOBO20 WENKONPAOA UCHOTIb308AHbI MPU Memodd npeosa-
PUMENbHOU 00pAbOMKU CNEKMPO8 U Yemblpe MOOeIU PACRO3HABAHUs. Pe3yibmamul nokazwleaiom, 4mo Mo-
Oenb, UCHONb3YIOWAsE OUCKPUMUHAHMHBIL AHAIU3 HA OCHOBE YACMUYHBIX HAUMEHbUUX K8a0pamos u Chex-
mpbi, 00pabomanHvle MemoOOM MYTbMUNIUKAMUGHOU KOPPEKYUU PACCESHUS, UMeem Tydulue XapaKmepu-
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CMUKU pACNO3HABAHUS (MOYHOCTE NPOSHO3UPOBAHUS KATUOPOBOUHO20 HADOPA U HAOOPA NPOZHOZUPOBAHUSL
100 u 97.5%). Obracme 201086l 0KA3ANACH HAULYHUWUM YYACMKOM O PACHO3HABAHUS HE3APANCEHHBIX U
UHPUYUPOBAHHBIX XPU3ATUO0E MYMO06020 uienkonpsaoa. Heunguyuposanuvie u 3apasicennvle Xpu3anuosl
werKonpsaoa mozym Ovimb YCHeuHO UOeHMUPUYUPOBAHBL C HOMOWBIO Memo0os OaudicHel UK-cnekmpo-
cxonuu npu kyremusuposanuu Cordyceps militaris.

Knroueswvie cnoea: Cordyceps militaris, Myrbmuniukamueras Koppexyus paccesnus, OUCKPUMUHAHM-
HbIIl AHATU3 HA OCHOBE YACMUYHBIX HAUMEHLULUX K8AOPAMO8.

Introduction. Cordyceps militaris, also known as Cordyceps, chrysalis grass, and Cordyceps poly-
arthra Moller, belongs to the genus Cordyceps, family Cordycipitaceae, order Hypocreales, and phylum As-
comycota [1]. The organism is a species of Cordyceps fungi. Hosts of C. militaris include Bombycidae, No-
todontidae, and Saturniidae family members of the order Lepidoptera. C. militaris has a complex structure,
which is composed of sporocarp and sclerotium (body parts of worm or pupa). C. militaris and C. sinensis
have been studied for decades to determine their pharmacological effect, components, and bioactivity. These
organisms are an important part of health food and have been appreciated in China and worldwide over the
past decades. Several studies have shown that C. militaris possesses a number of pharmacological activities
(e.g. immunoregulation [2], antitumor [3], antivirus [4], and anti-infection actions [5]) and is widely used in
the treatment of tumors, immunodeficiency, and even AIDS [6]. With the reduction of wild C. sinensis,
C. militaris is an ideal substitute for C. sinensis because of their similar active components and pharmaco-
logical effects [7, 8]. Application research on scale production of C. militaris has attracted substantial atten-
tion worldwide [9].

Scale production of C. militaris generally includes selection of mycelium, preparation of culture medi-
um, cultivation of the mycelium, optimization and disinfection of silkworm chrysalis, and inoculation and
cultivation of C. militaris. The cultivation of C. militaris is an important part of industrial production. After
inoculation, the silkworm chrysalis infected by C. militaris mycelium becomes rigid and is called the normal
silkworm chrysalis (or uninfected silkworm chrysalis), which is infected by C. militaris mycelium and is not
infected by other microbes, whereas the silkworm chrysalis infected by other microbes becomes softer and
eventually festers and is known as the infected silkworm chrysalis. The difference between the two silkworm
chrysalises usually appears 7-10 days after inoculation [10]. Given the infection caused by other microbes,
which often cause mass contamination of C. militaris, finding infected silkworm chrysalis in a timely man-
ner during the cultivation of C. militaris is difficult and thus leads to significant economic loss to Cordyceps
production enterprises. Timely identification and recognition of infected silkworm chrysalis and adoption of
appropriate measures can prevent cross-contamination of uninfected C. militaris. These methods are im-
portant for scale production of C. militaris.

Near infrared spectrum technology can fully use spectroscopic data under the whole spectral range or
multi-wavelength for qualitative or quantitative analysis. Near infrared spectra technology is widely applied
in agriculture, food, petrochemical, biomedicines, and other industries given its high efficiency, low cost,
good reproducibility, and convenient application [11, 12]. Many researchers have used near infrared spectra
technology to distinguish varieties and to measure component contents of products like waxberry and honey
[13, 14]. Near infrared spectra technology has also been used to determine the origin and discriminate the
gender of silkworm chrysalis and strains of C. militaris [15, 16]. The existing means for discrimination of in-
fected silkworm chrysalis relies on experienced workers touching and pressing onto the surface of the silk-
worm chrysalis during cultivation of C. militaris. This process usually results in extensive contamination of
silkworm chrysalises used for the culture, and is time consuming, laborious, and easily affected by workers'
subjective bias. There is therefore an urgent demand for rapid and more effective discrimination of silkworm
chrysalises. Given that the near infrared technology has the advantages of convenience, rapidity, and qualita-
tive identification in areas pertaining to agriculture and food, it was used to discriminate the uninfected and
infected silkworm chrysalises.

The objective of this study was to confirm whether near infrared spectroscopy can be used to identify
the uninfected and infected silkworm chrysalises, and which part of the silkworm chrysalis is the ideal
recognition part for fast and accurate discrimination of uninfected and infected silkworm chrysalises during
the cultivation of C. militaris.

Experimental. Antheraea pernyi chrysalises, which were used as silkworm chrysalises, were provided
by Beijing Shoucheng Agricultural Development Co., Ltd. Excluded in experiments were damaged, dead,
shrunk, and poor-wing-cover silkworm chrysalises before inoculation. Each silkworm chrysalis was inocu-
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lated with C. sinensis at the point of intersection between the rear wing and third segment (intersection
of head and chest) on September 15, 2016. The process of inoculation will inevitably be contaminated by
other microorganisms. Identification of silkworm chrysalises was carried out five days after the inoculation.
On September 20, 2016, a total of 105 silkworm chrysalises—including 65 infected and 40 uninfected—
were selected and identified by professionals for collection of near infrared spectra.

Near infrared spectra measurement. Near infrared absorbance spectra of silkworm chrysalises were ac-
quired using a Luminar5030 spectrometer (Brimrose Co., Sparks, Nevada, USA) in the “Measurement
modes” of absorbance. The equipment was composed of an optics parts, controller, power adapter, and a lap-
top. The spectrometer range was from 1100 nm to approximately 2500 nm, with a resolution of 2 nm. Silk-
worm chrysalises were put horizontally on the diffuse reflection probe of the spectrometer. For each silk-
worm chrysalis, spectra of the four positions, the head, chest, abdomen, and posterior belly were measured.
Each site was scanned 10 times, and the average value of 10 measurements was taken as the spectra of each
site. All acquired spectra of silkworm chrysalises were divided into modelling and prediction sets with a
proportion of 1.6:1 using the kenned-stone method (KS). Among the 105 silkworm chrysalises, 45 infected
chrysalises and 20 uninfected chrysalises were selected as a calibration set to build the discrimination mod-
els, while the rest, including 20 infected chrysalises and 20 uninfected chrysalises, were selected as a predic-
tion set to validate the built models. In addition, the prediction set was also used to confirm which of the po-
sitions among the head, chest, abdomen, and posterior belly was the best discrimination part for the identifi-
cation of uninfected and infected silkworm chrysalises. The temperature and relative humidity during the
experiment were 21+1°C and 52.1+1%, respectively.

Pre-processing of spectral data. Spectral data of silkworm chrysalises were directly acquired through
non-invasive detection, which possibly resulted in complicated background information. Therefore, original
spectra probably contained high-frequency random noises, baseline drift, light scattering, and other noise in-
formation. The first-order derivative is normally used to eliminate constant baseline shifts, and the second-
order derivative is used to eliminate the baseline slope [17]. By calculating the slope and the intercept be-
tween the spectrum of each detected object and the ideal spectrum, multiplicative scatter correction elimi-
nates spectral scattering changes caused by factors such as particle size, refractive index, and particle size
distribution of the object to be detected [18]. Both derivative processing and multivariate scatter correction
are common spectral pre-processing methods. To reduce or eliminate noises in spectral acquisition, original
spectra were pre-processed using first-order derivative (FD), second-order derivative (SD), and multiplica-
tive scatter correction (MSC).

Model establishment and evaluation indexes. ChemDataSolution software (Dalian ChemDataSolution
Information Technology Co. Ltd.) was used for near infrared spectral modelling. Principal component analy-
sis combined with Mahalanobis distance (PCA-MD), partial least square discriminant analysis (PLS-DA),
k-nearest neighbor algorithm (KNN), and support vector machine (SVM) are commonly used methods for
qualitative identification in near infrared spectroscopy [19-21]. Thus, these methods were used to establish
the recognition model for infected and uninfected silkworm chrysalises. Values of ‘0’ and ‘1’ were set as
reference values for infected and uninfected silkworm chrysalises, respectively, during modelling. Qualita-
tive models of PCA-MD, SVM, KNN, and PLS-DA were established via the scheme of leave-one-out cross
validation. Qualitative models were evaluated using the recognition rates of modelling set and verification
set and the accuracy of uninfected and infected silkworm chrysalises. Moreover, the recognition accuracy
was selected as a key indicator to evaluate the performance of qualitative models.

Results and discussion. The original spectra of all silkworm chrysalises (including the uninfected and
infected) are shown in Fig. 1. Each spectrum was the average of the spectra of four sites — the head, chest,
abdomen, and posterior belly. As can be seen from Fig. 1, the spectral curves had a very similar shape, but
there was a large variability in absorbance. All spectra had the same trend, and there was no abnormal spec-
trum that needed deleting. Average spectra of the two different silkworm chrysalises are shown in Fig. 2a.
It is worth noting that the average spectra of uninfected and infected silkworm chrysalises showed three ab-
sorbance peaks, at 1400, 1770, and 1950 nm of the original spectrum. In spectral analysis, overlapping ab-
sorbance peaks were frequently observed in the original spectrum. First-order derivative (FD) processing
method was usually used to separate the overlapping absorbance peaks. Figure 2b displays the FD spectra of
uninfected and infected silkworm chrysalises, and there were six absorbance peaks at the region of 1320,
1400, 1660, 1710, 1750, and 1880 nm in the FD spectra. Those peaks, which existed in the original and FD
spectra, were related with the main chemical components of silkworm chrysalis such as proteins, fats, fatty
acids, and water [22]. The absorbance peak near 1320 nm was attributed to the second overtone region



169-4 ABSTRACTS ENGLISH-LANGUAGE ARTICLES

of O—H. The absorbance peak near 1400 nm was related to the first overtones of C—H and O—H vibrations of
methyl, methylene, and methine. The absorbance peaks near 1660 and 1710 nm were the first overtones of
C-H of methyl and arene. The absorbance peak near 1750 nm was the first overtones of C—H and S—H. The
absorbance peak near 1880 nm was the first overtones of water and esters [23]. The spectra of uninfected and
infected silkworm chrysalises were different (Fig. 2a). The absorbance peak strength of the infected silk-
worm chrysalises was higher than that of the uninfected within the region from 1200 to 1350 nm, while the
absorbance peak strength of the infected silkworm chrysalises was lower than that of the uninfected within
the region from 1900 to 2050 nm. This was caused by the difference of internal chemical composition in un-
infected and infected silkworm chrysalises as it was found that the infected chrysalises were festered, while
the uninfected chrysalises were covered with Cordyceps mycelium during the cultivation of C. militaris.
These absorbance peaks and differences were the spectroscopic basis for the discrimination of silkworm
chrysalises using near infrared spectra.
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Fig. 1. The original spectra of all silkworm chrysalises including the uninfected
and infected silkworm chrysalises.
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Fig. 2. Comparison of the original spectra and the first derivative spectra of infected and uninfected

silkworm chrysalis. a) Average near infrared spectra of infected and uninfected silkworm chrysalises;

b) first-order derivative of the average near infrared spectra of infected and uninfected silkworm
chrysalises; represent the infected (1) and uninfected (2) silkworm chrysalis.

Building identification models. Sixteen qualitative models of PCA-MD, SVM, KNN, and PLS-DA were
established using the pre-processed spectra of FD, SD, and MSC. The performance of all the models is
shown in Table 1. As shown in Table 1, KNN model of the original spectra had the highest recognition rate



ABSTRACTS ENGLISH-LANGUAGE ARTICLES 169-5

compared with the other modelling methods using the original spectrum, with the accuracy of 84.75%.
PLS-DA models with FD, SD, and MSC spectra achieved the highest recognition rates compared with the
other modelling methods.

The recognition performance with the original spectrum was poor compared with FD, SD, and MSC
generally (Table 1). It was because substantial interference noise caused poor recognition effect of the quali-
tative recognition model of the original spectra. Spectral pre-processing could effectively eliminate spectral
noises and thereby significantly increased spectral prediction [24]. The PLS-DA models had the best recog-
nition performance compared with the other models because the PLS algorithm could extract the relevant in-
formation of the dependent Y-variables and the independent X-variables to the maximum extent. After com-
paring the 16 discrimination models, SD and MSC pre-processing was found to be suitable pre-processing
methods, and the PLS-DA was selected as the optimal modelling method for the discrimination of uninfected
and infected silkworm chrysalises. Thus, PLS-DA models with SD and MSC spectra were determined for
further analysis.

TABLE 1. Classification Results of Silkworm Chrysalises in Calibration Set Based on Spectral Data

Pre-processin . Recognition rate Recognition rate

III)IGthOd ¢ Modelling method of un;gnfected, % of ir%fected, % Accuracy, %

PCA-MD 24.00 95.00 59.50

0S SVM 56.00 80.00 68.00

KNN 72.00 97.50 84.75

PLS-DA 88.00 77.50 82.75

PCA-MD 52.00 92.50 72.25

D SVM 0.00 100.00 50.00

KNN 80.00 77.50 78.75

PLS-DA 96.00 100.00 98.00

PCA-MD 84.00 100.00 92.00

SD SVM 0.00 100.00 50.00

KNN 100.00 72.50 86.25

PLS-DA 100.00 100.00 100.00

PCA-MD 24.00 100.00 62.00

MSC SVM 76.00 92.50 84.25

KNN 60.00 85.00 72.50

PLS-DA 100.00 100.00 100.00

N o te. OS, FD, SD, and MSC represent the original spectrum, first-order derivative, second-order
derivative, and multiplicative scatter correction, respectively.

Model validation and the determination of the best discrimination parts. The prediction set, including
20 uninfected and 20 infected silkworm chrysalises, was used to verify the model performances and deter-
mine which among the four positions (the head, chest, abdomen, and posterior belly) was the best discrimi-
nation part. Spectra of the head, chest, abdomen, and posterior belly of each silkworm chrysalis were used.
As discussed above, PLS-DA models with SD and MSC spectra had the best discrimination performances,
which was why SD and MSC pre-processing methods were used to pre-process the spectra of head, chest,
abdomen, and posterior belly. PLS-DA models of uninfected and infected silkworm chrysalises were estab-
lished and evaluated. Table 2 lists the results of PLS-DA models using the pre-processed spectra at four po-
sitions (the head, chest, abdomen, and posterior belly) of silkworm chrysalises. The PLS-DA model of head
spectral data with MSC pre-processed had the highest recognition rate, with recognition rates for uninfected
and infected silkworm chrysalises at 100 and 95%, respectively, and accuracy of 97.5%. The PLS-DA model
of chest spectral data with MSC pre-processed had moderate recognition effect. The PLS-DA models of ab-
domen and posterior belly spectral data with SD pre-processed were poorly recognized. The different recog-
nition rates of the four positions were caused by inoculation of C. militaris. During the cultivation of C. mili-
taris, each silkworm chrysalis was inoculated with C. sinensis at the point of intersection between the rear
wing and third segment (intersection of head and chest), while microbe contamination was unavoidable dur-
ing inoculation. After inoculation, C. sinensis and microbes started growing from the inoculation point to
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other parts of the silkworm chrysalis. In particular, they gradually spread from the head—chest intersection to
other body parts of the worm. Therefore, recognition rates were higher at the head and chest of uninfected
and infected silkworm chrysalises.

TABLE 2. Model Results of Silkworm Chrysalis in Prediction Set

Measurement Pre-processin Recognition rate | Recognition rate Accuracy. %
position P & of uninfected, % of infected, % > 70
Head SD 85 100 92.5
MSC 100 95 97.5
SD 85 95 90
Chest MSC 95 85 90
SD 95 55 75
Abdomen MSC 80 100 90
Posterior SD 95 55 75
belly MSC 90 85 87.5

N o te. SD and MSC represent the original spectrum, first-order derivative, second-order de-
rivative, and multiplicative scatter correction, respectively.

The PLS-DA model with SD spectra at the head achieved recognition rates of uninfected silkworm
chrysalises, infected silkworm chrysalises, and accuracy of 85, 100, and 92.5%, respectively, whereas corre-
sponding values from the PLS-DA model with MSC spectra were 100, 95, and 97.5%, respectively. The
recognition accuracy of PLS-DA model with SD spectra at the head was lower than that of the PLS-DA
model with MSC spectra. Moreover, in terms of the recognition accuracy at four positions of the silkworm
chrysalis, recognition performances at the head were better than at the other three positions (the chest, ab-
domen, and posterior belly). Thus, the head of silkworm chrysalis was the best discrimination part for both
uninfected and infected silkworm chrysalises. The results indicate that the qualitative model based on the SD
spectra was inferior to that based on the MSC spectra. Therefore, the PLS-DA model with MSC spectra was
optimum for the recognition of uninfected and infected silkworm chrysalises during the cultivation of C. mili-
taris, and the head of the chrysalis was found to be the best discrimination part. The scatter plot of the best
model (PLS-DA model with MSC spectra at the head) for the discrimination of uninfected and infected silk-
worm chrysalises was plotted using the top two PCs (PC1 and PC2) of the prediction set of samples (Fig. 3).
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Fig. 3. Scatter plot of uninfected and infected silkworm chrysalises using PLS-DA model
with MSC spectra at head; represent the infected (m ) and uninfected ( A ) silkworm chrysalises.
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Discrimination of uninfected and infected silkworm chrysalises was successfully performed using near
infrared spectra. Based on the results in this study, it appears that using near infrared spectroscopy in the
production process of C. militaris cultivation could effectively reduce the labor cost and avoid property loss
caused by the cross-contamination of infected silkworm chrysalis, owing to the rapid and accurate discrimi-
nation of infected silkworm chrysalises. It is also important for the quality monitoring of C. militaris. How-
ever, the cultivation process of C. militaris was complex since the internal chemical compositions of the in-
fected silkworm chrysalises were different when compared with the uninfected silkworm chrysalises. Instead
of involving other physical and chemical methods for determining the internal composition of infected and
uninfected silkworm chrysalis, it is possible to select spectral variables while remaining within the frame-
work of the chemometric approach to spectral data. Finding the differences in chemical composition be-
tween uninfected and infected silkworm chrysalises and screening out the sensitive bands associated with
these chemical constituents could reduce the complexity of discrimination models. Moreover, this could also
be helpful for the discrimination equipment development of infected silkworm chrysalis. Thus, further study
should use near infrared spectra combined with other physical and chemical methods to find the main inner
compositions determining the difference among the infected and uninfected silkworm chrysalises and to find
the sensitive bands to reduce the model complexity.

Conclusions. In this study, application of near infrared spectra in recognition of uninfected and infected
silkworm chrysalises was explored using different spectral pre-processing and modelling methods during the
cultivation of C. militaris. The PLS-DA model with MSC spectra at the head of the silkworm chrysalis had
the best discrimination performance, with recognition accuracy of 97.5% in model validation. It can be con-
cluded that near infrared spectra can be used for the discrimination of uninfected and infected silkworm
chrysalises, and the head of silkworm chrysalis was the best discrimination part. However, the use of the
complete near infrared spectra in the modelling process caused a large amount of redundant information to
be included. In order to meet the needs of the on-line and fast detection of uninfected and infected silkworm
chrysalises, further research is needed to reduce the modelling variables by selecting sensitive wave bands
that are related to the chemical differences between uninfected and infected silkworm chrysalises.
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