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The objective of this study was to confirm whether near infrared spectroscopy could be used to discrim-
inate the infected silkworm chrysalises. A total of 105 silkworm chrysalises – 65 infected and 40 uninfected – 
were collected at Beijing Shoucheng Agricultural Development Co., Ltd. Near infrared spectra were ac-
quired at the head, chest, abdomen, and posterior belly of each silkworm chrysalis (both uninfected and in-
fected). Three spectral pre-processing methods and four discrimination models were used to identify the un-
infected and infected silkworm chrysalises. Results indicated that the PLS-DA model based on the spectra 
processed by multiplicative scatter correction (MSC) had the best discrimination performance (the predic-
tion accuracy of calibration set and prediction set were 100 and 97.5%, respectively), and the head portion 
was the best position for the discrimination of uninfected and infected silkworm chrysalises. The overall 
conclusion was that the uninfected and infected silkworm chrysalises could be successfully identified by  
using near infrared spectroscopy technology in the cultivation of Cordyceps militaris.  

Keywords: Cordyceps militaris, multiplicative scatter correction, partial least square discriminant 
analysis.  
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Ближняя ИК-спектроскопия использована для распознавания зараженных хризалидов тутового 
шелкопряда. Всего 105 хризалидов тутового шелкопряда (65 инфицированных и 40 незараженных) 
собрано в пекинской компании Shoucheng Agricultural Development Co., Ltd. Спектры в ближнем  
ИК-диапазоне получены из областей головы, груди, живота и задней части брюшка каждого хриза-
лида тутового шелкопряда (как незараженных, так и инфицированных). Для идентификации неза-
раженных и инфицированных хризалидов тутового шелкопряда использованы три метода предва-
рительной обработки спектров и четыре модели распознавания. Результаты показывают, что мо-
дель, использующая дискриминантный анализ на основе частичных наименьших квадратов и спек-
тры, обработанные методом мультипликативной коррекции рассеяния, имеет лучшие характери-

 
** Full text is published in JAS V. 88, No. 1 (http://springer.com/journal/10812) and in electronic version of ZhPS 
V. 88, No. 1 (http://www.elibrary.ru/title_about.asp?id=7318; sales@elibrary.ru). 



ABSTRACTS ENGLISH-LANGUAGE ARTICLES 
 

170 

стики распознавания (точность прогнозирования калибровочного набора и набора прогнозирования 
100 и 97.5%). Область головы оказалась наилучшим участком для распознавания незараженных и 
инфицированных хризалидов тутового шелкопряда. Неинфицированные и зараженные хризалиды 
шелкопряда могут быть успешно идентифицированы с помощью методов ближней ИК-спектро-
скопии при культивировании Cordyceps militaris.  

Ключевые слова: Cordyceps militaris, мультипликативная коррекция рассеяния, дискриминант-
ный анализ на основе частичных наименьших квадратов. 

 
Introduction. Cordyceps militaris, also known as Cordyceps, chrysalis grass, and Cordyceps poly-

arthra Moller, belongs to the genus Cordyceps, family Cordycipitaceae, order Hypocreales, and phylum As-
comycota [1]. The organism is a species of Cordyceps fungi. Hosts of C. militaris include Bombycidae, No-
todontidae, and Saturniidae family members of the order Lepidoptera. C. militaris has a complex structure, 
which is composed of sporocarp and sclerotium (body parts of worm or pupa). C. militaris and C. sinensis 
have been studied for decades to determine their pharmacological effect, components, and bioactivity. These 
organisms are an important part of health food and have been appreciated in China and worldwide over the 
past decades. Several studies have shown that C. militaris possesses a number of pharmacological activities 
(e.g. immunoregulation [2], antitumor [3], antivirus [4], and anti-infection actions [5]) and is widely used in 
the treatment of tumors, immunodeficiency, and even AIDS [6].  With the reduction of wild C. sinensis, 
C. militaris is an ideal substitute for C. sinensis because of their similar active components and pharmaco-
logical effects [7, 8]. Application research on scale production of C. militaris has attracted substantial atten-
tion worldwide [9]. 

Scale production of C. militaris generally includes selection of mycelium, preparation of culture medi-
um, cultivation of the mycelium, optimization and disinfection of silkworm chrysalis, and inoculation and 
cultivation of C. militaris. The cultivation of C. militaris is an important part of industrial production. After 
inoculation, the silkworm chrysalis infected by C. militaris mycelium becomes rigid and is called the normal 
silkworm chrysalis (or uninfected silkworm chrysalis), which is infected by C. militaris mycelium and is not 
infected by other microbes, whereas the silkworm chrysalis infected by other microbes becomes softer and 
eventually festers and is known as the infected silkworm chrysalis. The difference between the two silkworm 
chrysalises usually appears 7–10 days after inoculation [10]. Given the infection caused by other microbes, 
which often cause mass contamination of C. militaris, finding infected silkworm chrysalis in a timely man-
ner during the cultivation of C. militaris is difficult and thus leads to significant economic loss to Cordyceps 
production enterprises. Timely identification and recognition of infected silkworm chrysalis and adoption of 
appropriate measures can prevent cross-contamination of uninfected C. militaris. These methods are im-
portant for scale production of C. militaris. 

Near infrared spectrum technology can fully use spectroscopic data under the whole spectral range or 
multi-wavelength for qualitative or quantitative analysis. Near infrared spectra technology is widely applied 
in agriculture, food, petrochemical, biomedicines, and other industries given its high efficiency, low cost, 
good reproducibility, and convenient application [11, 12]. Many researchers have used near infrared spectra 
technology to distinguish varieties and to measure component contents of products like waxberry and honey 
[13, 14]. Near infrared spectra technology has also been used to determine the origin and discriminate the 
gender of silkworm chrysalis and strains of C. militaris [15, 16]. The existing means for discrimination of in-
fected silkworm chrysalis relies on experienced workers touching and pressing onto the surface of the silk-
worm chrysalis during cultivation of C. militaris. This process usually results in extensive contamination of 
silkworm chrysalises used for the culture, and is time consuming, laborious, and easily affected by workers' 
subjective bias. There is therefore an urgent demand for rapid and more effective discrimination of silkworm 
chrysalises. Given that the near infrared technology has the advantages of convenience, rapidity, and qualita-
tive identification in areas pertaining to agriculture and food, it was used to discriminate the uninfected and 
infected silkworm chrysalises.  

The objective of this study was to confirm whether near infrared spectroscopy can be used to identify 
the uninfected and infected silkworm chrysalises, and which part of the silkworm chrysalis is the ideal 
recognition part for fast and accurate discrimination of uninfected and infected silkworm chrysalises during 
the cultivation of C. militaris.  

Experimental. Antheraea pernyi chrysalises, which were used as silkworm chrysalises, were provided 
by Beijing Shoucheng Agricultural Development Co., Ltd. Excluded in experiments were damaged, dead, 
shrunk, and poor-wing-cover silkworm chrysalises before inoculation. Each silkworm chrysalis was inocu-

169-2 



ABSTRACTS ENGLISH-LANGUAGE ARTICLES 
 

171

lated with C. sinensis at the point of intersection between the rear wing and third segment (intersection 
of head and chest) on September 15, 2016. The process of inoculation will inevitably be contaminated by 
other microorganisms. Identification of silkworm chrysalises was carried out five days after the inoculation. 
On September 20, 2016, a total of 105 silkworm chrysalises—including 65 infected and 40 uninfected—
were selected and identified by professionals for collection of near infrared spectra.  

Near infrared spectra measurement. Near infrared absorbance spectra of silkworm chrysalises were ac-
quired using a Luminar5030 spectrometer (Brimrose Co., Sparks, Nevada, USA) in the “Measurement 
modes” of absorbance. The equipment was composed of an optics parts, controller, power adapter, and a lap-
top. The spectrometer range was from 1100 nm to approximately 2500 nm, with a resolution of 2 nm. Silk-
worm chrysalises were put horizontally on the diffuse reflection probe of the spectrometer. For each silk-
worm chrysalis, spectra of the four positions, the head, chest, abdomen, and posterior belly were measured. 
Each site was scanned 10 times, and the average value of 10 measurements was taken as the spectra of each 
site. All acquired spectra of silkworm chrysalises were divided into modelling and prediction sets with a 
proportion of 1.6:1 using the kenned-stone method (KS). Among the 105 silkworm chrysalises, 45 infected 
chrysalises and 20 uninfected chrysalises were selected as a calibration set to build the discrimination mod-
els, while the rest, including 20 infected chrysalises and 20 uninfected chrysalises, were selected as a predic-
tion set to validate the built models. In addition, the prediction set was also used to confirm which of the po-
sitions among the head, chest, abdomen, and posterior belly was the best discrimination part for the identifi-
cation of uninfected and infected silkworm chrysalises. The temperature and relative humidity during the 
experiment were 21±1°C and 52.1±1%, respectively. 

Pre-processing of spectral data. Spectral data of silkworm chrysalises were directly acquired through 
non-invasive detection, which possibly resulted in complicated background information. Therefore, original 
spectra probably contained high-frequency random noises, baseline drift, light scattering, and other noise in-
formation. The first-order derivative is normally used to eliminate constant baseline shifts, and the second-
order derivative is used to eliminate the baseline slope [17]. By calculating the slope and the intercept be-
tween the spectrum of each detected object and the ideal spectrum, multiplicative scatter correction elimi-
nates spectral scattering changes caused by factors such as particle size, refractive index, and particle size 
distribution of the object to be detected [18]. Both derivative processing and multivariate scatter correction 
are common spectral pre-processing methods. To reduce or eliminate noises in spectral acquisition, original 
spectra were pre-processed using first-order derivative (FD), second-order derivative (SD), and multiplica-
tive scatter correction (MSC).  

Model establishment and evaluation indexes. ChemDataSolution software (Dalian ChemDataSolution 
Information Technology Co. Ltd.) was used for near infrared spectral modelling. Principal component analy-
sis combined with Mahalanobis distance (PCA-MD), partial least square discriminant analysis (PLS-DA),  
k-nearest neighbor algorithm (KNN), and support vector machine (SVM) are commonly used methods for 
qualitative identification in near infrared spectroscopy [19–21]. Thus, these methods were used to establish 
the recognition model for infected and uninfected silkworm chrysalises. Values of ‘0’ and ‘1’ were set as 
reference values for infected and uninfected silkworm chrysalises, respectively, during modelling. Qualita-
tive models of PCA-MD, SVM, KNN, and PLS-DA were established via the scheme of leave-one-out cross 
validation. Qualitative models were evaluated using the recognition rates of modelling set and verification 
set and the accuracy of uninfected and infected silkworm chrysalises. Moreover, the recognition accuracy 
was selected as a key indicator to evaluate the performance of qualitative models. 

Results and discussion. The original spectra of all silkworm chrysalises (including the uninfected and 
infected) are shown in Fig. 1. Each spectrum was the average of the spectra of four sites – the head, chest,  
abdomen, and posterior belly. As can be seen from Fig. 1, the spectral curves had a very similar shape, but 
there was a large variability in absorbance. All spectra had the same trend, and there was no abnormal spec-
trum that needed deleting. Average spectra of the two different silkworm chrysalises are shown in Fig. 2a.  
It is worth noting that the average spectra of uninfected and infected silkworm chrysalises showed three ab-
sorbance peaks, at 1400, 1770, and 1950 nm of the original spectrum. In spectral analysis, overlapping ab-
sorbance peaks were frequently observed in the original spectrum. First-order derivative (FD) processing 
method was usually used to separate the overlapping absorbance peaks. Figure 2b displays the FD spectra of 
uninfected and infected silkworm chrysalises, and there were six absorbance peaks at the region of 1320, 
1400, 1660, 1710, 1750, and 1880 nm in the FD spectra. Those peaks, which existed in the original and FD 
spectra, were related with the main chemical components of silkworm chrysalis such as proteins, fats, fatty 
acids, and water [22]. The absorbance peak near 1320 nm was attributed to the second overtone region  
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of O–H. The absorbance peak near 1400 nm was related to the first overtones of C–H and O–H vibrations of 
methyl, methylene, and methine. The absorbance peaks near 1660 and 1710 nm were the first overtones of 
C–H of methyl and arene. The absorbance peak near 1750 nm was the first overtones of C–H and S–H. The 
absorbance peak near 1880 nm was the first overtones of water and esters [23]. The spectra of uninfected and 
infected silkworm chrysalises were different (Fig. 2a). The absorbance peak strength of the infected silk-
worm chrysalises was higher than that of the uninfected within the region from 1200 to 1350 nm, while the 
absorbance peak strength of the infected silkworm chrysalises was lower than that of the uninfected within 
the region from 1900 to 2050 nm. This was caused by the difference of internal chemical composition in un-
infected and infected silkworm chrysalises as it was found that the infected chrysalises were festered, while 
the uninfected chrysalises were covered with Cordyceps mycelium during the cultivation of C. militaris. 
These absorbance peaks and differences were the spectroscopic basis for the discrimination of silkworm 
chrysalises using near infrared spectra. 

 

 
Fig. 1. The original spectra of all silkworm chrysalises including the uninfected  

and infected silkworm chrysalises. 
 

 

Fig. 2. Comparison  of the original spectra  and the first derivative  spectra of infected and uninfected  
silkworm chrysalis. a) Average near infrared spectra of infected and uninfected silkworm chrysalises;  
b) first-order derivative  of the  average  near infrared  spectra  of infected  and  uninfected  silkworm  

chrysalises; represent  the infected (1) and  uninfected (2) silkworm  chrysalis. 
 
Building identification models. Sixteen qualitative models of PCA-MD, SVM, KNN, and PLS-DA were 

established using the pre-processed spectra of FD, SD, and MSC. The performance of all the models is 
shown in Table 1. As shown in Table 1, KNN model of the original spectra had the highest recognition rate 
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compared with the other modelling methods using the original spectrum, with the accuracy of 84.75%.  
PLS-DA models with FD, SD, and MSC spectra achieved the highest recognition rates compared with the 
other modelling methods. 

The recognition performance with the original spectrum was poor compared with FD, SD, and MSC 
generally (Table 1). It was because substantial interference noise caused poor recognition effect of the quali-
tative recognition model of the original spectra. Spectral pre-processing could effectively eliminate spectral 
noises and thereby significantly increased spectral prediction [24]. The PLS-DA models had the best recog-
nition performance compared with the other models because the PLS algorithm could extract the relevant in-
formation of the dependent Y-variables and the independent X-variables to the maximum extent. After com-
paring the 16 discrimination models, SD and MSC pre-processing was found to be suitable pre-processing 
methods, and the PLS-DA was selected as the optimal modelling method for the discrimination of uninfected 
and infected silkworm chrysalises. Thus, PLS-DA models with SD and MSC spectra were determined for 
further analysis.  

 
TABLE 1. Classification Results of Silkworm Chrysalises in Calibration Set Based on Spectral Data 

 

Pre-processing 
method 

Modelling method 
Recognition rate 
of uninfected, %

Recognition rate 
of infected, % 

Accuracy, % 

OS 

PCA-MD 24.00 95.00 59.50 
SVM 56.00 80.00 68.00 
KNN 72.00 97.50 84.75 

PLS-DA 88.00 77.50 82.75 

FD 

PCA-MD 52.00 92.50 72.25 
SVM 0.00 100.00 50.00 
KNN 80.00 77.50 78.75 

PLS-DA 96.00 100.00 98.00 

SD 

PCA-MD 84.00 100.00 92.00 
SVM 0.00 100.00 50.00 
KNN 100.00 72.50 86.25 

PLS-DA 100.00 100.00 100.00 

MSC 

PCA-MD 24.00 100.00 62.00 
SVM 76.00 92.50 84.25 
KNN 60.00 85.00 72.50 

PLS-DA 100.00 100.00 100.00 

N o t e. OS, FD, SD, and MSC represent the original spectrum, first-order derivative, second-order 
derivative, and multiplicative scatter correction, respectively. 

 
Model validation and the determination of the best discrimination parts. The prediction set, including 

20 uninfected and 20 infected silkworm chrysalises, was used to verify the model performances and deter-
mine which among the four positions (the head, chest, abdomen, and posterior belly) was the best discrimi-
nation part. Spectra of the head, chest, abdomen, and posterior belly of each silkworm chrysalis were used. 
As discussed above, PLS-DA models with SD and MSC spectra had the best discrimination performances, 
which was why SD and MSC pre-processing methods were used to pre-process the spectra of head, chest, 
abdomen, and posterior belly. PLS-DA models of uninfected and infected silkworm chrysalises were estab-
lished and evaluated. Table 2 lists the results of PLS-DA models using the pre-processed spectra at four po-
sitions (the head, chest, abdomen, and posterior belly) of silkworm chrysalises. The PLS-DA model of head 
spectral data with MSC pre-processed had the highest recognition rate, with recognition rates for uninfected 
and infected silkworm chrysalises at 100 and 95%, respectively, and accuracy of 97.5%. The PLS-DA model 
of chest spectral data with MSC pre-processed had moderate recognition effect. The PLS-DA models of ab-
domen and posterior belly spectral data with SD pre-processed were poorly recognized. The different recog-
nition rates of the four positions were caused by inoculation of C. militaris. During the cultivation of C. mili-
taris, each silkworm chrysalis was inoculated with C. sinensis at the point of intersection between the rear 
wing and third segment (intersection of head and chest), while microbe contamination was unavoidable dur-
ing inoculation. After inoculation, C. sinensis and microbes started growing from the inoculation point to 
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other parts of the silkworm chrysalis. In particular, they gradually spread from the head–chest intersection to 
other body parts of the worm. Therefore, recognition rates were higher at the head and chest of uninfected 
and infected silkworm chrysalises. 

 
TABLE 2. Model Results of Silkworm Chrysalis in Prediction Set 

 
Measurement 

position 
Pre-processing 

Recognition rate 
of uninfected, %

Recognition rate 
of infected, %

Accuracy, % 

Head 
SD 85 100 92.5 

MSC 100 95 97.5 

Chest 
SD 85 95 90 

MSC 95 85 90 

Abdomen 
SD 95 55 75 

MSC 80 100 90 
Posterior 

belly 
SD 95 55 75 

MSC 90 85 87.5 

N o t e. SD and MSC represent the original spectrum, first-order derivative, second-order de-
rivative, and multiplicative scatter correction, respectively. 

 
The PLS-DA model with SD spectra at the head achieved recognition rates of uninfected silkworm 

chrysalises, infected silkworm chrysalises, and accuracy of 85, 100, and 92.5%, respectively, whereas corre-
sponding values from the PLS-DA model with MSC spectra were 100, 95, and 97.5%, respectively. The 
recognition accuracy of PLS-DA model with SD spectra at the head was lower than that of the PLS-DA 
model with MSC spectra. Moreover, in terms of the recognition accuracy at four positions of the silkworm 
chrysalis, recognition performances at the head were better than at the other three positions (the chest, ab-
domen, and posterior belly). Thus, the head of silkworm chrysalis was the best discrimination part for both 
uninfected and infected silkworm chrysalises. The results indicate that the qualitative model based on the SD 
spectra was inferior to that based on the MSC spectra. Therefore, the PLS-DA model with MSC spectra was 
optimum for the recognition of uninfected and infected silkworm chrysalises during the cultivation of C. mili-
taris, and the head of the chrysalis was found to be the best discrimination part. The scatter plot of the best 
model (PLS-DA model with MSC spectra at the head) for the discrimination of uninfected and infected silk-
worm chrysalises was plotted using the top two PCs (PC1 and PC2) of the prediction set of samples (Fig. 3). 

 

 
Fig. 3.  Scatter  plot  of uninfected  and  infected  silkworm  chrysalises  using  PLS-DA  model  
with MSC spectra at head; represent the infected ( ■ ) and uninfected ( ▲ ) silkworm chrysalises. 
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Discrimination of uninfected and infected silkworm chrysalises was successfully performed using near 
infrared spectra. Based on the results in this study, it appears that using near infrared spectroscopy in the 
production process of C. militaris cultivation could effectively reduce the labor cost and avoid property loss 
caused by the cross-contamination of infected silkworm chrysalis, owing to the rapid and accurate discrimi-
nation of infected silkworm chrysalises. It is also important for the quality monitoring of C. militaris. How-
ever, the cultivation process of C. militaris was complex since the internal chemical compositions of the in-
fected silkworm chrysalises were different when compared with the uninfected silkworm chrysalises. Instead 
of involving other physical and chemical methods for determining the internal composition of infected and 
uninfected silkworm chrysalis, it is possible to select spectral variables while remaining within the frame-
work of the chemometric approach to spectral data. Finding the differences in chemical composition be-
tween uninfected and infected silkworm chrysalises and screening out the sensitive bands associated with 
these chemical constituents could reduce the complexity of discrimination models. Moreover, this could also 
be helpful for the discrimination equipment development of infected silkworm chrysalis. Thus, further study 
should use near infrared spectra combined with other physical and chemical methods to find the main inner 
compositions determining the difference among the infected and uninfected silkworm chrysalises and to find 
the sensitive bands to reduce the model complexity. 

Conclusions. In this study, application of near infrared spectra in recognition of uninfected and infected 
silkworm chrysalises was explored using different spectral pre-processing and modelling methods during the 
cultivation of C. militaris. The PLS-DA model with MSC spectra at the head of the silkworm chrysalis had 
the best discrimination performance, with recognition accuracy of 97.5% in model validation. It can be con-
cluded that near infrared spectra can be used for the discrimination of uninfected and infected silkworm 
chrysalises, and the head of silkworm chrysalis was the best discrimination part. However, the use of the 
complete near infrared spectra in the modelling process caused a large amount of redundant information to 
be included. In order to meet the needs of the on-line and fast detection of uninfected and infected silkworm 
chrysalises, further research is needed to reduce the modelling variables by selecting sensitive wave bands 
that are related to the chemical differences between uninfected and infected silkworm chrysalises. 
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